REPORT on the SECOND FAO/SWEDISH TRATNING CENTRE ON SMALL FISHING BOAT DESTGN AND CONSTRUCTION

Held at Entebbe, Uganda
11 January to 6 Maxch 1971

FOOD AND ACRICULTURE ORCANIZATTON OF THE UNTHED NATIONS Rome, 1972

FAO. Report on the second FAO/Swedish Treining Centre on Small Fishing Boat Design and Construction, held at Entebbe, Uganda, 11 Januery to 6 March 1971 , sponsored by the Swedish International Development Authority. Rome, 1972,22 p. FAO/SWE/TF 61

ABSTRACI

This document is the Report of the Second FAO/Swedish Training Centre on Small Fishing Boat Design and Construction, which was hela et Entebbe, Uganda, from 11 January to 6 March 1971, sponsored by the Swedish Intexnational Developm ment Authority.

The Training Centre consisted of a Boatbuilding Course and a Seminar for Fisheries Officers.

In the Boatbuilding Course 20 boatbuilders from Kenye (6), Tanzania (6), Uganda (7) and Malawi (1) were trained in lowmost construction techniques in wood and ferromcement. The emphasis wes on practical boetbuilding. two wooden boats were completed and launched: a 9.3 m boat based on the lines of the traditional canoe, adapted for outboard motor propulsion, and a 7.5 m boat with an 8 hp inboard diesel engine. The hull of a 12.6 m trawler built of ferromement was constructed up to the stage of engine installation and decking. The Uganda Fisheries Department was in charge of completion of this boat and covered the cost of the engine. The boat was launched at the end of January 1972 and has completed successful trials. Two similar boets will be built for an RAO/DANIDA Fishermen's Trajning Centre。

The Seminer for Fisheries Officers was held at the Fisheries Training Institute, Entebbe, 22-27 February 1971 with 37 participants from Kenya, $\begin{gathered}\text { migeria, Sudan, Uganda, }\end{gathered}$ FAO and industry. Eighteen papers on various aspects or fishing boat development in the Lake Victoria region were presented and will be published seperately tom gether with the recorded discussions. The importance of the traditional boatm builder was stressed in papers and during the discussion, as was the necessity of integrating boatbuilding training in a master plan for the introduction of new boat types, provision of credit and Cishermen's training.
COMYTRTS
Page

1. ACKNOWLLDCMIENTS 1
2. SUMMARY AND CONCLUSIONS 1
3. BACKCROUMD 2
4. ORCANTZATMON 3
5. BOATBUILDIVG COURSE 3
5.1 Objectives 3
5.2 Participation 4
5.3 Woxk schedule 4
5.4 Fishing boats built 4
6. SEMITAR FOR TISRERTES OEFTGERS 6
6.1 Objective 6
6.2 Paxticipation 6
6.3 Papers presented 6
7. EVALUATIONT 6
APPENDIX 1 Parbicipaxta in Boatbuilding Course 9
APPFNDIX 2 Boats built during Boatbiilding Courge 11
APPETDIX 3 Photographm of Boetbuilding Courge 19
APPENDIX 4 Participants in Sminar for Fisherios Orficers 24
APPENDIX 5 List of Papers presented to the Seminar for Fisheries Ofricers 26

1. ACKMONLEDGEPMETMS

The Swedish Intemational Developmeat Authority (SIDA) made the organization of this Training Centre and the Seminar for Fisheriea offioers possible through ith financial conm tribution to the FAO/SIDA Cooperetive Programme.

The Governnent of Uganda wholeheartedly supported the Training Centre and made available excellent facilities at the Fisheries Iraiaing Centre in Eatebbe includiag the boatyard belonging to the Fisheries Department.

Special thenks are due to the Chief Fisheries Officer in Uganda, Mre Semokula who, most efficientlyg acted as Director of the Training Centre and the Seminar. Thanks should also be addressed to Mr. A. Biribonwoh, Principal of the Fisheries Training Institute, Entebbe, who provided the staff and the participants with invaluabie aseistance.

2. SUMMARY AND CONCLUSTONS

(a) The Second FAO/Swedish Training Centre on Smell Thishing Boat Design and Construction, held in Entebbe, Ugenda, 11 January to 6 March 1971 introduced severel new cost-saving construction techaiques which had not previously been in comon use in East Africa:
(i) Construction of Vmbottom wooden boets vosidemam on a jig with an extensive use of patterns.
(ii) Utiliwation of galvanized steel fastenings instead ox copper and bronze.
(iii) More extensive use of pressure impregnated fimber for increased rot resistance.
(iv) Construction of laxger fishing boats of ferro-cement.
(b) Of the 21 participants at the Training Centre 20 axe at the present time employed in boatbuilding activities and the majority of them have been able to utilize the experience gained at the Training Centre in their work.
(c) The 12.6 m trawler of ferro-cement is the largest fishing boat yet built in the Lake Victoria area. The fact that the hull of this boet was built in two months by boatbuilders who had never before constructed ferromement boets denonstrated conclusively that, prom vided further training is available, the construction of fishing boats of this size can, in the future, be undertaken by the existing boatysrd. This opens up new and interesting possibilities for the future exploitation of the fish resources discovered by the UNDP/SF Lake Victoria, Fishery Research Project. It also contributed to the decision to have two more boats of the same type built locally rom the Rao/panIDA. Fishermen's Training Scheme, rather than import them from overseas.
(d) Construction of the new type 7.5 m boat introduced ati the Ireining Centre has started. in Phanza, Tansenia, and will in 1972 be taken up asco in Der-es-Salean, it is expected that this boat will be considerably cheeger to build than the deasen previously used in these centres.
(e) The Seminax for Fisheries Oficers held at the Ficheries fraining Instituteg Entebbeg 22-27 Februaxy 1971, brought bogether 37 paricicipents Irom Kenye, Uganda, Sudang Jigeria and from the industry. Eighteen papers on verious aspecte of fishing boat development were presented and will be published aeparately together with the recorded discussions.
(9) The Seminar discusced extengively the relative rolec of the treditionel bostbuildex and the trained boatbuildeg 7 whas concluded thet the treditional boatbuilder atill played a vexy inportant role in the traming of boabbilders and establishnent of boetyands and should aim et producing new bypee or boets suitable tor new devaloment in fithing geax and nethods. Pilot projects mill be an essential sten in determining the right thpe and stze of boet to be introduced.
(g) It wes concluded thet the preperatoxy phese for fature boatbuilding treining centres end seminars should tnolude 5 visit by a noval architeot to the anea ocvered to determune in consultetjon with $30 c a l$ fishermen and pishexies ofticerg the bypes of bots to be built and the construction methods to be adopted. The bost types selected should fit into an enisting on contemoleted govemment plen fon fishiog boat developnent.

3. BACKGROUMD

The Wixst MAO/Swedish Training Centre on Fishing Boot Design wes held at Goteborg Sweden. $\operatorname{tron} 2$ Augut to 31 Oobober 1965 . The main objective of this Training Centre was to give turthez training to men who alzeady had kesic technical education in designing small fiching boathg to betwex equin then for the task of designing fishing boats for their

The report ox this praining Gentre (mho Hishories Reports, No. 31) concluded thet the participants gencrelly bencextted from the courge but thet some problems arose because of the dirferences in eductionet and eaperience level of individual participants; some had good besio treiming and geverel fears experience in the demign or small boats and othera had virbually mo prior emperience in the subject.

The nuocess of a Training Centre may be measured ultimately by the extert to which the participarts own aply theis nem knowledge in the woxk they are pervoming in their home combty. frany or the participants in the Finst Training Centre could usefully apply the experience geined but lor others, mainly from Africen countries, the training given was less directly applicable. These were torenen in boatbuilding yards and for them the training provided at the franing Gentre had been on a higher level than that reguired ror their monks

A study of the inghing boat develoment in East Africa revealed that a main con atraint to developaent wes not the lack of auitable designs but rather the adherence to unnecessarily complicoted and expensive construction methods which made the cost of new fishing boets extrenely high. The introduction of simplex construction methods appeared theretore to have priozity

For the Second RAO/Swedish Treining Centre on Small Fishing boat Design and Constuction it wes proposed, rather than orgenizing a worldwide training centreg to concentrate on the problene conneobed with boat development in one apeciric eree. In this wey $i t$ wes felt that it would be easier to ensure that the training ofrered would be more directly appliceble to the probleme in the area.

The Fishertes Depaxbente of the three Dast Afrioan countries, Kenya Tenzenia and Uganda, were approached by mAO with the tdea or holding the Second TAO/Swedish Iraining Centre om SmaLL Wishing Dout Dosign and Construction in Ratebbe, Uganda, for boatbuilders fron the three covatrieg the Treining Contre was planmed to consist of two perte the
 with Fishing boe\% develoment in the Laka Victoria aree.

At a meeting in February 1970 with representatives fron the Fisheries Department of the three commries concemed, the timing of the matming centre was tentatively tized for August-September of thet year and the types of boats to be built were agreed upon. In June 1970 it was agreed to change the dates of the franing Centre to 11 Januavy 6 March 1971. The boetbuilding course wes held throughout that period and the Seniner for Fisheries Officers from 22-27 February 1971.

Official invitations to the Training Cextre were gent to the three Govemmenta with a request to subnit the names of $6-8$ qualikied participents tor the boaboilding course and 2-4 persons for the Seminar for Misheries orficers, Ta addition to partjcipents from Kenya, Tanzania and Ugande, one boatbuildex from Walawi for the boatbuilding course and two fisheries officers from Sudan and Higexia for the Seminer for fisheries officers were accepted, due to stroag inverest chom by thede courtajes.

4. ORGAMEATMON

The Training Centre wes oponed on 11 Jamavy 1971 at the Fisheriea Training Institute, Entebbe, Ugenda by the Pemaneat Secretamy Ministry of Animal Tndusidy: Gane and Fisheries, Kampale.

Directos	Mo. S. Mo Semekula Chies miaheries orficem. Tganda
Combirector	Wof. Gutbrenden Warai Aronitect, FAO, Elome
Instruetors	Mro, Coweeler Ferrowcement Construction Erpert Mew Eeajead
	Mre B, Machumstere Bostbuadinge Instructos: Wusheries Training Tnstitute Gatebbe
Secrebariat	Thy, A. Bixibonwona Principal. Fisheries Training Instibute Erbebne
FAO Training Centre No.	TTm AFR 33 (SWE)

5. BOATEULLDIMG COURSIS

5.1 Objectives

The objectives of the Second FAO/Swedish Fraining Centre on Cmall Hishing Epet Design and Construction wexe:
(a) To train boatbuilars already having basto ekils th the uee of boatwaiding tcols and in new oonstruction methods leading to lower cost of fighing veseels in their courtries.
(b) To build prototrpe boats gpecienly desjgned to suit the curgent develonment stege of the ticheries in the three countries.

5.2 Perbicipatiog

5.3 Wome scheduie

The womang hours of the boetbuikung courge were as tollows:
Mondey to prodag

$$
\begin{aligned}
& 08.00-12,00 \text { and } 13,00-17,00 \\
& 08.00-12.00
\end{aligned}
$$

Satuxdey
This is a total of 4 home per week and the main emphasis was placed on practical training. The basic idee in this bothoulding course was "learning by doing"; more theoretical problams wese digoussed as they arose during the construction of the bosts.

Th hat been inthned to have each covntry group morting alternetively one week on each of the three boeth vales consbructiou but the treinees expressed the vish to have eack growp wort on one boat Prom sbaxt to rinish and this was agreed to, once a week all
 they could meke thenselves asgantred with the tetails of the other boets and ask questions.

AI the parbichaare beg previous mowledge of wooden boatbuilding and the instruction during the boatouildixg courde concentroted on the following subjecte:
(a) Prevention of wot 3 twooden bows operatiag in sresh wetero
(b) The use of onstrmotion jigg anc tempiates.
(o) The use of Vabotion destgene for wooden construction.
(d) Galranised tathoninge as aeolecenemb rox coyper and bxonze.
(o) Tntrocuction to taxromement as a conctuction naterial for bisger hulls.

Braning ciasses were orgented Sow those interented in learning the lofting of Tlatmbotion and Vmbothon boetei 15 tronees participeted in these classes films about figheriee swh boathildag 3 othes coumries wexe shown.
 the given to each pextickpart with a photograph album ahowing the various construction stages of the three boase butt by the treinees.

Boand and lodging were pronded by the host Goverment at the Fisheries Mraining metitute at Entebbe.

5.4 Fi,shinc boats buits

Whe desigas of the three boeth bultt were prepared by fao on the basis of apeciric aeeds or each countwy as expressed by the relevan Bishery orficers.
(e) Kenya opted fon a fetriy lavge Socsomype canoe to be wilized along the easterg shores of leke Victoxia, A desiga of a 30 rt canoe guibable for a, $5=15$ hp outboard motor Wes prepered, The frames of this canoe could be prefabricated and the canoe built over a jige greaty saciltteting oonstuctiono Fasteniage used mere gelvanized steel bolts and olenched gelvanized neise.

Principal dimensions:	Length over all	$9.35 \mathrm{~m}(30 \mathrm{me} 8 \mathrm{in})$
	Maximum beam	1.78 m (5 tt 10 in)
	Engine power	Outboand 5-15 bp
Fishing method:	Gillneta	

The boat wes completed and laurched during the boetbuilding course as scheduled,
(b) Tanzania had, over the last years, built a number of 25 ft open fishing boats according to an older FAO design originally introduced in Indiag of conventional carvel construction with stean-bent frames, The cost of the hull. excluding engine, was approximately EA sh. 12000 . The principal aim here was to introduce a new design so as to reduce the price considerebly by uijlizing V-bottom construction.

Principal dinensions: Length over all $7.62 \mathrm{~m}(25 \mathrm{f}$ (0 in)
Maximum beam $\quad 2.50 \mathrm{~m}(8 \mathrm{ft} 2 \mathrm{in})$
Bogine power Monmbrewijng $8-10 \mathrm{hp}$
Mrawling $\quad 20-30 \mathrm{mp}$
Fishing methods: Gillnetsg pair trawl traps
The boat was launched immediately after the completion of the boetbuilding course.
(c) Uganda, based on the findings of the ump/FAO misheries Researoh Projecti expressed interest in the desiga of a. trawler suitable fox exploitation of the resources of lake Victoria. The size of tramler finally decided on was $12.5 \mathrm{~m}(41 \mathrm{ft})$ length over all with an 80 hp diesel engine. The selection of ferromeenent as a construction material for this boat was made because of the relative ease with which this material can be utilized by boatbuildexs possessing little experience in buildine lemger hulls, provided suxficient technical supervision is available. Investiggtions ghoved that the cost of a fexromement hull in East Arrica would be lower than any other material. including timber.

Principal dimensions:	Length over all Maximun beam Depth moulded Displecement to DWL Fish hold apaciby Crev Bngine power	$\begin{aligned} & 12.60 \mathrm{~m}(41 \mathrm{ft} 1 \mathrm{in}) \\ & 4.03 \mathrm{~m}(13 \mathrm{ft} 3 \mathrm{~m}) \\ & 1.85 \mathrm{~m}(6 \mathrm{ft} 1 \mathrm{~m}) \\ & 19.4 \mathrm{~m}^{3}\left(20 \mathrm{fgns}^{3}\right) \\ & 12 \mathrm{~m}^{3}\left(420 \mathrm{ft}^{3}\right) \\ & 5 \mathrm{men} \\ & 80 \mathrm{hp} / 1800 \mathrm{mpm} \end{aligned}$
Fishing method:	Tramling	

The huld of this boat was completed during the boatbuilding course and the responsibility of the fitting-out worls has since been transfexred to the boayard of the Jganda Fisheries Department; the boat was expected to be launched in Januaxy 1972.

6. SEMTME FOR FTSEERIES OFELCHES

6.1 Objectives

 $22-27$ Bebruary 197 F , wh the following objeotivens

To bring togethes 2ishery onficems and people from the industry on a regional basis,
to discuss mutual problems in small boet development and mechanization.

6.2 Pertichoetion

A botel of 37 pexsons pentanpeted in bhis Seminer. They inciuded:
Fishexies onficers from Kenyag Uganda, Sudan and Migeria, PAO stafi from
Feedquatrens and rield projects: a guest lecturex from $\mathrm{U}_{\mathrm{s}} \mathrm{S}_{0} \mathrm{~A}_{\mathrm{g}}$ and
thtereated people gem industries. The nemes of perticipents are given
in Appendiz 4
6.3 Papers presexted:

Etghteen papers were preseated at the Seninar covering the tields of:
Past developmest
Sooial and eonomio problens
Selection of oythom sise boetb
Selection of construction meterials
Selection of emgine type ame powex
Fishing mebuods and deot axrangement
Establiabment ox boetbuilding yerds
Dinanoing of bot developmend
Future owtlook
A complete 1 ist or the pepers aresented is given in Appendix 5 .

7. EVALUATLON

Tnoluded in the budgebaxy provision for the Treining Centre was a followup visit by an FAO mbiff member to be made within a Jear of the Centre's completion The purpose of this trip was to eveluete the results of the centre and to find out whether the participaxts, in their present employment, could ubilise the experience gained at the Training Centre and whether it had led to any improvement in the construction of fishing boats in the area eround lake Victoria. Basod on the resulth of this investigations recomendations ghould be made regarding the orgenization of futuxe twaining centres.
 Gomirector of the Training Genke, brevelled to Keaye, Ugende and Tamania and contacted boetbuildem and tishexies ofitcara who took pan in the Treining Centre。

It was Townd that all partictpante, except one, were at the preseat time employed in building tibhing boets, and thexe was a general appreciation of what had been learned at the Training Gentre. Most hed athetued a better underetanding of the impoxtence of economy in fishing boat constructhon and her cone to realize that whet is the accepted practice in yacht conscruction might not, fron an economse point of view be acceptable in fishing
boat construction. Also the introduction to now constrwothon metenale like fermomement has created a keen interest in the possible utilumenom of the mevesiai fon lazgez fishimg boats. Many of the partheipant thought that the courge ves too short and thet it it hact. been longer more time could have been devoted to learaing how bo loft e boet in inl aige.

The partiojpants from Kenye came mainy from the Kinum anee sud hed proviously built boats of traditional type, meinly Myexae-type maoes, sinile\% to the Seasembye and fletom
 their experience L rom Gntebbe in buildigg larger canoes on 5 jig. The wishemen in the area were, howevea, reluctert to plece an ordex tor a type of onnoe they had not triod and it is ciear thet more denonstration wort will heve to be ocrcied out by the mishorios Department if a new boet type is to be intwoduced the poetbuilders thenselven have no funds to eneble them to buisd a new boat on spequetion, There ie no dovbt, honever, that the bostbaildexs, by seeing difeerent types of boape neing built et the Treiaids ceatrep were stimulated juto bryine to change some of the treditiond construction methods, and this will be a veluable asset in a future Covemmext progrman fos bhe ixtroduction of new boat types.

Since completion of the Tremanc Centue the participents from Ugende hed neinty worked on the fitting out of the 12.6 m fexromenent boato Tpas boat, the bigeest
 in the construction of tramlers of the siae that will be requined the the cabure Since launching in Jenuary 7972 , which was attended by the Frbeident of Ugende, the boat has been utiliged for a comperstive trashine experiment toecther fith the 16 m vessel of the UnDP/Sm Fisheries Resegnoh Wrojecto 7 the protitabitity of the 12.6 m trewher should be proved by these trialis. it wilh with some modifioetionsg be the

 having boata of this aise buit locally rether than inpowthg them trom ovexsees, ghere
 into the future development of a comerojal 品cwl Fishery on whe Viotoxia, Mhe Second PAO/Swedish hroinhag Contre on Smell Fishing Doat Deajga and Constraction bhereare represented a velueble firet step in this direotion.

In Mance, Thazania, the constmetion of the first 7.5 m boet or the design introduced during the Treining Gentre, had started and was progressing well. th wes the opinion or the participants of the Training Centre that after expertence hed been eaned mhth one or two more boats it would be poseible to reduce the construction thime to hels or the previous one and also make a saving in metoxials by wtilisimg ptrejght planking ingtead of mpiled planks and galvanised nails hartead of copper naile, Tn Dermes-Salamm the conevxuction of a boat of the new design had not been inithated yot since the boatyax of the misheries Department hed been tully occupied with completing a ecrjes on poabe ctexted ecxizer in 1971. The construction of boats of the new design wes, howeves. due to staxt eaty in 1972.

Participants in the Boatbuilding Course

Name Title or designation Address
KENYA

JAOKO, Mangla	Local boatbuilder	Wanyama School P.O. Mbita, Rusinga Island
MUSE, Adam Ojwang	Local boatbuilder	```Uyoma Fishermen's Com operative Society Naya Beach, P.O. Nyilima Uyoma Location```
MWAKAMUSHA, Isasc	Boatbuilder Fisheries Department Boatyard Mombasa	Fisheries Department Box 1146 Mombesa.
NANGA, Harison Owade	Local boatbuilder	West Karachwonyo Kanam, Alara School P.O. Kendu Bay
ODUM, Joshua Obwombe	Local boatbuilder	Osiri School P.O. Box 904 Kisumu
OMOLO, Jackson Tembo	Local boatbuilder	Primaxy School Mfangano Location PoO. Mbita

MALAWI

PHIRI, E.H.	Boatbuilder
	FAO/UNDP Fisheries Training
	Centre, Lake Malawi

Fisheries Training Centre Bor 72
Mengochi.

TANZANIA

HAULE, Magnus Samuel	Boatbuilder Fisheries Department Boatyard Mwanza	Fisheries Division Mo. Box 226
		Mwanza

SAMBAI; Japhet Kilundu	Asgistant Fteld Oficer Fisheries Department Boatyard Dar-er-Salaan	Fisheries Division P.O. Box 2687 Darmesmsalaam
YORAM, Peter	Assistent Fiold Officer Pisheries Departmont Boatyard Mwanse	Fisherdes Division P.O. Box 226 Mwanza

UGANDA

BARWOGEZA, Gahurra Efuraimu	Boatbuilding Manager Wanseko	Butiaba Boatbuilding P.O. Buliisa Via Masindi, Wenseko
KAHWA, Balamu Murasa	Boatbusider Fisheries Department Boatyard Entebbe	Fisheries Department P.O. Box 4 Entebbe
KALENGANA, William Zireaga	Boatbuilder Fisherieg Department Boatyard Entebbe	Fisheries Department P.O. Box 4 Intebbe
NGASAKI, Yoasi Tibammenda	Boatbuilder Fishexies Department Boatyard Eatebbe	Fisheries Department P.O. Box 4 Entebbe
NSUBUGA, Patrick William	Boatbuilder Fisheriea Department Boatyerd Entebbe	Pisheries Department P.O. Box 4 Entebbe
NTALO, George Williams	Boatbuildar Pisherieg Departinent Boatyard Enteblo	Fisheries Department P.O. Box 4 Bntebbe
OKFSA, Elijah ojana	Boatbuilder and Carpenter Ministry of Works	Ministry of Works P.O. Box 145; Entebbe

Boats built during Boatbuilding Course

Fig. 1:
Participants and staff of the
2nd FAO/SIDA Training Centre on Small
Fishing Boat Design and Construction.

Fig. 2:
The prefabricated frames for the 9.35 m canoe are erected on the buildingrejig.

Fig. 3:
After planking the boat is turned over and completed on the inside.

Fig. 4:
The completed canoe is launched.

Fig. 5:
With a 10 hp outboard engine the speed was approximately 8 knots.

Fig. 6:
The 7.6 m boat is also built upside down to facilitate construction.

Fig. 7:
The boat is planked and ready to be turned over. Note cross-planking on bottom.

Fig. 8:
An 8 hp inboard diesel engine gave the 7.6 m boat a speed of 6 knots.

Fig. 9:
The prefabricated frames for the 12.6 m ferromement trawler have been positioned and the first four layers of galvaniged reinforcing mesh applied.

Fig. 10:
Steel rods are tied longi.m tudinally and transversely before the last four layers of mesh are applied.

Fig. 11:
One of the trainees built
a scale model of the ferro-cement boat.

Fig. 12:
Many thousands of ties keep the steel reinforcements together.

Fig. 13:
The plastering of the hull is carried out by skilled craîtsmen.

Participants in Seminar for Fisheries Officers

（22 to 27 February 1971）
KEMTA

Holness；A．P．J．
Assistant Director of Fisheries
Rinistry of Tourism and Wildife
P．O．Box 241，Neirobi
筬umbar，J。S。
Pisheries Officer
Ministry of Tourism and Wildife
P．O．Box 12，Malindi

Oburu，A．S．
Fisheries Officer
Ministry of Tourism and Wildife
P．0．Box 1084，Kisumu
Odero，N.
Director of Fisheries
Ministry of Tourism and Wildife
P．O．Box 241，Nairobi

NIGERIA
Achobeh，J．O．
Counterpart Boatbuilder
Lake Kainj！Research Project
c／o UNDP
F．O．Box 2075
Legos
SUDAN
Ibrahim，Ali Hassen
Game and Hicheries Department
finsatry of Animal Resources
P，O，Box 336
Whartoum

UGANDA

Male，M．M．
Fisheries Officer
Ministry of Animal Industry，Game and Fisheries
P．O．Box 22，Kabale
Mukiibi，D．
Regionel Fisheries Officer
Ministry of Animal Industry，Game and Fisheries
P．O．Box 689，Masaka
OBSERVITRS：

Baligeya，S．K．M．
Comba Marines and Contractors Ltdo，Uganda
Beach，D．D．
Navel Architect，Boting Industry Aesoca．
333 Moxth Michigan Avonue
Chiogeg，Illinoie 60601，USA

Biribonwohe，A．R．
Principal，Fisheries Training Institute Entebbe

Biterokwate，P． Forentry Department（Ugande）

Manyassi, W. Chris Paulus
Gomba Marines and Contractorm Ltd. Ugande

Mohta, J.S.
Dalgety (U) Limited, Ugenda
Nagoda, Dro L.
Makerere Univergity
Department of Forestry
Kampala, Ugande
Plumptre, RoA.
Forestry Department (Uganda)
Proude, P.
Fishing Gear and Methods Branch
Depertment of Pisheries
FAO, Rome, Italy
Rigby, D.G.L.
Perkins Bngines Group Limited
Peterborough
England
Semakula, S.N.
Chier Fishexies Oficer
Fisheries Department
Ministry of Animal Inductry, Game and Fisheries
P.O. Boz 4

Entebbe, Uganda
Stevenson, J.W.S.
Gomba Mexines and Contractors Ltd.
Ugende
Tait, C.C.
Fishery Officer
Fisheries Training Institute
P.O. Box 124

Entebbe, Uganda
Taylor, C.R.
Delta (U)
Ugende
Zake, $F_{0} J_{0}$
Fimheries Training Institute
Entebbe, Uganda

List of Papers presented to the Sominar for Fisheries Officers
(22 to 27 Febmary 1971)
Session 1- Review of Past Experience
Semakule, SoN. Evolution ef mishing boste in the Lake Victoria Region
Session 2 - Social and Economic Problems in Relation to Bont Develoment
Stoneman, J. Social and esoromic problems in relation to fishing boet develoment

Session 3-New Methods for Selection of Ptimum Boats
Engstrom, J. Braluation of fishing boat investments
Session 4-Selection of Construction Material
Holness, A.P.J. Inland Rishing boats - Progress of boat building in Kenya

Eyres, D.J. Some notes on the suryey of fermocement fishing vessels built in New Bealand

Session 5 - Experience of Timber as a Boethmildine Matexial in Eati Africa
Plumptre, RoA. Thaber for boetbuilding in East Africe
Session 6 - Selection of Engine Type and Siee
Kvaran, EoR. Engines for email fishine oreft
Heug, A.F. The powewing of amall fishing cratt
Session 7 - Experionce with Outboard Mechanization in Lake Viotoria Area
Stoneman, J. Experience with outboand mochanization in the Lake Victoria erea

Holness, A.P.J. Outbond enginss for inland waters
Session 8 - Fishing Methods and Deck Arrangement for Small Fishing Boats
 cial fishing vesseis for Lake victoria
Beach, D.D. Simplified mall Aishtme keat construction
Session 9 - Fishing Gear and Boats for Lake Victoria
Jackson, PoB.N. Problems of mechenizing fisheriee in African lakes
Session 10- Establishing a Boatbuilding Yard
Gooding, B.T. Establishing = boatbuilding yard
Holness. A.P.J. Fstablishing a boatbuilding yard
Session 11 - Cost Estimates for Boats
Haug, A.F. Pricing a new boat
Session 12 - Financing Boat DevelopmentCrutchfield, J.A. Financing Boat Development: Experience with creditschernes
Session 13 - East African Fishing Boats - 1980
Semakula, S.N. East African fishing boats - 1980

SWEDISH FUNDS:IN-TRUST

SECOND FAO/SWEDISH TRAINING CENTRE ON SMALL FISHING BOAT DESIGN AND CONSTRUCTION
 PART 2

on the

 WORCUW PAPRES AWM DRENUSSTOM

Held at Extobos, Ugande
$22=27$ 206xtaw 1979
 discussion et the Socond gho/Swediah Tyaining Centre on band Thelaing
 gponsored by the Swodich Txternghional Tevolopment Authority. Rome 1972.208 p

ABSMROS

 Ugende, $22-27$ Bebsemey 1971 in comexion ith the Socond FAO/Swedthe ghetaring

 industry on a zegional berity to dincuss ratual poblona da mavi boet
 boet development in the Lake Jotome trgion sare prosentod The discumsione were recorded,
 contains atitoen pepers under fhose heativge.

Sesmion I Ecomonic and mociai seaver in boes devehoment

Sesbion ITL Gugines for smaty wehinc ciest
Sesmion IV Soabyestes and boabhuldine
Session v Francing boat dewolownont
seasion Vu Mebure developeemb

ACKHONLEDCAMERTS

The Swodish Titernationel Development Anthority (SIDA) made the oxganimetion of this Treining Centre and the Seminaz for Fichorios Ofeicers poagible through ita zinancial contribution to the rAO/STDA Cooperative Progranme.

The Govermont of Gganda wholoheartedy gupported the tratning Centro and made availeble excellent facilities at the Fiahorieg graining Centre in Entobbep inclading the boatyexd belonging to the Finheries Depertment.

Thanks are due to the pereons who in a private or orpiciel capacity contributed with papere to the seminar. Whe views expreesed and techniques explained may be of great velus, partioulamy for tho Lake victoria rogion, but also fos other pacter of the wosld whe similas problems.

In the seme manos the commente orfexed in the ored and writron digcustion are highly valuabe and mhould bor interast to all persong healing mith tinheries devolopinont.

 participanta with twueluabie asaistance.

COMTETIS

Session I	Economic and social factors in boat development
	Paper I/1 SoNo Semakula: Evolution of Pishing bogta in the Lake Victoria region
	Paper I/2 J. Stenewan: Social and economic problens in relation to fishing boat development
	Peper I/3 Jomageromo Evaluation of fiching boat investments
	Pager i/d Discuseion
Seasion II	Materials for boet construction
	Paper II/2 D. Guibrandens Selaction or ponetruption meteriel for susil fishing boghs
	Paper TI/3 RoA. Plumptre: Fimberg for boctouilding in Rest Africe
	Paper IT/4 $\mathrm{D}_{0} \mathrm{~J}_{\mathrm{E}}$ Eyseg: Sone notes on the gurveg of sermomenoxt fiehing versels built in Hev Zoaland
	Paper TI/D Discuemion
Segsion LIT	Engines for minal sighiag exast
	Paper TII/ 1 Jo Stonemans Rxperience with outboact mechanization in the Lote Victorta anme
	for gmell timbing oxat
	Papox ITL/D Dxecuswion
Sesazon IV	Bostyexds and boextraiding
	Pager TV/2 A. F . सung: Paschag a now bogt
	Paper IV/D Diceusmion
Session 7	Finameing boat eovelopment
	Paper V/i Joka Gruchrield: Etperjence with arectit achemen
	Peper $V / 0$ Dienumion
Sassion V x	Future dovelopmont
	In Tagt hericas lakes
	Paper TV/D Discussion
Appendix I	Vgende. $22-27$ Fobxumy 1971

SMTLEAR FOR MTSHEATIS ORFTCBRS
 Enteble, Uganda 22-27 February 1971

```
Session I ECONOMIG AND SOGIAL FACTORS IN BOAT DEVELOPMENT
Paper I/L
```


Evolution of fishing boots in the Loke Victoria region

by
S. 3 E SMASULA

```
Gortents:
```



```
32mFI TRANLISRS************** 3
GEMERENCES &* 0.0.0.0.0.0. a 0. 3
```


IMPRODUCTION

The need for wevermboxne transpom anong people wo live on the shore axeas and islands of major lakes has been recogriand for a very long time, and various oraft have been developed to carry people and theis farm produce rrom cne area to another and also to assist the fishermen to set their fish traps and beskets.

PRIMLTIVE BAFTS AND LOG BOATS

Perhaps the most primitive type of boat that has existed in the Lake Victoxia region was the papyrus rext on which people could sit astride and peddle with their hands or flat pieces of wood. The type of creft depended on the type of flore in the area thich the inhabitants could rind. $_{8}$ the nost importart consideration being that the matexials used. should be oapable of floating plat rafte were made of bundes of papyrus tied togethex with fibre. The log tboats were orten fowa to be made from the Anbatch tree, commonly found in the lake shore axeas, the wood of which was light in texture and, conseguently, vexy buoyant, The only disadrantage of using the Ambatoh wood was that it was found fo aborb a great deal of weterg and dry logs wexe essential for long journeys.

DUGOUT CAROES

From this vexy primitive type of boat, the next developneat took the form of a durout conoe, and apparently this awose through the need tor moze apece and carxying oapaoity. the dugout canoe consistbed of a heary trank of wood with a long merrow hollow gouged out from the certre to enable the padders to sit in the boat together with their belongings, none of wich would get wet. In eleloting a log for a dugoth canog oaxe was taken to cheose a straight well rounded tree. The stability of these canoes has alweys left much to be desixed. and they have been responsible for a large number of deaths in the wator through ovextuming.

The various canoes brit within the Iake Thotorie region have tended to vavy in shape, meterials and sige from one tribe to enotherg it is an interesting fect thet many canoes of the Bagande tribe reached sizes of up to 75 ft in length in the pest although such gizes are nowhere to be seen on Lake Viotowia today. Those on Leke Kyoga, howerev, were orten so small as to be surficient to accomodate only one man and his goods, and many canoes on Lake Kyoga today are still very snall.

The most obvions disadvantege of the dugout canoe is the westage of timber. In the process of ith construction large volumes of wood have to be chiselyed out from the trunk in the making of the hollow, most of whioh camot be put to any good use. Today, when the use of timber is restricted and when there in greater demand for it to be put to other uses such as buildings and fumiture, this method of construction becones both madesimeble and uneconomic.

SESSE CANOES

Various types of dugoub canoen have been constmucted in the Leke Victoria region and from these has emexged a canoe whioh was developed in the Sesse Islands which has becone well know as the Sesse canoe. In its original formg the Sesse canoe was a mene moditication of the old treditional dugout, intended to improve on stability and to seve on the wastage of timber. This wes done by cutting avey the perellel sides of the dugout oenoeg reducing it to the keel only. Iwo plenim were then built on either side of the keelg one on top of
the otbery and these mere joired in between by a round pieoe of wood and oventually sem togeher mith strong sibres of the Rephia Falmy passed through holas wioh were drilled through the sides of the boat with not netal spiked.

Againg the Sease canoe varied ins sige from axea to area, and the shape is alighty dithereat in each part of the late Victoma region por exampleg a boat buititing the Seare Is laxds is alighty different from the boetg that heve been constructed in the yyane guls By the Jeluos of Kexga which ase agein diftexent from those thet have been made by the tuchermen from the eastern region of Lake Victoria.

The Sesse canoe has mosgone verious tyoes of modification What is probably unique ebout it. and whet has oensed much epoouletion is the long felse prow which is found to woject beyond the keet introxt on the boet. Some people heve considered this false pxow to be of no value, white ptuers heve 8 elt it to be purely ornamental Howeverg another subock of thought is thet the yegu is of aschstance in increasing the seavorthiness of the saxt in thet it breake the weros betone they hit the actum body of the bost tit would

 cases on bake Viotoracy but with impwovemants in construction it is not considered so sscentiel.

 is above 26 t

FGACBEA GACES

 chansmatteng gurables sean bebtous on the instde of the jointr of eech plent wile the contrenthe mes modifted to inotude s keel and a hog.

 and $\mathbf{i n}$ tracsportathoa of goods across jakes. Rowever, nahogeny timber proved not to be the bebt type or wood tow this boat, and mope pecraty the canoen have beon eonstruoter From Murulo (charophora sucegse) shthough thte hee meant an increase in the coet of

 of hhis type to be buvt in the hake Abert megion fore in one year.

Although these boats are now very populas among fishermen, the traditional dugout canoe is still much in evidence and contributes a great deal of the catoh landed in all fishing areas of Uganda. In fact, on the Albert Mileg thin is perhaps the only type of fishing boat other than the primitive rafts. Kabalege canoes axe the largest ilshing vessels in Uganda which Ugandeafishermen now operate.

32~TIT TRAWLERS

Recent developnents inolude a 32 mit boat that will be adaptable for traming, Althong not in general use by fishermen at the moment, it is hoped that with chenging methods of fishing and the need for the exploitation of the distant watere of major fishing grouncs in East Arrica, this type of bost, powered by a 70 hp inboaxd engine with a hydraulio winch. may form an inportant feature of the fishing fleet in Bast Africa in the future。

BhTPRERGES

Gooding; BoTeg Development of Desiga exd Construction of Pishing Eoate in Ugande Ugenda 1969 Pisheries Departmeat Occasional Papers 1969. Ho. 2: 22m24

Worthingtong S_{0} and EsBop Inlend Watere of Africe Memillan 1933

SBMITAR FOR FTSHERIHS OFFTCERS
FAO/SWEDISE TRATNIMG CENTMRE ON SMALL FTSHIEG BOAP DESIGN AND CONSTRUCTION Fintebbe, Uganda 22-27 Februery 1971

```
Session I EGONOMIC AND SOCTAL FACTORS IN BOAT DEVELOPMENT
Paper I/2
```


Social and economic problems in relation to fishing boat development

by
J. STONESAIV

Contents:

INTRODUUPION. 1

NEXP STPES IN FTSHILG BOAX DERELOEMLHT 0.02
REQUIREMTMS AND SOCIO-mCOMOMIO

SUMMAFY $\quad .0 .0 .0 .0 .0 .0 .0 .0 .4$

TEPRODEGTYON

FRESEMT FOSTMTOM

 th and the guscese of the aed kotho

 bot wach ase not authod to othe 2 tigning nothous.

 oxboendomagine dxaver/aeobanc.

 of ores 3 pemert per amman no obvan attexpl by the Governent to cortrol this
 yood.

 Leesen the drustexy of the comen mem.

Hatase

(2) Bywtimag ox Boats
 cocaly gure matescenorily

(3) Txaining af Crevs

 esteblished schemen and plens to produee the mequired mex.

(4) Holesele Wratebs, Brik Sale and Shore Sacilities

These must be providet concumext with the matrodvetion of the nem boatto The

 no reason why a commexaia firm with the necestamy vigion and pimanoe ghovle not inctall fecijties et mome poixus on the Lakeahore. hhere mationsi plane ars in opertionag this will deperd on the amwt ot development clloosted to the private sectore

(5) Businose Managemont

 oithes from public os privete moctox

(6) Sefect on tho Fishemen

 is bound to weaken the axisting conoe miebent.

Some icea bas been given abore on the considemble hebour amingey both in the
 disturbing factox mshowege of cmploymext is alsway a major concern with mest Armean

 of 215 three tematorica (3) not $t 0$ contwol popainton mavease and (b) to oncousage

 or the nem genexathom of beate was to have the mixumu gise ama cost oompatible with
 a protit 5 yb the swe mast be as Low as posstble to xeduce the costs to a level where

 alone.

 of course, the onse ix other hopartmente of goverumemb perbiculazy holthy docation

 opthmum develognemb ot the ration.

SLMAME

 wequired sor this immoduction cen and will be proviced. Esprotesezone pishemies

MELEREMCRS

SEMINTAR FOR FISHERTES OFFICERS
FAO/SWEDISH TRAINTVG CBMIRE OT SMALL FISEIWG BOAT DESIGM AND CONSTRUCTTOH Entebbe, Uganda 22-27 Februery 1971
Session I ECONOMIC AND SOCIAL FACTORS IN BOAT DEVELOPMENT
Paper I/3
Evaluation of fishing boot investments
by
J. ENGSTROM
Contents:
TIPTRODUCTION 1
ACCOUNTTNG RATE OF RETURN 1
PRESENT VALUE IMDEX 2
COMPARTSON BETWERN ARR AND PVI 5
CASH PLOW ESTIMATES FOR FTSHTNE BOATS 7
OPITMUT FISHING BOAT 7
ACCOUNTTING FOR RTSK AND UNCBRTATMTY 8
EVALUATION FROM THE TATTONAL BCONOMIC POINT OF VTEW 9
REFERENCES 11

IMIRODUCTION

The growing need to economize on capital and skilled manpower resources hes led to more careful consideration of the economic aspects of fishing vessel construction and during the last few years several contributions have been made in this field. Host of the methods developed refer to lexge fishing vessele and imply the use of systems anelysis techniques and computers. This paper will, while adhering to the generally accepted criteria, try to recognize the esmential need for tools suitable for small craft development.

(1) Purpose and Iimitation

The purpose of this paper is to present and diecusw two methods, one a shortcut and the other more elaborate, which may be used for evalueting inveatments in fishing boats. It is assumed that the evaluations will be mede from the polnt of view of a comercial enterprise and no costs and benexits not directly associsted with its operation will be considered.

(2) The problem

An investment may be conceived as a comat tment of resources made in the hope of realizing benefitts that are expected to occur over a reaponably long futwre pexiod on time (Bierwen, 1967). In thim respect an invertment in a fishing boet does not differ ixom other investments.

Of the specific probleme tacing an investor in afighing creft. the following are likely to be of particular interest.
(a) Why invest at al1?
(b) What type of boat?
(c) What size of boat?
(d) What ancillaxy oquipnent to boats

(3) Eveluation criteria

In order to decide whether an investment should be undertaken or whether one particular investment should be pxeferred to axother, one needs to have nome kind of tool or measure for evaluation. In the litereture on invertment theory, one finds several tools for decisionmaking on investments. The choice of the tool to use will depend on what the investor's mein concern in the invertment is. In cases where the main objective is to recover the invested capital in the shortest possible time, the somoalled paymback period is used as a tool for decision. In other cases the object in to get the maximun retum on owned invested capital. For this paper it is assumed that the capital available for the finencing or imvestmente is linited and thet the aim is, therefore, to maximize the retury on the total capital inverted regardless of whether it be omed or borroved capital. Two different measwes which mey be congidered to setiefy thit goel will be described and discussed below.

ACCOUNTIMG RATE OF RETURY

The firgt menswe is the accowting rate of retum (here called ARR) which is the percentage retio of average ammil net profit to invegtment costo This is a method thet employs the nomal accounting and budgeting technicues to measure the profits expected to result from a new investment.

In ordex to explain the AFR method let us conaider the following prectical case (Table 1) regarding an investment in a bost that is expected to lest for four pears.

Table 1
Calculation of cocounting rate of retman
(in maillings)

Boat 4					
	Year 0	Teas 1	Teas 2	Yeas 3	Teas 4
Investment cost	10000	\cdots	eno	\pm	=
Cash revenues	-	9000	9000	9000	9000
Cash outlays	\pm	5000	5000	5000	5000
Depreciation	-	2500	2500	2500	2500
Met proxit	\pm	1500	1500	1500	1500

As the everege annel net profit is Sh. 1500 and the investment cost is Sh. 10000 the accownting rate of retwa tor boet A is 45%

The ARF method in apolied without diticulty and is readily mndergtood by peophe uacd to handing accounting date, Tt in widely used by benking people and businessmen. From

1. It reils to teke the duwation of the investmente into proper consideration.
2. It doen not bake proper sceomt of the time Falue of moneyo

With regard to the fixt objectiong an investment thet yields, ior exampleg 15% for four years nay ostencibly be conmidered anperior to another investment that yielde 14% foy ten yeart. The becond objection is particularly sexious when a comparison is made betweer projects that have a varying cesh flow patterne A project ror which the najor paxti of the profits axise at the and or the tempice period mey mongiy be considered auperior to a project where the prorits or balareg cone mach eandicr.

One orfect of the ARR method fatalure to take the time factor into consideration is that one must be cantions when compering ARR rate with the coster of finameing the investwent. Por example, the fact that the averege net protit of a project 2 . 15% of the cepibel inveated does not necesearily mean that one con boxron all the capitel needed to cover invertment cost at 15% and juet break even.
for sum up the aigouscion on the ARE method, one mey say thet it is a cuick axd Gimple way or finding ont whether an investmant is proritable or not (which answerg the Siret question in the oproblem section) but for ranking purposen it is a satizfactory measure only when the duretion and the cash thov pattern or the various poseible choices axe mimilaw.

PRESHM VALIE MUER

榷e other oveluation tool which will be discusced is the somalled present velue index (here celled PVI) which is the xatio of preacnt value of future cash flow bo investment cost. mhis bool in moxe complicated than the ark and it may therefore be weful to explain brierly its componenta, mone of which heve alreedy been mentioned.
(1) Sstimated service life

In oxder to equalate future banests and costs of project one needs to lnow
how long it will last. In the case of fishing boats one may axmive at a fairly good idea of the ogtirated life by looking at fishexien of similar chexacter. Eowever, one should also pay attention to the specitic conditions facing the particular boekinvestment. For instance, inadequate opportwnities for maintenance and repair axe likely to reduce the sexvice life. If one expects that the boat in question will be replaced betore it has become unserviceable, this shovid also be taken into coneideretion. The sales velue received at the end of the estimated service life is umually called residual value.

(2) Investmext cash slow

The outlays and the revenues that are measurable in monetayy units and thet are associated with a particular investment may well be illustreted in a somealled cash plow diagram. Let us conaider the previous case of boat A again.

Teble 2
Cash rion diegrem

The negative colum in year 0 represents the invegtment cont of the finhing boet Fach positive colvm reprementa an axnul net eash flow, the differencebetween the yearly cesh revenues and the yearly cash outlays. It should be noted that manual net cash flow is larger than net profith ghom in table 1. The difrexenceis made up by "depreciation", which elthough being a oogt in the bookceoping sense, does not represent an actual cash outlay.

(3) Presext value concept

As has already been indicated, according to the ARR method. time has no money vaiue, i.e. one ghiling obtained in year il is equal to one ghilling in year 40 According to the FVI method which is based on the concept of the present value, one shilliag some time in the future is worth legs then one shiliing today the besic reason underiying the present value concept it thet money has an amingcepacity. The oaming cepacity varies according to how the monet ie used. Money may be deposited with banke, loaned, used to buy shasen, etc. In most casen the owner of the money
 the time that he doer not diepose of the money"

(4) Appropriate rete of interest

In oxder to calculate the present value of money to be received in the future, it is nevessary to determine the peppropriate rete of interestr (here called RRI). This is not a fired common rate but is rather a subjective rate that will vary with the circum stances under whioh en investment is plenued. One may say thet if the investor borrows most of the money for investing in. for example, a boat, then the arl should not be lower than the interest he has to pay on the loan. If the investox is plaming to use his own capital, the ARI should not be lower than wht his money could eam in altexnetive uses ("opportwnity costs") with about the alne risk involved.

(5) Discounting of future cesh flows

The procedure that is used to calculate the present value of future amowntis of money is called discounting. Let us assume thet we want to discount sho 100 that we expect to receive in two yeart from now. let us also assume that ART is 10% To solve this problen of converting futwe values to present values it is convenient to start out with the relationship between present and future values as is done in Mable 3.

Teble 3
Relationship between present and future values
(in shillings)
(a)

	Year 0	Year 1	Tear 2
	1	1.10	1.21
	1	-	1.21
$0,826<$	$\frac{1}{1.21}$		1

(d)
83100×100
It oan be seen (a) that in two yeaws the value of sh. 1 will grow to ah. 1.21 which. in adation to two yeers interest on the originel capital, includes interest on the intereat accumulated arter the first year phus, sh. 1.21 receivable in two yeare time will have a present value of she $1 / 1,21$ which equals sh. $0.83(c)$. The present value of sh. 100 receivable in two yeare will be ah. 83 (d). It should be pointed out that the discounting procedure only bakes into account the time value of money. It does not take into acoount inflationaxy trends in money values.

The way of diacownting future values presented in Teble 3 is rather tedious and is therefore not widely used. In practice the present value factor (0.826 in the example) cen be found in digcomnt tables thet heve ben prepared fox various combinations of interest retes and time periods. In Amex 1 the present value factors for interest rates up to 30% for periods up to 15 years are shown It can be seen thet at 10% interest the present value of sh. 1 obtained in ten yearg (a "nownal gervice period sor a fiahing boat) is only sh. 0.39 . This shows how impowtant it is that the fishing boet or any other investment - is operating exficiently in the early years.

(6) Praeticel epplication

We can now peturn to the data in Table 1 and see how the present velue inder method may be applied. The calculations axe shown in the rollowing Teble 4 .

Table 4

Calculation of present velue index

(in shillings)

Boat A	Cash flow	Present value factor (at 6% rate of intereert)	Present value
Years 0	$\begin{gathered} -10000 \\ \text { (investment coct) } \end{gathered}$		
Tear 1	4000	0.94	3760
Year 2	4000	0.89	3560
Yeax 3	4000	0.84	3360
Year 4	4000	0.79	3160
Total Tean 1 - Year Present value inder	$\frac{13840}{10.000}=1.38$		13840

In Table 4 the raxiowa cesh flow heve been given a common denominator: i.e. the velue of money in Xear $0_{\text {, }}$ through the discomting procedrane The Teble showe that the preaent value of the future cabh flowe in greater than the cost of the investment and
 the particular investment in proptteble even is all the cepital needed ib boxrowed at 6% interest. In fact, the present value index 1.38 in the example indicates that the investment is proritable et much higher retem of interest. By trial and exror it may be found that at about 22% rate of interest the index wil be 1.00 . This rate, fox wich the prebent value of subure returns is equal to the investment in called "internal rate of xetuma?

We heve seen thet the present value index may be uced to find out whother an investm ment is profitable or not. The main adventage of the this method in compaxison with most other methods (including the "intexnal rete of return method) is however. that it is imediately sujteble for renkine difreaent investment proposis. ghis means that if more than one project has a presant vine index over 1.0 the project with the highest inder should be chosen betore the othexs.

COMPARTSON BGYWHEN ARR AND EVI

In Table 5 another investment (bobt E) costing ah. 500001 mresented. Both PVI and ARR are caloulated. The estimated sorvice lite for boat B is ten Jeass. In year 4 there is a drop in the cash flow due to an ascumed major repair. mom yeer 5 to year 10 the sficiciency i s aswued to tall of succosedvely The xeaidual value of the boat is supposed to be sh. 10000 .

Table 5

Comparison betwoen ARF and PVI

Mron Tables 4 and 5 y gen be seen that both boad hand boad B are prorjteble Juwatments if the cost or cepital is 6% then it coneg to renicing the two boats the
 (15%) is a moxe tavow able investmext than boet $B(9 \%)$. The pregent velue index, howevers showe that boat B ie zonswet more profitabie than boet A (1.42 againet 1.38)。 mais
 fuwne wan flows axe teken into sccoun under the PVI method. te the baste asmumptions or the present value index undoubtedly are nows realistio than those of the accounting sete of retum, boet B should be mererred to boet A Since the investment cost sor boat B is five timea greater then that for boet A, an investrant in boat 8 ahould be conpered with itwe boate of wype AJ/: The nei present value (present value of future cash flows leas invertment oost) for boat B is Bh. 20890 and for five boats or type i is sh. $19200(5 \times 3840)$.

I/ Amewning wat we gext to maximut the zetorn from a given anowt of capital (in this cese at leest $\mathrm{sh}_{\mathrm{c}} 50000$. The cost of the mogt expensive ziternative)

CASH FIDW FSTMMATES FOR FTSHITC BOAFS

So fax, the axamples that heve been used heve been based upon given oash flows. In practice, one of the most difficult parts in investment anelysis is in calculating the cash flows themselves. Some of the fectors that ixfluence the detemanation of cash flows for fishing boats will be described below.

(1) Investment cost

In the case of fishing boats the concept of investment cost is fairly cleax. Practically all outlays of investment type are made before the start of the operatione. The total amount of the investment outlays will depend upon a number or technical factors of which the size (ix grose tons, cubie wetres or some other measure) and engine power are likely to be the most inportant ones. Other determinarts are deck equipment such as winches and fish finding instruments such as echosownders. Whe gear costs may of ben be axpressed as a function or both aize or engine powere

(2) Anmuel revenues

Anmul revenues fron a isening operstion will depend upon the composition of species and catch volume, and erevessel price of eachspecies. Fishing dirers from most other industrial activities in the sense that output is very mpredictable. An investor in fishing boate will often have to rely on rough estimates regerding tubure abuadance of fish. The degree of competition from other boats may be hard to foresee. Fevertheless, in most fisheries the output mill depend to a Lairly laxge extont on the type and aine of the boat (and the gear) - Pactons which may be influenced by the investor. In existine fishexies mad for eristing boats. fairly good catoh/boat meletionships moy be detemined on the besis of available catch statistics. For new sisheriea or new geas, howevex, a great deal of uncertainty will remain.

(3) Annuel operatins outlays

Annuel operating ontlays ase generally nore easily soreseen then the revenves. Crew sheres, which are usully the biggest gingle opereting ontlay, may omen be projected as a certain percentage on the estimated males revenues Costr or provisions may be expressed as a sumotion of oxew size and bime out of porto Fuel costs awe dependent upon engine power and time spent fishing (including steaning). According to empirical studies, insurence costs and repelr costs tend to vary with the cepital costs. The latter costs tend to increase with the age of the sishing creft (creen, 1965 : Proskie, 1963). As has already been indicated, amual depreciation and interest on own capital do not represent outlaym for the invertor and shonid theretore not be included in the amnual cash flow estimates.

OPTEMUM FTSETMG BOAP

In the following it will be shown how changes in one of the technical vasiebles of a fishing boat mey affect the cash 1 low projections. It will also be indicated how the deccribed evaluation methods nay be used to find the optimun combinetion of various technical variables, $i, 0$. to find the answers to quectiong $2(\mathrm{~d})$ to (d) mentioned in Introduction.

Let us assume that we want to know whet ongire power is most economical 10 a certain size of tramlex in Leke Victoria Let us also assume thet a triowlex (A)? which is about 12 m long and which hes a 90 hp ongine, costs sh. 140000 and hes an amual cash flow of ah. 25000 . The estimated cash flow in based upon a catch rato of $200 \mathrm{~kg} / \mathrm{h}$ tramling.

For two other vessels of the same leagth, one (B) with a 180 hp engine and another (0) with a 45 hp engine, the cotch retes heve been estimated at 280 kg and $100 \mathrm{~kg} / \mathrm{h}$ xespectively m Annex 2 the cash flow breakdow of each vessel is shown. It oan be seen that apart fron fish revenues, orew shave and ice costs, which are askund to vary with the catch volume initial boat costs and fuel costs axe the mein differing cesh Rlow items for the three boete. Regarding profitebility it cen be seer that the wamking it the seme (tixwt A_{9} second B and third C) sor the three different investment criteria used. In Annex 3 the PVI for the three boets hes been plotted in a diagremi The curve combining the three points indicatgs that wonder the given assumptions o the optimum size of the engine is anown 120 hp .

Tn the above case it was assumed that the size of the boats was the same for chgines varying between 45 and 180 hp . This assumption is probably not very realistic. In practice there is usually a coxrelation between the two variables. ioe.o when the engine power is reduced bost gize will be mamler and vice verse changes in overall boat size and in engine powex may bo conbined with changes in other variableag an for exmple hold capecity fuel capecity, mize of gear and size ox deck equipment. In order Wo evanate a lexge muber of theorethee investment poscibilities, the use of computers may be regurxed. At the end of this paper are listed a fev gtuates concexned with computex
 1969: Heywood, 510,1969).

ACCOUMTTU WOR RTSE AW OMCRETATNMY

Al investments are to some axtent subject to the plementa of riak and moentanty. For investments where oonte and revenuen are apeciried in sige and time under contrectuel agreemente the whloowns may be reduced to a minumo for fishing boat investments the cash outhow, particulaxly the investment cost, can generaly be predtoted with a fely degree of cextainty. Me invlows howsemg are highly movedictabio.

There are difterent ways of copang whth misk and woertainty in invertnent analyais. One way is to use a eriterion (o.g. maymack periodi) which favover fast recovery of invested capital. Another wew ie to make pesstmistio ectimates of each revenue item and moptimistic!. i.e. inflated. ectimetes of eaoh cost ittm gtill anothex way, wheh is
 calculation of the present value (on the average net profit in the case of the arR method) and leave the wick and whentamby to the zmal anaymis ot the invertmento Here two different techniques of measuring the "genitivity" of investmente to changes in various fartibles will be desoribed.

(1) Tntermel rete of retwrn

The "intemal mate of wetwrm" (ThR) has already been deEaribod as the rete at which The present value of future casb flowe equal the cost (et present) of the investment. As hes been seen from the exmples giveng a grod way to find out how moh "elbow roon" there is in an invertment proposel. it to compsee the The rate with the cost of capital pate. If as in the cese of mbie 5 g ber a mealistio calculation ot the cash flow, a boat appeaxe to have an IRR or 16% and the comb or cepital 486% one would have a fairly good margin for unexpected eventis.

Although it is a good messure tox comparing aingle jnyestments with the cogte of

1/ It should be empasized thet althongh gome of the cost and earninge deta are besed on a
 the date are not intended w mepresent actued conditions but are mexely hypothetical ascmotions by the author to demonetrete a technique.
2/ The main objeotione betng that it in not reaintic to asmum thet foture oceh raowe can continuously be yotnvested at the The rete (Savagr, 1967).
to TRR as a measure for detemining the desirability of fishing boat investments. One practical disadvantage of the IPR method is the rather tedious trial and error procedure needed to axrive at the exact rate, Δs a practical ruleoremhumb measure m for investum ments with fairly even cesh flow patterns the IRR rate can be estimated to be abow 50% higher than the ARR rate (see Tables 4 and 5).

(2) Breakfeven analysis

Another way of finding out how much room an investment may have to eounter unerpected events is by application of the somalled breakeven analyais. Instead of trying to quantify in money terms the risk embodied ing fox example, the fish revenue factor, the potential investor may ask the question: what is the minimum catch needed, othex rectores unchanged, for a given fishing boat to break even? or if the price of fish is congidered the factor most in doubt, the investor may ask what is the minimun price needed, with the given catch rate, cost of capital, crew share, otoon not to incur a loss? After having calculated the various minimum values the investor will generelly be in a position to judge whether the "garety margin" (the dirference between the assumed realistic cetch and the minimm catch) is laxge enough to melre the investment worthwhile.

In the case of the boate presented in Annex 2 it can be seen that the sefety maxgine with respect to the catch rates are not vary lasge. For boet C_{8} which ghows a negstive EVI, there is of course no maxgin at all. For boat Ag it in found that the mexgin ts oniy $10 \mathrm{~kg} / \mathrm{h}$ (200 kg vs, 190 kg) and for boat B it is even 10 se . The mexgin may be found by triel and exror calculations. It mey also be formd directly via the celculation of tho required reduotion in amual cash flond wich will nove एvi to 1.0 .

In virgin fisheries where cath statisticn are not svaileble, the breakeven technitue may be used to get a "meference framen for the deciaion on what fighing botte ehould be employed initially, Rrovided that reaponeble eatimates or investment cost, operating posts and price of fish oan be made; a calculation of the minimum oatchee needed to breck even (or to arrive at a certain rate of return) tor a number of bypothetical fishing boats may give some vseful indication as to the nost economigal type and aise of vessels with such calculations and with comparisons with aimilar siahexies from other regions it chould at least be possible to point out those typen and alzes of boats thet are most valikely to bs good investmente.

EVALUATION FROM MEE MAGIONAC BCOMOMTC PODTY OF TIEN

The previous discusaion has been ooncernod with evaluetion methods applioeble to commercial entrepreneurs. In view of the tact that in maxy countries a lavge portion of the investments in fisheries are made by the publics it hes been considered appropridte to include in this paper also a brief diccuscion on the ovalustion of public investmente. Since a government must seek to avoid misemlocabion of the scarce cepital repources, it has to have appropriate tools for inveatment analysis. One tool which is widely used anong govermment bodjes, is the somealled benortt/coet ratio
 described previously (preaent value on net cesh thons) Tn general, one may sey thet a pubo lic evaluation needs to cover more aspects than a commercial eveluation of the same bype of project. Furthernore, fos certein bencrit/cost items, the two methods of evalustion may employ different measures.

1/ For boat A: $\frac{185000-140000}{7.40}=1.6000$

"Direct" effects

In a public evaluation of an investment, the best was is to start out with the som called direct benerits and costs which are easy to quantify. For fishing boat invest mente, these benefits and costs would probably coincide to a laxge extent with those of a private extrepreneur. Fox such items as costs of boat, geax and fuel which may be subject to taxation, the public costs are, however, likely to be less than comercial costs.1. The pricing of laboux may also pose some problems in a public evaluation. Maxy economists argue that for areas with wide unemployment the true costs ("opportunity costis) of labour to the economy as a whole are maller then the actual wages paid in the market (Bryce, 1960).

In a commexcial investment caloulation it is often implied that the public will provide certain services ("infrestructure") free of cherge or at low charges. In the fishing sector such services may include haxbours and vexions related shore facilities (Buch as whaxss ice plants and auction halls). Tf public fund are to be invested in fishing boats and if these boats require adational investments in shore facilities, the latter costs also heve to be included in the beneft/cost axalyais.

(2) "Indinect" efects

orten some of the most gignifioant effects resulting from a projeoty aspecially in the long rw, are difeicult to measure in money terms. For thie reasong a public evaluation which only includes direct measurable benefits and cost is not a complete ovaluation. Sone of the "indirect" effects of an investment in fisheriea may include the followinge
i) Met foreign exchange erect - Mis iten will be the difference between the "positive effect" which is the amount of forejga ourrency freed by impoxt substitution or increased expoxta and the "megative effect which is the quamity of foreign exchange reguired for instelling, operating and maintaining the project.
ij) The atimlating effect on investwents momis effect may include an investment"s ability to generate savings (via profite) which may be used for new investments of a similar type. It mag also include the ability to incuce investments in related fieldas sor example, investments in boats may stimulate investments in repaix yards, processing plants, inculated trucks, etc.
iii) Employment effect one way of measuring the employment effect is to calculate the "employment ooerticient" which is obtained by dividing the number of persons to be employred in the project by the latter'g cepital recruirements (Un,1958). For countries With an abunance of labour it in generally argued that projects enploying many men per wait of capital should have higher priority then projects with few men per unit of capital. According to this criterion a developing conntry may be better orf with many small fithing boats employing many fichermen then with a few laxge, highly mechanized fishing vessels. It should, however, be mentioned thet in fisheries technological requirements of ten detemine the balance between labour and capital. For oxample, for certain types of fishing one must use cextain typer or sizes of equipment to be able to fish at all.
iv) Other social ractosg which may have to be taken into account are the impact on murition, on health and on akill formetion.

It in apparent that prblic investment evaluation in general gives moxe room for axbitraxy judgement than commeroial evaluation. It is believed, however. that systematic use of sound inveament coiteria such as the benefit/cost ratio will limit the axea for mubjective analysis and will serve as a reasonable firat approximation in making wise public decisions.

[^0]
REFGRENGES

Bierman, H_{a} and $S_{\text {. Smidt, The Capital Budgeting Deciaion The Macmillan Compeny, }}$ 1966 Hew York

Bryce, Mo, Industrial Development. MoGrav-Iill Book Compeny, Hew Yozk 1960

Chaplin, $P_{0} D_{\text {, }}$ and K H. Haywood, Operationel Research Applied to Stern Freezer 1968 Trawler Design. The Institute of Marine Engineergg London

HAO, Report of the Heeting on Business Decisions in the Fishery Tndustries. Raited

FAO, Internationel Conference on Investment in Fisheries. Hdibed by Romisch, 1969 FAO Tisheries Report Ho.83, Vol.2, Rome

Goss, R.O., Dconomic Criteria for Optimel Ship Design Quarterily franseotions of 1965 the Royal Institute of Naval Architects, Iondon
 1965 in Califormia. FTR Reprint 31. Bureau of Comercial Figheriess hashingion

Proskie, J_{0}, Cost and Earninge of Selected Fishery \#nterprises a Atantic Provinees. 1968 Department of Fisheries. Ottame

Savage, C.Io and J. Small, Introduction to Managegial Economics. Eutchineon 1967 Inivercity Libxary, London

UN, Hanual on Boonomic Developnent Projecte UN Publication Mo. 58. TM, $\mathrm{C}_{\mathrm{s}} 5$, Nem York 1958

Annex 1

Present value of 1 shilling receivable at the end of each period

Percentages

Xear 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	20	25	30
10.	0.98	0.97	0.96	0.95	0.94	0.94	0.93	. 92	0.	0.	0.	0.89	0.88	0.87	0.83	0.80	0.76
20.98	0.96	0.94	0.93	0.91	0.89	0.87	0.86	0,84	0.83	0.	0.80	0.78	0.77	0.76	0.69	0.64	59
3	O.	0.	0.8	0.86	0.84	0.8	O.	0.77	75	0.	0.71	0.69	0.68	0.66	0.58	0.51	0.
410.96	0.92	0.	0.	O.	0.79	0.	0.	71	0.68	0.6	0.64	0.61	0.59	0.57	0.48	0.41	0.35
5	0.91	0.86	0, 8	0.78	0.	0.71	0.68	0.65	0.62	0.59	0.57	0.54	0.52	0.50	0. 40	0.33	0.27
60.94	0.89	0.	O.		O.	0.	3	0.60	0.	0.54	0.51	0.4. 8	0.46	0.43	0.34	O.	0.21
70.93	0.	O.	O.		0.67	0.62	0.58	55	O.	0. 48	0.45	0.43	0.40	0.38	0.28	0.21	
80.9	0, 85	0.79	0.	8	0.63	O.		0.50	0.	0.43	0.40	0.38	0.35	0.33	0.23	0.17	0.12
0.9	0.	0.77	O.		0.59	0.54	0.50	46	0. 42	0.39	0.36	0.33	0.31	0.28	0.19	0.1	0.
0.08	0.	0.74	0.		0.56	O.	O.	2	0.39	0.35	0.32	0.30	0.27	0.25	0,16	0.11	. 0.7
0.9	10.80	0.	O.	O.		O.	0.43	. 39	0.35	0.32	0.29	0.26	0.24	0.22	. 14	0.09	0.0
10.89	0.	0.70	O.			O.	O.	. 6	0.3	0.2	0.26	0.23	0.21	0.19	0.11	0.0	-
30.88	0.	0.	0.	O.			0. 37	33	O.	0.	0. 23	20	18	. 16	0.09	0.0	\cdots
0,	O.	0.	O.			O.	0.34	, 30	0.26	0.23	0.21	. 18	0.16	0.14	0.08		$=$
0.86	0.74	0.64	0.56	0. 48	0. 42	0.36	10.32	0,28	0.24	0.21	0.18	0.16	0.14	0.12	0.07	-	-

Anner 2
$\frac{\text { Prewler fisherv in Lake Victoria a a hypothetical case }}{(\text { in } 1000 \text { shillingg })}$

Boat		B	
Length	12 m	12 m	12 m
Engine power	90 hp	180 hp	45 hp
Service life	10 yeaxs	10 years	10 years
Investment cost	140	170	120

Annual cash flow

$\begin{array}{llll}\text { Revenues } & 180 & 252 & 90\end{array}$

less 10% maxket costs

Outlays

Crew share - 30% or revenue	54		76		27	
Fuel - $4.32 \mathrm{sh} / \mathrm{gall}$	35		70		18	
Ice - 50% of catch $x 140 \mathrm{sh} / \mathrm{ton}$	25		35		13	
Repair vessel - 8% on cost	11		13		10	
Repair geax - 200% on cost	8		12.	\%	5	
Insurance 5% on cost	7		9		6	
Administration, etc.	15	$\frac{155}{25}$	15	$\frac{230}{22}$	15	$\frac{24}{-4}$
Present value factor (total for all ten years -at 6% interest)		7.40		7.40		7.40
Present volue of anmual cash flows				163		- 30
Present value index		1.30^{2}		0.96		-0.25
Accounting rate of retum		7\%3		3\%		- 13%
Internal rate of return		12\%		5\%		\cdots

[^1]
Annex 3 - continued Lake Victoria Case

Q. proftagllity at various catch pates

SHMIMAR FOR HISHERTES OFYTCERS
FAO/SVEDISH TRAINIHG CEMIRE ON SMALL FTSEITG BOAM DESIGN AMD CONSYRUCTION Entebbe, Uganda 22-27 Februaxy 1971

Session I ECONOMLC AND SOCIAL FACMORS IN BOAT DEVELOPMEMP Paper $1 / D$

Discussion

Corrents:

is THE ROLE OF TRADIMTONAL ESSETMG CRAFJ.
2. TIPACI OF MRANLER DEVELOPMETP OF

LAKE VICRORTA $0.0 \cdot 0 \cdot 0.0 \cdot 0.0$
3. AN TMTEDNHOTATE SMEP BETWHEN

TRADITIOMAL CRAFM AMD TRADLGES :. . . 5

5. BCONONTC AHALYSTS AND PLLOT PROJEOIS.. .8

1. THE ROLE OF PRADITTOMAL HISETNG CRAHY

S. H. SEMAKULA:

M. ODERO:

The numey carcied ont two yeass ago showed thet in the Leko Viotomia region 2400 canoes were uged in teheries. It is difficult to luan oractly how many of theen wore pewered with outboand notore beceuse aome or the boats seex on the taze wheseg night heve had nagines wich twere stoxed auag The
 number of enginem bejng out of eotion tmenemtion from the dealew show that over the last the wo yoam bhey have sold more than 2000 of these wotossg but it is quite imposeibla ta gyy

 ase operating with owboard notora. Th adation bo this muber

 these are duget canoes mad only abont 20 pergert aze plezack

 belses caly tro deys.

 uadio

 2t 20 costy 30 he goes to tho horest together vith some ot her

 This oxplatus why dugout canoce ave stijl busus mado.
 laxge murbes are dracot oanoog.
 detormand by the type re isching pertomed. Thewny placos the tiahing genx is very shmols ard is operated vaxy eqose to the Bhoreg zo thet sphintiosted thahing oreft ase met

 Isining erato
 A 000 fiehing ownt of raioh I 20 not taval mero that 60 kote

 not impessibles to notorise themo
H. ODERO:
(continued)

POBNO TAOKSOM:

In Lake Naiveshay ishormen are earming more money then H_{m} the Late Tictoria segion and the posaibility bore for motroxization showd be good.

In Leke Rudoly finhing is in the eariy steges but 2% presemt there aro Texy feu motorized ixming creft opersting there.

On the eem coast there axe approxinately 50 inboerd-powesed fishing crept.

It is estimated that for the whole country there are approx metely 6000 tishing creftg anound 200 or bhom mechanized.

The present type of Eishing arext is only used for day iishing. In the gillnet siahery fast oxatt have bocome popular since they cable the Phbherwen to get out to tho inching grounds. which might be sitwated sive niles mmay an back to the Itshing village in a shoxt time. Undorbtodyg In the suture thexe will be a noed sor vesels that an stay ort fithine tor wowe than a day.

Mobody ahould maderesthate the ariciency of the dugout banoe. The dugow canoe and the Seesembpe canoe have developed into Vexy efioiem 4 thing vessels for inmore nse in this region. Some or the dugout canoen have a rethew retined construction. The bottom is thicker thex the sides et the ohines which gives it come cecree of stability.
2. THPACP OF TRAWLER DEVELOLMYY ON HARE VEORORA
J. A. CRURGHTELD:

 be determined purely ox the grounds of oonomje cticiency. The tishowy depends, to a greater or lesses extert, on people. It involves the trainane of people, the moving of peovie and. in Eome sases rolocating whole comunhtien so that any introm duction of new bohniques must somehow take theas factors ixto considexation.

The second point shich fri. Stonemen makes is that, while we heve a good deed of follejoren we do not here maxy hard facta about the meciolog of African tighernen. There is also a Jare gap of knowledge regarding the oconomies or the vazious fiahing methodis now being utilized. Bven though the tiahing equipnemt might be wexy sumpg this does not iwniy that irom en economic and social point of view, this is an inefficiont operation.

A third point tik that in riew of the increase in population and the bichew income Levele there wli be an increased need for fish whioh. over a period of time, might not be oovered by the evaileble wesoures vinch agein will lead to a xise ik the yome os 4ich.
J.A. CRURCHFTELD:
(consinued)
S.N. SEBMAKULA
N_{C} ODERR:

We might be noviag oway more rapidly then ve realize trom developmext as the sole object, tovert coxbrolled devalopmem and a programe of oombrollod sishing efrort whioh will improve rather then decrease the axrieiency of the Lishing operetion.

A serious poixt ubich has been raised is the efiect on the operetion of the treditionel inshore tishexy due to the introm dustion of bigger treulers on Lake Vietorie. The guestion zss how can we provide an increased awoply or proteln food with minimal dismuption to tho people vace livelinood dopends on the treditional itherys The nort importart problem to solwe is the waketing of the fish from these travlewe which ghould bo done in such a vey thet it createa mannal iwherference with the oxisting maxtet of the neall boet eighermon. It is my opinion that thie proble can be solved.

The mejor dixicnity 1 ies in the fact that these tranters wil mequise landing and matreting Eaoijities which will imolve a lasge mownt of durestmenty probebly by the goverwment concencd in cooperetion with privete industry.

I think there it woon for ingthtubionel reseaveh into the mexteting of Replocheoris. which can bo cowverted into 1 ish meal or othor procossed products. This is probebly bo Laryest mixg problon deang the develommont of the tsubsy on Lake Tictoris.

My own cowrty and a nuwber of commeias with wion I an

 whers. The problcus, but albo the opportwaities, we vexy sxegt
 toward x wll developuext of the whers of Lake Tiotoria It seems to mo that if tho project to devalop this mishery as going to succeed it will hat to be anithiatervl project.

Trawl fishery doon not combraith the thedithonal oanoe ishery since the geie of tigh will be camied owt on bo dircomext markets. I co not believe the the canoe visherwan will develop into a traw takherwan rethery wo have to tradn a completoly new type of itshermen to operate the bigen mul nore sophisticeted boets.

If the nev bremlems ase golvs to dume a Large anownt of tich on the mere parimets as the tredthional itaherneny it is undoubedly golng to impuence the price of the tish and the life of the treditional withemen. The speoies ought by the new travlert will also be the same ais those cavght in the gillnev tichexy such as Thapiag Maplochuomis and Gleries. so that there is bound to be some anteryerence between the existing silluet sichomy and the new tranl rishory.
P.B. 1 M JACLSSOK\&
J.A. CRUYCHTIBLD:
P.BoNe JACTSON:

Treul xishing will probably not be done by the treditional ileher mon. I aen see pascible problea cieing when the travit ishexy gris rtambed. The gilinete of the traditionat stacrmen me mormally not Texy well maxked. Thero might be amall stick or something at the and of the net which is not visible trom any distanceg and brawlores even though they try to avoid thene gillnets, might acolacataly swe into thea. The ghallower grownds ase rich in pilevia so there is a tempution sor the travier to go on the seme grownds nich are now fished by the treditional Iishormen. What do we do? We must haryest the resources of thin late mith the new traulems and at the same time we nust cause as little hasm as posmible to the inshowe finkemer. One way is to prohibit trauling in shallow waterg and this might be tho best way. On the other hend, human neture beang wat it in, thexe is a tempation for the tranl gisipper opereting sey is the wicinity of the Sease Islands to Itsh in the shollower watere wen he know that ther is lithle risk of boing caught. This is the problew we are seoed withs how cen we get the maximum mount of Ifah out of this lake and get protoins to the population rithout sexiously upetting in any way the troditiona fishermens

Nobody wishes to introduce a highty ersicient fishing method that will wreck the grounds of the mall siminman ox sexiousty deprest the price of timh on the narket. It is vexy easy to slip from this into \& ishery policy thet tries to neximaye the number of people that cen be supported on the fisheryg endangering in the long sun the total coxtribution the fishery ean make to the conuty ${ }^{8}$ ceconomy. I think it is Fery cesy to take a legitimate concerva about the treditionel fichermen and turn it into e probibition of way real economic progress.

One oanot load all the pyoblens of oconomic development ors to
 whet is now matilised labow in the local Eishoty into more protitable occupations. po a lerge extont the noelth and velrawe of the local tishery in geared to the oconomic developnent of the country as a mole.

I would like to akk He, P.B. Mo Jekean the questron wich is intinetely tied up whth the problen of the traditionel fushemen Fersus the new indugtrial fimbery: whet has been the resust of the invertigetion campied out by the Laie Victoria Fishexies Rescanch Project in this diola?

Our imestigetions show that there are vexy lasge seaow oce of fish in Lek Victomie mich ase not sufficicaty exploited. However, a lewe amount or this in Geplochromis. The Feolochromis
 vaineblo Eish caught by the inehose Pishormen is the Thispies whioh is rexely cenght in wetor deppes than 6mit. At depth of 20 m the tran catches other speoies of Ith like Bagrus and clariss. Ons prossct plan is to propose a minumatishing depth of 20 mor the travkers end they will then manily catch Feplochrons and not interiere with the Thlegia piahexy of the

P.B.N. JACRSON:

(continued)
A. PGo HOLRTSS:
D. MOTTBI:
J.A. CRUTCEFTELD:

Locel rishemaer, It in ostimeted thet at the present time there is a standing atoot of about 18000 tone of Milavia in Esie
 Eron well equipped shore bases and thed cetoh or Eaploghroms my probably manly be coxverbed hrto sish mez.
 meal ror livostook reeding and a local pwoduction of tish menl

 shore tecilitios. These more tacilithes cakg of course also bo whilised by the swall boate. This will bo a completoly diftcrent typo of opertiton compared with the enisting cane Pightry whch Lex theis catches on open beabese pumbomores the trevlews will whlise resowees of Lake Ticborie that,
 botwees these two bypes of tishing should thereroreg be miniwa.
 and the erev on theso boste wil heve to be frivinime inshexmen. A lazge part of the brodition fishormon aro ony dozng fishing pert of the yeas and they have to tak case of theiw crops and thod properby sox the rect of the year. por a long time to comeg this sutustion will pemsiet samiy boceuse re camot construm

 maketed by the trewlexs. The num operating blu trewlex whl not be inturebted in selling the rimh on the gpoty he wil
 Kampaky or ven to the Coxyo wile the stmple tishamman wily

Whis taking ixto aceouxt a permentyerty increase in whe popuation even it we viexalise no sed zrowease in tho troone
 th increased who ow the timed mox than bhe prosert lewe. there in zo rorececmble posmbility of ovexamoduction of fisk an the West Axxicen oovatzews on the coztwayg I thanm gen yn our niterme he mil see considerable jupombe of inth

J. B. MMESTROM:

I have two queatyone:
 tishemy nut the wauk miskeyg
 $3 n$ the tora of a asedty schere that will allow hiw 它o modernise kis equipmoct?

A.S. OBURU:	a sall boat equipped with a 12 bp inboard diesel engine and fitted out 10 thwninge Mhese experimexts heve been contucted by a depanege tishemman and the rewnits ase oncoureging. thotm tt in inportant to elaxity the aconomio espeote berore introduaing It to the Itshexum. We have to hrow the powible improvemexts thet oan be wade with new typer of gear and boete and thon belane these eguinet the posmible nociel conecrencen.
J.A. GRUICETMELD.	There is one point that has boen previouly momtioned in the discussione mpecticeliy in oomnexion vith bigeem vescele and traving and I thint it aise applies to the inahore fishery that its the chagivg rature of the maxct. Theme will be an and mect the noed sor prem finh
C.O. TATE:	Wor an intexmediate itehag boety it might be diruzoutt to introtuce axy tishing mothot other than gininetting which zi being uhblised ab the present time Howeres, on the othex hand. 1t should be possible to increase the catok eyen Purkher by I thint this is an ases whelt th worth mose expervinextal and extensiox more.
J.A. CRUYCMTIELD.	The surcess of the xabulege boat on Late Albert mugt possibly be explanned by the fect the thit boat munee zt poscible to hancle a Largem amown ox giluets than in the twaditonal Sease canoer.
D.S. KANYTKE:	 was not bosn in a famhue willage and brougth up doing fiching but mose an invertor type. s man who is able to locato a buminese oppowtuaity and can judge wethes it in worth whim juyestigg has noney. The two cuall trewlern which we heve developed, the 32 \&t MULULU and the MUUURE beve beer sen in varione pewte or Leke ooning to our oftice msting tow miomathon about these boate mat manting to invest thear money with or wthout a subsicy. The 500 but the new mon Investing in the trewlers will come zaom a
S. N , SEMAKULA	In Uganda, we have system which pernitw the traditional itsherm mon to obtain vessels and equipmont with a oncmbird subsidy from grpport whehew they ase workivg inshowe or otshoze.

6. GuLbramsenis

J.A. CRUPCEFTELD:
 costing sh. 400 m 00 and possibly equipped with an outboard enging costing ah. 3000 , to an inboardepowered boatg sey around 25 t. with \& $7-8 \mathrm{hp}$ ongine costing around kia 12000 . It ghould be evident that the latter boat canot fich with the seme amown of gear as the Sease onnoe. It will simply not be possible to novez the inczeased cost of the new boet without inoseasing considervbly the astohes by utiliaing a greator quastiby of pishing geas or mose exicient gear. The intsoduction of now boat typen hese ix Eest Africe must be Iinked with the introduction or newer or better fishing gear. There have been mery cases rhere a new type of fishing boat hos been introduced, which vas oonsiderebly more expensive than the local type of boet without, at the sume tine. investigating whet type of gest the new boet hed to utilise in order to cetch enough isish to cover the increased ooste.

There is a derger of geacraifetion zogerding the bed oconowe status or the inohose Eishermen. There wre areas in Ugands. Por
 which is sumeriow to other grompe in the same conmantit These people heve been able to creete ingressive inareases in the in sh production wich in the case of East hewieg is theowrold. Noet of this increase in produetion hes boen eatyely firanced by the
 definitely two drexesart thingo.

N. FUJTMAM:

The Jepenese sishing industy had 400000 mpowexed sianing vessels hat a cemtury ago. Fow bhewe in the mame number or vessels but bate os then mae powered. phus ik tremendons number compered mith the tishing vessols omed by Truspean countxies.

If the total catce of the Jepanese thehrg induetmy is duyded by the number of vessels we will get memy low sigure nad ryom thet mavipoint the Jepanose tishing jndustry is not nocesseximy cificiext. For a lons time the Japaneme Covernmext ws feced with a pooiel problom concemaing the mell sishemaen. Fron a purely production pozit or wew most of the coastal pahermez were probably not regured but these tishemnen had mo other weans OL wubdrtonca. Regriatione were, thertome introduod bo proteot the smallacale sivhemen and. for example, the use of otber boasds ha been forbidden on the inshore bravlers bevense they are too ef ickext Bis hrawlexs ase kept out or coasta
 than 100 patwol boats.

Fortwantely, the comstal sinhemen heve a drferent maviet prow the kighucce ficheman The per osput amua consumytion of

 appreciated. Thate tis my coestai siahexacr cen still survive in
D.G.Le RIGBY: In Geylon a mechanised Iahexy has developed. perellel to the

N. FUJLHMMI:
 (continued)

$\gamma_{6} \mathrm{~A}_{9}$ GRUMCNTELD:
 the axpension of the doep-sem tiehecy by giving a mubstidy to onners of boats oress a eartain sise buzat ancording to Covernmeat
 becanse of inssemsing labour costs and rentricted areas of timhing whle the coastal pinhing plect in ftill operating protitably. treditiomal ocnoe tidhexty, over the last 10 years. The meohsaized boats bave lett the gevucde that ape Tished by the treatitionel
 you is atill muviving while, at the same thaeg the owners of the mechanised boats are boving more prosperous.
 in a Pishexy, paxtly mponsored by production by jigerien veasols
 like 300 bons in 1963 to sound 40000 tons ina a mater of $4-5$马eavis. Ghe rish in woved direoty yron the cold atosen in the
 txibuthea on the local martet. At the case time as the develoym

 the same thing has hapened in thans. Tha makebs were so stroxg that they could abserb the sibh both trow the sachore es shewnent

5. ECOKOLC AHMYSTS MO PHOE EROMOUS

φ_{0} culbramosim:

 wose and nore imporsaz in the wuture. We oca desiga \& beattrul

 Mro Eagerwig papar whow how the protitabitity of verious atbow nitives in boe th exes can be ozicumaten.

Howeres, any coonome analyas deperik on the aveilebility of debt - you hase to kaon sonetuing about the coat of the boats the
 expocted catches. Th places wher one is reoed with nen developu mewt these data ave pot avalablo, ans it is thom faporative to obtain date through pilot operations before a Laze-socle exparm

 ass untonded periou th oxtes to obtain the reguised datas I
 ment whll be pilot projects and ตconome sambsie.
J.A. CRUPCHFTEED:

P: PROUDE:
3. B_{4} ENGSTPROM:
$J_{0} A \cdot$ CRUTCHMTEDD:

I think you bave all swu into probleas with budgetane in comertm tion mith other gorexmment agenctes end the putrete sector. Tho fect thot you might zind it disescult to soreoast the cusoct of fish developmerti shouid not prevent you 8 ron somehon taying to justily, by ecomomic anatysing a better sate of setura plus or minus gocieh conejceration then another government ageacy. The process is diffioult and complexy but i i is siegly gomethins that hes to be done it yor wart to obtain e legtimate oiaira on a restricted govermacat budget.

In connexion with the proposel or operetiog pilot projeett to obtain more spocific data ith is important to realize that a grverment agency 4 z not vexy well adapted to these kinda of projects. A pilot projoct mut be zw es olosely as powatize bo a comercial opextblow and a governmext agenoy whe mbat on tixed
 pilot project as a priveto comercial tima would do. Tov might need very gpeciel tron of cteth to pextom this kint ox opectink If noty tho resulte you got out of them right not be appliceble to

Economio zumbsia ic not only rocen tow evaluebins various attex natives berore making an twreamerto atter a project ham aberted

 the achiercmart In melabion to phenued walued and chable yon to
 of having a conkinuous SoLIownm of an invesbert.

 you a fainy decent hack on how glose your ervinster are and wht indicete in whoh dircortion you ase hagturg

SEMTNAR GOR BTEHERTES OTPTGER
 Matebbe, Uganda $22-27$ Tebruary 1971

Feesion th Mefertas mor bonm oonshaugron Peper $x / 1$

Progress of boonbuinding in Kenya

oy

A. P.J. honimss

As far back as 1912-18, the people who lived on the chores or Lake Tictoria laid the foundation for the fishing industries or today. Vexy primitive xafts, dugouta and stitched plank Sesse canoes were used, without aid or advice from the outside fishing woml. It was probably this lack or contact that built the foundation of the famous luo fiaherners. who migrated to every little village on Jake Viotoria and even trekked dom into Tangania to other smaller lakes.

The Lake Victoria fishemen took with then traditiong which remein to this day and may take years to chasige, if indeed a chenge is necessaxy.

One of their traditions was the type of boat suttable fox their kind of work a cratt that could be moved easily through narow chamels in pawrus or thick reeds a aret that could be used by one man or four, so as to enable tamilies to work in the field as whas as on the water. The cratt had to be light enough ln weight to be dragged out of the water. by four people.

One reason why the Renya fibhemen of Leke victoria were beckerd in the developnent of fishing creft was their dificulyy in obtaining guitable timber for boats and the know-how of cutting the few trees which were cvallable, hence the large numbere or dugouts which zere used.

In Uganda, however, timber industries started at a vexy early atage, and on most of the mhoreline of the Ugande Lehe Victoria neterg lasge foremts gave the locel people there a great advantage in obtaining knowledge in the fimber fiald.

This advantage became very noticeable when the original Semse canoe came into baing The canoe wae built of "pit sewed" onewinch planke etitwhed togethes with a syectal fibre, and further gtrengthened by yeata placed across the structure.

These boats were the backbone of the Uganda Itmery and even though outwardy apoearing timey and wistable, were good sea boath and bocame the tradithonel boat for procressive fishemex.

It was from these owiginal Sesse canoes that the Uganda Pisheries Degartwent began their ompaign to improve the basic design withou altoring the treditional inage.

Efeorts to introduce other desigus such as beach "oobblen" axd well conctrueted cinker boats, even conventionally designea pibreglass boats, were mavecosesul. The main reasons for the fishernen's xejection of these new ideas were as under:

1) Too cluntsy for one man wo operate on his om.
ii) One max would be uneble to padile suoh boats with a conventional padale. (Oxat were ont of the question owing to the need to operate in weed or naxrow chamels.)

1i1) Repaires to awch boats would be costly.
iv) They were conaidered clunsy and difecult to operete in high wind
 to accept a new boet. the Sesse canoe wee prt on the drewthg boand and a compaign waw begm to improve the basio design which the people had mready accepted.

Sesse canoes mere mado with proper fremes beata and derigened whth a acuare mbera to take outboard engines. Local boatbuilders in Ugenda began to lmprove tholx canoes in their own wag. by uring nadle and metal byipe to tum thetw craft twho a more rugid type of boat.

Beach boatbuilding - preparing to bend boards

Beach boatbuilding

It was not long before the sesse canoe was the mecepted boat for all fishermen: theix use slowly spread dow into the Kenya waters of Lake Victoria and a variation of the Sesse canoe also came into being in tlanzania.

Later Uganda, once again with timber resources at theix disposel, began properiy organized boatbuilding training courses, firstly at Kichwamba Technical School, near Foxt Portal, and eventually at Entebbe. Fexe the students were trained to build and improve on the old design of Sesse canoe, and eventually these trainees left to begin their own boatbuilding businesses:

The present-day sesse canoe is of a very simple design, with good seameeping qualities, eady to repaix and cheap to buy. It requires a mall oubboard engine to drive it at high speeds and can carry a load which moxe then meets the requixements of the ordinary fisherman.

The average length of the Sesse is $8 \mathrm{~m}(26 \mathrm{ft})$ with a mean of $1.4 \mathrm{~m}(4 \mathrm{ft} 8$ inches) but draws only 12 cm (5 inches) of water, caryying fous fishewnen and 25 cm (10 inches) looded. This canoe will also sail with the wind and can be poled vexy easily.

The author, who has been involved in the advancement of boatbuilding both in Uganda and Kenya, recently introduced the sesse to a local boetbuilding firm in Kenya, and they have since produced sixteen fibreglass versions of the canoe. The first beven which ceme off the line were bought by the Kenya Fisheries Department to demonstrate to fishermen on Lake Victoria, Lake Rudolph. Lake Naivasha, Lake Baringo and at tho coast. It wass found necessary to make a few moditications to the seats, and epecial wooden muners were fitted to protect the keel. The price, at present c 175 , compares fevourably-with the preaent price of wooden versions, and is, in fact, lower then some.

The average weight of the fibreglass cance is only $250 \mathrm{~kg}(500 \mathrm{lb})$ making it faixy easy to transport, and this also enables the tisherman to step down on his oubboard exgime power. He can obtain a speed of over one knot per horge powerg and can sit anything up to 2. 20 hp engine.

A ten-day course has been arranged in order to teach two risheries scouts to carry out running repeirs to fibreglass creft. The buildex pointed out that it was a simple matter to casry out repeire on such canoes; similar ropar jobs on wooden cenoes wonid require the attention of a fully trained caxpenter boatbuilder.

One very important additional advantage or the fibreglass Sesse is that builtwin buoyancy sections wnder each seat have been incorporated in the deaign, making the oraft virtually unsinkable.

This fibregless version of the Sesse canoe is, in the author's opinion, the presentew day answer for the middlemolass fisherman.

When the future of boatbuilding is to be considered, a number of factors must be plaoed in oxder of importance:
i) Are there always going to be adequate supplies of timber"?
ii) What will be the coet of transporting much timberg
iii) What will be the future cost of other iteme required cow wodon boatbuilding
iv) What will be the lebour cogta?
v) What is likely to be the average cost of repairg and meintenence of a woodea boats

Beach boatbuilding - axranging rope springs

With fibreglass boats, however, we have a virtually mantenanceafee boat. Ruming repairs are cheap and simple to carry out. The raw materialm required are easily obtained, and as maxkets improve will becone cheaper to buy.

The greatest expense involved in fibreglese boaburlding is the original mould. This. however, could be easily overcome it the Government held nould in ghok which conld be made readily available to any local boatbuilder who wiahed to take ap fibreglase con stxuction.

At present in Kenya we have two companies building guch boat in pibreglass, and their products have proved very accepteble. The author has tested a number of these boatn ant found them more then sabiafactory.

At an eaxliew stage in the Kenya boatbuilding industry, experimerts were carried out in building Sesee canoes from narine plywood. mhis wes an attempt to see how plywood boat would stand up to rough treatment without meintenamce.

The resuits of this experiment variec coneiderably. One boat was maintained and lasted fox three years; the other broke up after six monthes albhough thit wes maniy owing to locel heat conditions, as average temperaturas in this parb of kenya (Lake Rudolph). range from $27^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.

These experiments were latex discontinued and 1 t wae found uneconomical to purohase plywood sheets for xepaixs.

Kenya hae, et present, a number of firetwlass boatbuilding yexds There are foux situated on inland lakes and four mexying the coastal asea There is aiso a lase bombe buildex outaide Nairobi engaged in buinding boats for the coest.

Boetbuildex curmently established in Kenye are cole to cope with present demande but whth the rapid growth of the fiching induetry ea whole, the Fhanoxes Deparment is whl awe of the wrgent nocessity of training locel staft in boatbuilding cratte.

To thid end, aganda boetbuider has been weoently engeged in trainime a few Turtane cishermen on Lake Rudolph to carcy out simple repais worts and a Danigh rolunteer carpenter/boatbuilder has now awived to extend this progranue further. Additionel Dantin aseistance will arrive ahoxtly.

In Mombasa, a great meny local people are employed by the lexger boatbuildug organizatione and receiving valuable training.

A further important ractor in the traning of local pople th the noed to urge the necessty of keeping costs of fishing boata ak low as poestble and within the money bxedket of locel fishermene As stated before, Ugarda is in a fas bettex position then Kexya, as far as local muplies of timber are concerned. Kenye has to import her timber and the price naturelly increasee with the distance ithas to trevel, nad this mat sito be takex into conbideration.
 was designed specially for the fishermen on Lake Baxingo who found thet the cost of the larger Lake Viotoria Sense was beyond their pockets (mA gh. 3 500) and a maller veralom.
 stable, and will caxry three men with ten to 15 nete. Tt pertome well with a 6 hp argae.

Fibreglass canoes under construction

Preparing fibreglass oanoe for transporting

Plaming of Boatbuilding

The Kenye Fisheries Department appreciate very much the help and advice given by FAO on boatbuilding and all the erfort involwed in the treining of locel boatbuilders. This is a great step forward.

We have been approached on a number of oceasions by overseas expert, shown new plans, and given information on many other different boats. mhis advice has always been gratem fully received and the plans have been oxtensively studied, but when it came to putting the plans into practice, the costs have been high, and in most cases the plans too complicated for local boatbuilders to adapt. The entire process of introducing new eraft to local fishemen takes time and tactg as they will not accept a boet unleas they can be convinced that it suits their requirementis in every way and are reluctant to give up well proved designe.

It is necescary, politically and conomicelly, to oncourage as many labo-mhore dwellers as possible to participate in the inching industry even in a mall way. mais is essential to keep homes going and enable children to be educated. rehere will always be the "beach" fisherman who cennot afford, or does not wish, to expend to deeper waters. These nasses must not be passed over just to mprove a nowe distant and ambitious isehery.

The necessity of developing untouched webex is obvious and boate required for this work will, of necescity, differ from those used by the averege beach or viluage ficherman. Experienced men will be required, and ideally there ghould be a boat for each sueh gichery, whether close inshore, offchore, and even collection gervice for dietant orfehore zishing.

The boat which has recently been deaigned for the Uganda Figheries Deep weter Exploitation experinents (vaAm-1) would be ideal for this purposes and possibly wore proge ressive i ishermen could wee buch a bott. if too expensive for an individual to operate. it could poseible be shared by a compaxy or group.

The authox has spent considerable time with the beach boatbuidere on the bhores of Leke Victoria. These people are experts in theit own 1 ine and phould not be over hooked. It was interesting to pee thet they used cedax on the masive or mall dhow and on inspecting a craft which was said to be three years old. the cedar wood wan found to be in excellent concition. Cedar was only used on the dhows ms the curves wexe gradual.

A larger Waziwa, $11.5 \mathrm{~m}(38 \mathrm{~s}$) long with a $4 \mathrm{~m}(13 \mathrm{~m}$) beany was built with cadar and camphox wood. The keel of the PMutwagy (the local Sease), wes also cedne snd the planks wexe camphor.

It was extremely interesting to watch the way in which the planking of the boate wes carried out. Spectal stakes were used whis rope springe which are twisted until the correct angle is reached. The seaworthinese and mbrenghin of those locally producod craft should not be underestimeted.

Another important aspect it the low cost of the creft which are being produced. The

In conclusion it is felt thet, while there in mavioum need to produes nev deelgns of craftt to cope with more complicated and sdvanced fiehiag gear in order to exploit watexs furthor afield, wo hould not mouldoge the present modiesod traditional crett emide, as these are more than satisfyinc the moderate is incman at prement.

A Victoria "Maziwa" (small dhow), built of cedar

A large "Maziwa" (dhow)。 Dunga landing

Fibreglass Sesse canoe - Lake Rudolph

Fibreglass Sesse (left), with 6 hp engine. (second left) 20 ft Sesse canoe - Lake Baringo

SETTBR POR FTSMMTES OMMCHES
 Gatobbeg Tgende 22-27 Rebraswy 1971


```
Paper IT/2
Selection of construction material
for small fishing boats
by
9. CuLsRANISEM
Contexts:
```



```
Bvaymgrome . . . . . . . . . . . 3
Gmmak, ccasmbumamows. . . . . . . 4
REMGRMCCES. * 0.0.* *.0.0.0. S
```


1HMODUCMOM

The folloving "case history" will illustrate the problema involved in the aelection of construction material for small fishing vessels.

 most impramemt.
 shovid metnuy the follomung oxitewte:

Kuging powes 90 ho
Gow 5 mon
Traip dxe ticu 2 daye melmum

 with the wollews wht conetmuction mberial

CRYMETOM MOR cOLPAETEX

 cumpemed as

Tnitte Mnvombenat
E0cnovis ritetime

 vator olinste oreo

 initia invomtant a ou meln coituriore

MEYTAE JWWernew

The inithal cot of a stining vosel an be bromon dow tos
To Hul ing waine bulkoads and deck
2. Supereptrustuse Eluh hold ma outsith
3. Main ongine.

4o Manhis gean inckudxe winche
 type of conebruction matergh. Lo will therotox miniy be poncerved vith point If wheh cen be furthor divitod into Muterials and lebone

(1) Cotb of Matersaty

 and the monmt of matertion gex nuxtaco unito

 $($ CuMO) $=\operatorname{Low} x \operatorname{Bon} x \operatorname{Ln}$

 ayuromerevos

 rom county to country deponding on import dutios pales tesmey otco

(2) Cogt of Labous

ghe number of manhowre mequised to baild the mall varien considectbly trow one
 and vice vaxas. ghe mount of manhours reguired to build tho kull will therorome have to

 up phese or a bostbunding industays

(3) Comt of Ontret

 yopes These ztome will wost the mand zegudiess of constructiom matemen

The weigat of tho outit caz be calozatod on the baste of the cubie mumber For

 houre/ton oan be reckomed with.
 an cstimete ros the cost of the comploted bot.

ETATYASYOU

 meviouby somanated.

Cost Table 3 gives the cost calculation of the 12.6 m trailox. Fhe Gelculation te based on actual prices of matarials in Ugenda. The figurea tos mamoms recraned for buiding the verions mulle ase neceamarily an estimate and have inteationslly bokn pat saing high.

The cost summary shows that there will be seletivety mall diriezenco in the coct
 Sk 20000 more crpensive than tho obhers. Mhis is based on the assumytion that Iive Frp
 monld comb is digtributed owar a geater muber or hulie ext the totel cost comer dova to arcroxmmtely the man oost as the other boatw whe gelection of Fhe is thoretore cepmadext on arompective maxtot tox idexticel bouls.

 wembe of bowte axe oxvinegec.

 strangly ixto the picture.

ceramal consumpuricos

 "berturnerial for sullor itahing vescols.

 cheor number of them demonstretos beycnd dount thet the types ara meli mutrod to tho
 Wowio that thene mane cevty fox a lonk time to comes vill contimo to mate uy the buth of the inkhing eleet.

 they axe masempodroed.

 thehing gear and nowhy discovered fishing scomis furbor awey will creabe a need fox mev
 Tuture A new type of boat should be inveoduced fox apecisic purpoes. not just bocanse it looks more mmolemp in our eyen than the bredithonal types Th has been a oomon emor an the past to imbsoduce Guropean typew or mall fiahing bosto of complicated cowstruetion

 not aveilable. In the lottine of tho Vobotton mil only three points will detommine the

 on the bottow while the topmidee are planked with equal whth to leep the ravtage dom and avoid the tinswonemang apiling of the planks.

 netraxies the tolloning sequaromerts:
(i) ceasiy presenxe breeted
(ii) Low shrintage
(iij) good atrangth propertios
(iv) selatively cheapy
 setretying these requirenesta.

RESERETOS

 newatorced Phastice bo mishirg Cuthe
 1969 Ewhery Technolog Vol. TI. Ho. 2
(3) Hanson, Hoce Steal and Wood Soantling Mables, Fibhiag Boets of the Wow Ld 1960 ToL. II Faming Wows (Bock Ltd. Lordon
 Feryomanamb Souts

 Eava (Booke) Itcho Loncon
 Pishemat lapowt wo. 12, Jam 1969

mable 2

	Theno(Troko)	Steel Chexs Wonstraction	Mas	Wermor cemas
	43	56	20	10
	3900	$506{ }^{\text {c }}$	8800	6300
	50% we 2000	$50 \%-2500^{\circ}$	50% - 900	$308=1900$
4 Wexeht doct (31 $\left.\mathrm{m}^{2} \pm \operatorname{tg} / \mathrm{m}^{2}\right)$	1300	? \% \%	600	0200
Wetety mat t dock (tay)	7200	9200	3300	90400
We3ghty outert $94 \mathrm{~m}^{3} \mathrm{x} 40 \mathrm{meg} \mathrm{m}^{3}$	3800	3800	3800	3000
Wetght exgine	100	700	700	\%om
	800	800	800	800,
	12500	14.500	898	ye 7om

Meble 3

COSM GMGLAMTOL 12.6 (418) FMAKILE

Hable 2

	Wood 3*vie (Troko)	Stow Cuta Cosermendyex	W2u	rexpo 4smax
	43	56	20	70
	3900	5000°	1.800	6300
	$50 \%=2000$	50% - 2500	$50 \%{ }^{\prime \prime}$	$3 x^{3}=1900$
4 Weight dook (3 $\left.\mathrm{m}^{2} \mathrm{x} \mathrm{m} / \mathrm{m}^{2}\right)$	$\because 300$	170	600	e 200
Whighta moll + doot (mg)	7200	9800	3300	10.400
Weremba outart $94 \mathrm{ma}^{3}$ 2 $40 \mathrm{me} / \mathrm{m}^{3}$	3860	3800	3800	380
Weighty mugis	700	\%00	700	90
	- 800	808	800	800
Weigety Thent maxy (4)	12500	14500	8 m	15700

mable 3

coss GLLGLATMC 12.6 (41 It) mRAMLER

	$\begin{aligned} & \text { Hood } \\ & \text { Mule (Troloo) } \end{aligned}$	Stes Chine Construction		Faxyem Cement
Cost basic matorials per ton	$\left\lvert\, \begin{array}{rrr} \sin & 90 & \text { per } \\ \sin & 1200 \end{array}\right.$	53 1650	Sh 7000	Sh 1100
MALition for marceg	304803400	201msk 330	158 sh 1000	45\%mbir 170
Rudition xor peinty temteninge	15\%mbix 200	10% che 170	(6)	10\% 110
motar cost pex ton	Sh 1800	Stu 2150	She 8000	
	7.2	9.2	303	10.4
Comt metextatey muly 4 dect	shis 13700	Sti 19800	Sh 26400	Sk 14.400
Lebcux - hul上 decin manmown/ton	550	350	350	350
Maxahomer moli. deck	4000	3200	1200	3600
Maxmblucse outurt	3000	3000	3000	3000
meta 1 max moure	7000	6200	4200	6600
Comb labour (Sh 2.70 per h)	19000	16000	11000	17500
CST ROMHETE				
Watamiela	13700	19800	26400	14.400
Lebatr	19000	16000	11000	17500
jontst (sh $6000 / 600)$	23000	23000	23000	23000
Overheeds	15000	15000	15000	15000
Subtotal haul axd outaty	70.700	73800	90400	69.900
Fuginat $80 \mathrm{hy} / 1800$ arma	45000	45000	45000	45000
Whach with trensmisaion	10000	10000	10.000	10000
Echostowader	5000	5000	5000	5000
Subtotel comploted bamb	130700	133800	150400	129900
10, $\mathrm{mageg}^{\text {a }}$	13000	13300	15000	13000
Mrtal completied boat	143700	147100	165400	148900
Eurcent of lowoet comb	101\%	1038	115\%	1096

Fig. 1 - Definition of cubic number.

Fig. 2 - Areo of hull and deck.

Fig. 3 - Weight per square meter of hull and deck. (Excluding keel, deodwood, bulkheads. stringers and local shlifeningl.

Fig. 3 - Weight per square meter of hull and deck. (Excluding keel, deadwood, bulkheads. stringers and local sliffening.

SHITMAR FOR HTSEMRTES ORETCRRS
 Fitebbe, Uganda $22-27 \mathrm{Febwurg} 1971$

Sewaion TT MARERIALS HOR BOAS COMSTRUCPTOM Paper IT/3

Timbers for boof building in East Africa
by
R.A PMEARHEW

Contenter:

IMTRODUCITON

Mimber hes been widely used in the building of boets sox fiching in Bast Armica row many hundyede of years, firetly in the foxm of hollowed ont loge or ridugoraten and secondly as planked boats or Sessembpe oanoes.

It has beld a premeninent position in the past owing to the zbsence of altermative competitive material, but the posttion 1 n now chenging with the availebility of fibrew glass, concrete and metal for boet buildingo The purpose or this paper is to evmaneise the past axperience in using wood as boat building material and to guggeat bottor methodis or use in the future based on this experience axd on moderv techonical developmerte in tha preservation and atabilization or wood.

ADVANTACES AMD DTSADYAMYAGES OP WOOD AS A BOAT BUTLDTMG MAMETAL M BAST AHRTCA

Different woods vary in their propertice atad x mill deal with this subject lates. but 211 wood has a number of common properties some of whioh are on advantage and gome of which are a disadrantage when it is wesd as a boat building neterial phey cer be Listed as tollows:

Adventeges

Lightregs

Wolume for volume wood is light and, if asad sorrectury it cen make boate thet sue etrong: but Iight and essy to havele.

Ghempest and Buai obilitw
 wae of cheaper thiber it ghoud be poseible to parther seduce cotte in fubure.

Bepe or Homling

Pimber is easily womed end aheped to the raquiced shape wh toole thet sue well knom and ommonly used in the comtrises no complicated monide axe regrised and ber

Bese on Boxdinc and phembedty undes Impect
 shape prowided the inpeot doen not freoture it.

Resuatance to dbrasion
Provided the correct wood is used bostr nede of wood will atend ap to a ereat abal of abrasion and will withetend repected heuling up and down sendy and rosky beaches. In this respect it is probebly superion wo fibreglesmo

Base of Jointiny anc Repeiring

Wood in easily nesiod and screved togothor and damaged boata cen be easily repersor.
 thwarte than it in in the case of boats made of othex matertals.

Digedventages

The disedvantages of wood as a boat building material are as follows:

Movement with Chenges in Humidity

Wood swells when it gets wet and shrinks wen it gets dry. Thet is e serious disedvantage since boats, more then most things, are subjected to altermete wetting and dryinge the ortect of thin movement can, however; be reduced very greatly by correct methods of construction, use of timbers with low movewent and the use of modern methods ar watexprooring timber. I will deal with these in more detail leter.

Dreebility

All wood, hovever neturally dureble, is liable to insect and fungu atteck The most serious in the cese of boats is rot which is cavecd by fungus. The warm noist conditions to whick boatt axe mubjected in Bastr Africa are anomt jdeal for this yot and timbore last less long than they do in temperate climates. Even naturally durable thuexs life Muvule (Chlorophorg excelge) last only $4-5$ yearg in a boet and Mehogeny. (Kheya and Bntendrophema mpecies) only 1 est 3 -4 Fears in a nomal firhing canoe. minber oang however, be orseotively premerved using modern preservatives bo give them severol times their naturai lure Ageing I mill deal with this Exthox later.

Lack of Unitormity

Wood being an oxganio meteral is not waisorw. It has agreint which readere it Iinble to split and it is strongex in some directiong than in othex. Plywood, where the grain direction of different laminas are et right gagles. overcomes bhis to some ertent. but may create difticultien of ite own.

1 ghme required for Sessoning and Preperation Iox Use
Decause of y th movement with moithure woot mut be seesoned ox dried before use. Air drying take betweon two and four monthe and it is thoretore nocessary to store the thmber berore use milese it is kin dxied in whioh case the process tabss only lu2 weeks. Facilities for kiln drying are not yet widely available in mast Arica, but thers are a fok places where it cen be done.

PROPMRTRS GEOURED OR A COOD BOA BUTLDTNG MRMER
It is extremely aificcult to choose a good boet building timber frontables of phymical and mechanical propertiou of difterent ratt Arrican moodm. The following properties are known for most of the common timbers:

- Shrinkage to green to 12% moisture content
- Dencity
- Equivalent Iibre gtreas in bending
- Modulus or elesticity
- Total work in benalng.
- Tmpact strength
- Compreseton streagth
- Rerdness
- Sheas strength (parallel to grain)
- Qleavage (splitting) atreagth
 Timbers" (2) whioh are the min rerorence booke on the wabject.

In a boat it is a combingtion of the correot propertiem umich is zecrured. whea needs to be:

- Sufficient strongth
- Cood resintance to splitting
- Cood bending qualities (clanticity)
- Cood najline and screwing propertle
- Low movement (or slow absorption and lose of water)
- Iot too much hardnems
- Ability to absorb premervabiven

Resistance to mplitting of a wood ma bo high but if the timber in alwo hard a greater miltting force is exerted when a nall is driven thas in the ease of arter
 for building a boat. Similary timber with relativoly high movment but whick ie lastic enongh to "accomodate" itsolit to thia movemont mey be bstor than a levis clestic tiabor
 to say what timber it going to bo most gut table without makine a bot ont of it and obecrviag itw perfoxmence, An iateracting exmple of thimber which han a paculiax property which makes it mitable lor dugout mentaoture in Rukebu (Cordia millenii) which is light, soth and easily worked but which ing for some wonow reason, very inpermeable to the movement of moieture and n mpite of the notwese tuke averal tinom

It is, thexerore, nocessery at oxx preamat state or mouledge, to build a boat out of s simber in order to determine iss mitbility for boat building.

The comanly used woods in Ugaad heve been Muruie and Mohogany and to a loseer arbent Mukebu and Jongo (Albizia species). Muvie is uwaliy pratorred owing to itw greater durability with Mukebu probably geoond and Mahogaxy thirds

Al those timber muffer from one great defoct which is thet they mpe impornamble to treatment with vood preservativen which means that they camot be preaervetive treated and heve to yely on their own natural dursbiluty An addicional dindvwatage in the case of Muvule and Mahogany is that they ane the mont expeandve timbers aveiluble, continc on average sh, $2 / 50$ per board foot (approzisetelw who $1050 / \mathrm{m}$ pre w) xor 12 inch by 1 inch tiraber.

As a result of thate problens it was decided to bry building boot out of a timber which appeared to keve suitablo phymicel axd mechmical propertise, but which was permemble to presexvative treatneat and vexy considerably cheaper then Murvie or Mhogany. Molulu (Chrysophylum perpulohress) was chosen and Mr. Cooding of the Fiverien Fraining Institute built a boat out thictimber. Whe coert of the tivber was about wh. $1 / 50$ per board foot (mh, 630/w per m ${ }^{3}$) of 12 inch trimeg i inch timber and the cont of tromtwent

 25% The timber proved easy to build with and cpposed, at the thime of building to be superior to the more expensive woode and from mubwequent pertormance the timber has been

The presexvative treatwont was done whth Coleurs Mar wood premervetwag cemper chrome os arsenate preservativa wich was Impregratod 3 nto the tiaber uming vecuua presture
 of the wood. Provided bhis procesm in properiy wan the lis of the wood treated with it

Is very considerably extaded. Fonco porve breatod uith it and exposed to condibions as severe as those likely to bo oncowntered in b bout in mant Areica heve lested over 20 yeart and are still going mbrong. The bumber wed in this boat was tested ror twetment and, although it could have boon better since a nomber of mireeted streaks ware fowd when treatmext should have been complete throughout, it is probebly adequate to give the boet a longer lite then the 5 wear masimun normally obtainable with durable woods. Really good treatment chonla rocklt in oboet mith a life of 15 Jeare or moxe and it wovid probably bxodt up evontually irow mechanies dieintogetion rather than xot.

HEMODS OM COESYRUCY TOM

I an not a bost builder and an not competont to bugeet methods of conetruction better then the prewent oneeg but fxom the potat of wiow or movemant and shrintage of the timber there in connidersble avantage to be ganed from uning naxwow widthe of timber. tor planking where poendble An average percantage ghrixkage laterelly from green to 1 ck moisture content in 3%. In conditions obtaining in a boat it can be assumed that shrinkage op swelling of up to 2% might be encountered between the wettest and driegt conditions to which the boet might be swijocted. In a 12 minch utie boned this would amowt to s
 timber is buit into bomt probably some marinkage is taken up by the neturel olastictty of the timbes and the reth in the conetwnction of the joints. If it camot be taten uy in this way the boards aplit. Obviowly, the namrower the boarda the lesm Ehrinkage and wolling has to be taton up at jointre t the jorntim cen be made so that they are better eble to stand the shrinkege and shellug, so weh the bettore An additionel advantege in namrower widhe in the they ase dio considerebly obeeper per board foot and easier to obtain mince wide boarde aro miwny more expeneive and dipfieult to obteln fox the dew milles then nawon widhe

Methods of Reducing Sha nikge ank Suething of Nood

Recently it has becone possible to introduce a matermaejellent were into mood. Thus
 amsenste presexwative. The wax. maxalth plus ader sbott 30% to the nomal coet of cte. $-/ 30$ por board Poot yor treatmont with wenaith cho The wax to doposited in the cells of the wood and gremity reducen the amount of weter absorbed axd lost by bhe wood.

 boat out of tirnor treated in this way.

Palntins ard madunine Mimber Boats

On the outwide of b bod it in necessury to use a wherproor nateriel whioh doen not wanh ofe anc nomnal oil paint is probmby the best meterial to use praterably renewed yemriy. Ineide the beet paint tends mexely to hold moisture which encovrages sot. It is probably better to treet the invide or the boet with an olymorme solution or
 aplied once a year provide both water ropellency and preservetive protection sad penom trates into crack where paint weuld not go.

COMCNSTTOHS

 and bes not utiliged, to the full, ponesbilitiee oftered by the comect treatment of wond to give it a xeally lons lixe. Fow this reamon wood her loat ground to IJbrentase in particulare It is true that even with proper ly treated wood fibreglage has advantagee in sone respects but I think in Eest Atrican condttione wood, properly treated. ceu hast up to 15 years or longer and my section wil be happy to ascist in any triale which mey be planed in future neing timbor in bot buileing.

BRHEREMCES

 Embobey 7ymis 22m27 Pbbruary 1971

Paper IT/4

Some notes on the survey of ferro-cement fishing vessels built in New Zealand的
 D. 3. HEERES

Contentes

BOMTELLDEXE LOCATICE MMD CCMSTHUCHIU MEMHOD . 1

SOEVESE .

IHREODUCNTON

 and mubseguently incpectid mane 117.

 good guality conbrol procedures but who wore neverboleme sinaing thois way with regard
 cocepted a signed comthicabo of combtrution by arogiatorad onginons an ovidence of getustactory comstructiox.
 mbuittcd for apyrovel wes mpparont. In order to movide our sield mumeyore with a
 on seguiromentb. The Dopartment van fortwnete in that a code of practice for the com
 Taking this as b bems. the Dopaxbmont atbomted to ompan the code of pacctice in the ILght of oxperience and observetions githe survey of boats coming umaje ous juxicuiction and to bo moze corinituve bbout the motual construction. Fheae requiremente have not been

 alco the morth of divicsent plastering tochniques. Stepe have been teiven to larity theme

Maxy of the fexromemont boets buint in Now Zewaxa me constructed in the open with tomporesy cover during the curing porioc. This is particulardy true of the lamge number built in the nowth of the Forth Tsland wome yeasmound climpic conditione are guiteble.
 With good boatbuileing prectice and cals 10% guitable protection during the curing period.

A1 the boatr nurveyed to date have been built upright using the no-called nusponded hull mothod". To obtmin the hull form, use is made of pipe iremer oftom mubeegusnty
 heads. Woocen fremes subreguontly romoved have clso boen employed. Ho approach has been made for a surveyed vecsel to be built upside down on a mooden monid mhich has been bried. with mever pleesure yechtr in Men Zoaland The Dopartment has some roservetions at this atege as to the effectr of the dxyiagmout of the hull wader these conditions.

[^2]
Masmetics

 spaliogtion or the martas.
 moxter

 of about 10 percent by weight wath the object of providing an aja to denstitication of themit

 addresive

 stber plastariac Follow are often cillod with momar to fais the hull men an

 agplicsticn of tho martas

 commer bye of niser.

Appliostica of tho morthas has bons made in poverel nayis
(1) Instar bas boon compated fron both nidos or tho soinforcamont at tho mano tin and meobbod ose ingicle and outpide. Thite prestion in not approved by tho Dopartm
 nom=sompacted region. plato 1 blbove crose-soction through the paro dock of a bont plackered in this mamor.
(2) Tho mbhod sevowred by tho Dopartmort in tom tho morber to be oompacted men tho incideg belng fescod might theough tho wise mon and moothod ofs with m moden

 gteginc in Feguised as it is not mooman to bee a distorbed hnil, due to mon

 oxamined by the Dopertmoxtb withomt choming may derect to deto is to plenthe the
 ingide of the mil. The mortes is fosced bhrough tho meth fron tho onteldo until It is alnomb through tho mowh and it is a good adoe po have an oberver inacide
 wiso througit the sort plaster so that the planteros outakdo can rocomact tho
 and casted with grout of comomb mal mber. tho inoice or tio mill beinc plentescd
 qpuard. plat 2 mons a nectica through a tovt ganol plestored by thie mothed
 ecotoryo

It is ncrmal Heatico to plestor tho hall sust axd mabogucatiy tho deat a cloan

 nible to plater the mall in necticme

 at tho thicker noction.

 the nison nced. who wo tho only bocte required by tho Dopartmombs

 prosoesionaly plastered.

MURT FIMOSS

 gumaing ombo socis and provided two lescoms for the Depestment with Fegerd to hull fistures. This orept hed rood bulwheeds bolted to wood grounde wioh in turn rore through=boltod to the buls. Alson tho nood dechouse trunking vere throwgmbolted

SJEVEX

 tho curtace which it ohzped outy me culy sound to poneteme $1 / 8$ inch at tho mont Lutbo the plastur end can be diexberaded.

Plate 1

Plate 2

Plete 3

PIate 4

Plate 5

SETTHAR FOR FSSHARTES OWMTCRS
 Fxtobbe, Ugexds 22-27 7gbsuemy 1971

Sobmion II ramertais for boar comstrucrion
 Paper II/D

Discussion

Contexts:
TMUBER 1
MIBREGLASS RETMFORCED PLASTIC (MKP) $\cdot . \quad 5$

MTMMER
HOMUITO SESSTOH
A.P.J. HOLTBSS

RoA。BLUTPRRE:
A.P.J. HOLMESS:

FAA. PMMIPTRI: J.A. CRUICHFLELD\&

R.A. PLUMPMEIS

AOE.J. EOLTHSS:

BoA. PLUMPMEE:
B. MACEOTLTW:
7. ODERO:

RoA。PLOMERHE

Ho, they do not. Texy ion merchante have any mbols of geasoned tixaber.

Fon long in advance do you heve to omber from tanber merohante it you vant scasomed timbors

Approsimbtaly throe moxths.

What in the prosent situation reganding the aveilable timber sesourees and posstble suture tyent of tindos utilimation?

In the case of muruie (iroko) this will be more end more dixioult to get since t th is vomy much in dement by the brilding industry. Regardias mahogany the mwply over the noxt ten Joars will go doma but aftor thot ve wly have maceay thaber available againg ne the prospect for mbogazy is quate good.

In some oountrien one sees woodon boats trested with ptch oit whion meen to provice an excellent preservetion of the timber.
 recommends, using en oily product incomporethy a poison to kill the x mgus oursing rot inatead of voing peint.

I do not think thet paix is emseatial axymere ceept sor aesthotho xeasons and a mood psencrutive mill detinitely give a botter protection of the wood.

Experience has ghow that the planking of a woodex cance on boat wuich is constantly anbmonged in wetcr ts lesm subject to rot than the topmide plemking.

Can any type of timber suitable fos pronvure-impregnation be utilized in boetbuilalng.

The tinbax must aisc heve suficieat mewanicat qualities. It - mat be strone emorgit in bomding be relatively cesy to work with hend tools to toise tagtenings vell and be selativaly stable wen changing exom uet to dry conditions. So tar ve heve checked out
 but I nu guse thore ghould be cther types of locai timber thot ese
 with preservetivea.

AOPJ. HOTMESS:

RoA. PLITPYRE:
6. CuLbRAMSIET:
W. GHRTS PAULOS MATYASSI:
3. MACETUTRRM:

RoA PLUTETREs

In moxe we frice once to wtilwe cywem for boetbuiluine but
 Romsibly if thie table her been pxeswuremactien It would heve persomacd metistactority.

The problew wth cypreas Ie thet it does not keke promaxe treatmoxt wexy wil. Yhe quocmunt wil be patoky the presemm veitwe liguat wil mot peaetwne cquily 24 all pexte of the timbore Phe homever will moak up mesexvalives wexy mell

 and stily 95 gexocut of then axe built of wood. Prewionsiyg to a Lasge extax ock wes med tx the keel amd the haming or these bosts but, due to the inoressing scarotby of ons and increased maices, it bes become mont mod moxo conem to use pressuremworegoted pixe in all pems of the comtwuction. Mxpericnce so tes indicater thet the preastre-impregnsted pite 2e not only ohoaper than on but has migher sesmetanee to mot and rexine borexy.
 thibers Ow bontyard recently oxdored some mahocruy from a memail 1 K Kample not only did we have to pay a hig price for the tivber, whoh rnoludes a 22 pemont sales tar but aico the time of the dedstexy vas vex loag 5heme mat no mehogaxy In stook ent comsecuently the triber mat to be out in the
 olapsed berome the thmber mas propery seasoned sud reedy to be uaed.

It has pxeriowsy been mextaoned thet there ze a long dejivexy
 gexionsly warted to witiqe truber in boetw th worla not be difincult for them to buid a med sox massonixg of thabor end import timber woll in anvence or their constructon progremue. Dy means of proper somonixg and ntomege one would be assured of well soasoned timber all the time and uen the stocks wese getting low a new whmmert coud be omdered mon Ugenda.
 Bpecter of traber ant the samil will not ath axy tume, camy stock of theae tmbert. They whl nupply them as they oome In faom the foment and this is why th wint take up to tive moxthe to get a combaly spectived typo of bimber. Diso muvale. Rowever, it is poes ible to cut that deliyery fime te one axtered ixto an sgrement with raputbbIe semall and ested then to deliver gach yem a set quatuty of a cortain type of thubar.

Jodo CEUYGEMTELD:

RoA PLURPMRE:
B. MACEULLRWA:
R.A. PLOMPTRE:
p. GULBRAMDSEM:

AOPOJ. HOLNESS:
R.A. BLOMPMEA:

Whet ase the Long-tere grompecti of the develommonts yor putece or timbert IT there are etrong demada for fimber tmon veent other than bostbuilders, then it in probeble that there wII be an increase in the price of timber

I do not oxpeot axy reat tucrone in the cott of thabesa It will yrobebiy follow more gr lesa the gexerel price incrense in the Coumtrio Eowererg tor some hard woode stoh as munale those mght bo poricis of whombe of gupply paxtly oumed by the sact bhat the toment take mome $60-80$ yems to senen itselt.

Wemy of the bontbuldere around Lase Tictoria use a wpe or timbor oelled masig and canoes builit of this timber are seid to Lent sive ycars. Would it be poschble to prossure-impregnobe

Musixt tabe prescure treatmont veny mell ont it might bo interesting to tyy as am sthemative to mavnic.

Possibly one reason thy the new cemoe types introduced have not beon a grest succosn In the Lake Tictorid area th theth although these canoes were more strongly builty the seme thubws as in
 ergectancy vas more or loss the mane as treditlozal cenoes. It geens bhat a betber my would be to utilise preswuremmpegrated bimber that mould defnitely increase the soxyioe lipe of the canoes.

Suppose that Jgand waxted to increase theiz boatbuilaing activities and bhewecore needed a greater supyly or bonthrilaing timbors nould the Foreaty Depertmext tate hhin into accoum in theis longmence plemang of the towests. for example by plenting the type of gecotem that are of interest sor the bomburiding ํxdustzy?

Generelly, the Eoxentry Dopartment has not exougin resources to permit lesgemoele plantlng and we buve to concentrete ou gpeoies
 mavule, tt would tate $40-50$ yeax berore we conld stamu cutting the timbers and this tr a very $20 x g$ time ahead $3 x t 0$ the 1 uture end will be witicult to incorpostro in tho pleminge I monld Tather may that jt world be bettra to melect three or wour specice of triber that nill be surtmbe yom bostbuirume atbor prossure trestmext. Tn this wey, ono would be assured of a gteady sumply or athor one specien or the othen.

Rogerding presenmoumpregation tor boatbulising timbery it ib essertiel to inntre on at least the donhle retmetion of the wood preservative 3 n the timber conpered uth whit is roxvally

R.A. PLULEMREs
(combsinued)

B. MAGEULIRME:

Ø. GULBRABDSEM:
A.P.J. HOLNESS:

R.A. RLOMPTRE:

J.A. CRURCEMIMD:

B. MACHOTIRNA:

othexwise you axe not gettarg the treatment mhet ts xecruped to eneure pexmanemt probection. Paobbly the best solution Ls to pexuest the tamber morchant zom a coubI treatmeat, thst is.to be put togethes wth the oxtinary buaidimg tinber th the treatment plant smiceg becawe jt wiL be dis thertt to conm Thice the troatment miant to adjust the mahines only fos a Limited quantity of thaor aestaned for boutbuthing.

Some yeus ago wo peid past Arvicon Shilings 60 tos a 9 min
 two yeme leter the price ment up to wod. Sh. 90. Yoday wo aso payine Fon. Sko 135 far the mame cheet of plywood.

Would it be poseible por the Hivhemies Depamternt to import boltsg hoils and typical pithinge duty sree and then sell these itbum to wegistered boatbuildare with a mell paritg

In Komy all Government deparbexts ase reguested to purahase their goods throcg the Mintity of Works supply atores.

The problem of the shortace of ouply or timber has been menthoned by several people. It in not the mhortege of timber thet tis the nein problem it ie the shortage of the suppliers.

Mobody will underestimete the importance or the Soxemg exthenge consideration in the selection of combtwotion materiels fow wishing pestels. It the calomistions chow that the Locel material in as economic se axy imported moterial, olearly the chotce is to use Local matoxiels. Butg even then. the problem is not.clearout. If you have a derand Ixom the $200 a 1$ Purnture nulustwy sor the smat tyye of woods ne you need fow boatbuiluing you moghtond us a sinvition whereg to sebisuy the demand for building boats, the sumnture industry had to import timber That is Inteseatiog in the paper presented by Mx. Cumbrendsen "t that the cost of construction utiliming diferent materials doos not vaxy a 10 and, theremore, the selcotion of constmastor matnmiel is not a ontical peotor in a imhing bost development progremme on rake Tictoria.

The countries of Esst Axwice heve o porezgn axchange problem and it secms the inport of men matexaia for boetbuilding ghovid be zoetzicted as much as posmibles we khould wy to uthise ove own materiale xather then imgortis substitutes that might bo tocmnicaly superior but represent a heavy strain on our toreign armange resovrces. hooden bombbuiding should. therotore, be meonaged by reduced tares on tmport or naily. bolte and tithliggs. TMere ig the pecuiam eitvetion in Uganda
 duby faes while mooden bontbuilez hee to pey high duties on the nails and boltw he importe. Thas is hardly the vey to oncoumege s locn boatbuidding insuetyy.

RoA. BLUMPMES
D.A CRATMEER:
 in Tganda casxies a mbe tar or 22 percent wioh is mangexing the competititcmens of loch 1 timber, compered with maporter -avoxiak

Since bolte swd sextw an be used for other puxposes, it is discicnlt to creste a iswtem whereby bostbuileore are oxolvied Ixom peyimg selen tex. the oxly my seens to be that the governm

 tas swee。

FLBREGLASS BUTMPORCED PRASTIC (ME)

A.E.J. HOLTESS:

D. CULBRAMDSEI:
D. D. BEACE:

 Ugende?
 there would be taixiy Mithe diresemoe botweon the pxices 12 Eenye end Ugend megardivs sted plete and steal reiniomeoments but the wood comto wikt divisx. ghe price of mp is hased on purohase in saxiy leme guantities seavitut tu a 20 m pace per te Mo impost taxe have been subed to the cost of tibsem giass and polyestex sestr The comt bomever ot the complete
 Maybe Th. Beach can Intom abort the onet of thbagiesc netemisie in the Y.S.A.

The comb of tibuctave matexisle depemis considerably ox the bype of pibre selworomeat maberal ublized. ranion maty wim

 howewerg one cam bey that the material oost of the ready lame note has been secently arovad 70 contis pex 16 (m . A. Sh. 11 per
 peries produotion of inwegless boeta requises moulds whet are selstively cxpensive it is also posstble to mee cheoper
 rejly mode of wood is constructed and the biwe sequised for thie is besely more then whet lis regutred fom setting up on
 Thie will, therefors, mean minor expenses oompared with 5 ixt building a malis moden mould ant then a semie movid of sibrem glass. We pind in the प.S.A.thm we can buile one tishing boat os one patwol boat or one pleamue boet whth bhis nethod competively with other combwucton methodse There it a 1 ct to be said sor wood. stel. aluminium os emmomenent constrmo thon in developixg arte, but I think the vere of fibreglase needs memous huvathgathon man one mound not be noered anay by the secmixy complexty of the bullane process.

B. MACEUTTRUA:

10. 0_{0} BEACE:
 hell. 5 dovity very mand thet tho ooct or one hall wil be compem 62tave with oblac meterasic.

Te mave rgecnty buth sow bonss Por South Eorea meing the frache mould procems and we fovnd that this was wo mose experk

 Snok a monzd oan be gconomicelly compeitive with only one boat
 sos up to 50 botb.
 that is about sko 18 pes how. ono KrP boctbualdes decided to abaxib builuing feswomement boets hut pan into diruculty as tho cikiled plesteres seguired foz thit conshwution wothod in the Us SeA would cem $\$ 6,50$ per bows In obher parts of the woxid the athombion nill probebly be redicelly diferamb.

Smollar Tge boatg oen bo buily in a ajuple boekchedg nthout too much regesv for bomereture and humidty combeis hovevers. the coratruction of larger FRP huls will. in bropical areasg require moxe elaborete fecilitioso You have seea wath is
 boetbuilding trainixg centreg wich as simply a shed to give
 of tibreglasc will reguive as exolosed buildiag which wnid give you some combel of temperature and humidityo The question of humdity contron is eapectaty imporbart in the bicger bines of the tibregless boate. The expenses of proviaias
 and huridity will ghov up in higher ovexheads. For mollor FTE boats 1 ine the Seasemype eanoe built in Kerye and the "henend boet built in Tambian the quelity requiremente are not so high and less aleborete tecinities oen be used.

It hes merthoned by Mre Beaoh that MrP boatbuilders in the

 she 2 per how. This west disceronce in labous cost will iviluenoe to a large extent the ohotee of construction natewial. The main season why Wris takins over in Turope and the U. $\mathrm{S}_{\mathrm{s}} \mathrm{A}_{0}$ fox the oonstzuction of boats upto 20 T 26 the fact thet it takes ह Iot nore wan/houre to put bogethex wocden boats thon ith does to produce a sirulas sige FRP boat Although the besic material cost will be highez hor MRP, the azvings in the cost of lebous Exe nuftickently greet to make it econonically compotitive. The gitwation hewe in Hest Arrica regending labour cost end. matextal cost te disemert fyou Burope and the $\mathrm{J}_{\mathrm{s}} \mathrm{S}_{\mathrm{c}} \mathrm{A}_{\mathrm{g}} \mathrm{g}$ and we cavot acy that what is good in Hurope is elso good here. Ratherg we met bute each pase geporatoly ard anelyse carefully the prom ond cons of ooch raterial.

D.D. Beack:

JoA。 CRURCRFITMD:

AOPJ. EOLMSS:

H. FOJTHME

P. GULBRATDSIII:

 comernetiong

 thiolmern ant xoll out the aif bublem. At the ond of the gecond day they ull bo on the groduction Liab oftwe throo or

 8^{2020}

THP boathatiders ix murge sum the U.S.A. swe producing Tow a Fexy complitife mast and the gumity met itnial of thelr
 to reduce the oomt of mbreglate boat prodwction by building a
 for the stheny in Bath iswich?

We hove a ceme ln sexya wore one mautacture hes buth an
 Without wy twhennge whe strength is idemticel. yho choages 26 et bano cost 175 unile the more Iumakiove oxe cost

 denend a kigi degwe or polish.

It hes boen mexthoned in tho discoseton and in the papers thet, due to the ohmeing conththon in wanlons pawte of the norids the geleotion of constrution material will not be the same
 building a Iarse numbe of mp boath neinly due to the vexy Boparemt increese in oort of Labour durime the last yoans.
 moke Fap boetw wore comyetitive with wooken boats untch Fecultod in short 1 ine of pome of the rap bodte.

 to vithotand Ioan mhools and abrasion Fhe bombling of a

 bosbe.

T. FUTEAII:

A.B.J. EOLRESS:

J. T. TAREORO:

A.P.J. HOLMESS:

 mastet for mak atype ot bost.

 with m mew type of boat cut wh haye coma that the Sessemype

 bye of stabing reesel in पeavia with a long traittion of bostw bud Mdxus.

I do not betieve khat it powexble to imysore on the preant trpe of Sebse camoc. Male crat te an now as posexble to the
 mohernimed Sesae canoe has been wery woll accepted by the tivhexwen ta Sexya mat believe thet there in no noed to tre bo Luprove surbhow on thi type of bout. Eomya is not ac

 this canoe beto been raxt gock ant I believe it is a misbeke to ensonmege conetruetion of woden canoos fus Eexya. The Frre Sceve cmot can be buift at the wave of 8-g canocs per moxth

 boat hen to be moved $200-300$ mille zinom the bontyert to tho 1eke bhowe.

 1ise - probably the tive an long as wooder Sosse canoc.
 of maxe piymod but tuxs did not pwore mesistaxt enongh foz the tough hreatmeat that mas given to theae boets by the Eishemmen

We nate had ome wr scese cenoe butt in wexy fox mank on Lake Albert ant we fown thet tw wes too sumll to cope with the bype of mether wo expentonce on thise laike
 and war newer intomied sow ofschore wateme. mhey ase wed on Lake Rudole whok cen besome very noogh prom time \%o fise.
 axy beach axd be hevied ont of the wobow this te en important point ainos stomes on mevelon sutceniy mat be boat has to

5.月. BEMAETA:

AOE.J. BoLness:
D. GuTBRAMESER:
J.A. CRURCHMLID:

A.PoJ. HOLMESS:
G. Vergmura:

 to buy one of theme amoses

We have ious to inte groups of inchermen that heve obtatued Sceve canoer through longtox perment sohowes.

The dificuliter ix the nuply of thiber heve been nextuoned
 nainuly e quotbion of plawning Jo mettex in wheh metomina You aro buriding bosts you neek to plax aboa at least sux

 Longer than the skt stomage they with the meant thet the
 of this hare already happenve.

It is ostimated hhat thers aze about 6000 simburg oxat or

 which ie probably highex than ha actual case, the meed top zew oonstmutiom is bbout 600 bosit per yen whis is a bis guantity ard pabbaly 95 percomt is oovered by the locel beach
 comanaral boatyanly has been very yimited. Fowever theis

 Fexy importest to sacise the the total maiber of vestels of this mise that will bo buith is going to be vaixiy immted.
 twy sbardardisation or the boet typen and whe oguipment on them as much as poschble shace this whl fachitato opesationg gexpice and mopatio

If a emwomeneat boat shonld be bumaged below ox in the weter
 met procedure to stop the houk in much an exergency situmiton?
 the broken picces of comewte movid be keyt in place by the meah. thus provertiag lase mantition of watore owing thaough the demsed wrea Fowever. I do mot mow about axy mpetric procedure to roliow tn the cuse of mejor tange under the meber
 where the pioroca bole was ebout three inches ecrose the

 agrose in oxder to expes the woch Tu the hote

Ge Rerentid: (comtimed)
0. GJBRATISEI:
$\triangle .{ }^{\circ} \cdot J_{0}$ HOLHESS:
G. Vabey

DoGoLo RICBE:
G. WHEBLIRE:
M. FUJTHAMIs

Lteolf mowh ant modis had bow broken and wre sopleced by mov rods man nowh. whe whole aree was then plastered over and 10et to ouse.
 boen operated rrom Momban over the last couple or years. and it mould bo interestiog to homs who experience jou have had regarding mintomoce and repais of bhese vessels.
 there has been no obvions detexioxetion of the mull. There have boen some muet gtalne on the outar aursoce but I bolieve these are trom the iron bolta used los fixing the zubbiag shrakes. Thene has been vexy litble maintomence cont outhese boatng and they have atood wy vexy well during the past sous years they home beom in gerrice.

Sometimen rum mpote can be seen on the aursme of the fexsom coment boati and theme are oftom consd by carelessness with the wires used to tine the meeh to the zods. I the tiewire is put through trom the inside and twisted and cut on the outalde a 1 ithle yoint will nownily protmule and might get an incomplete correr of moxtar. It is the custom now, in w Pirna, to uthise ntainlens stoel thowireg insexted from the outside and twisted and cut on the insid..

I have neon ferromeenent boath of similas sise to the 41-it trevier you axe building here. with a apeotiod huil thickness
 a hull thicuness of $1 / 1 /$ inchess are there any paxticular reasom loz this tuoressed thioknesm?

It is unna practice in Hew mealand fox Pichivg boate up to
 above 40 dt have mull thickness in the region of $11 / 8$ inches.

Mow zenlend is \& country where toxro-cemont boat construction has bosa well entalished. What typo of boate have mostly beou built of this matexinis pleasure boatw or simhing bozts, and wich mises of boate have bem butits It would aleo bo interemtis to hear what the remult or the opermbion of these venela has bean

The compary I an working hasin built i orromoement boatr botweon

 55 mit boat wes a motor ailierg ad ve have booz building yaohts. We have also beon ixvolved with sexro-ocmeat boat construotion
 iss Fijit Ivlands where wo buith a $38-5$ tug and barges. Im Fow zelland, barge we to 3000 tons caxying capacity hervo been oomstructed of reinioreed concrete.
J.O. ACEOBAE:
G. BIEETER:
J.O. $\triangle \operatorname{CLCBAB}$

T. TUTHAMI:
G. Whathers
 of terromocmort?

The menilest 26-5t 2eagth over all. Tin the boot vo utilised the pipe frem onstruction nsthod, in pact we hewe a complete pipo frene nould bxeced on the inexde so that it can be Iifted oxt to the huil.

I noticed that the 41 wh ferromeneat travles built here mas plastered on the ortcide in one dey. Te this necessaxy ar ona one leave jointe in the bull and do the plastoring over severel days?

It if domlrable to do the plestaming on the oxtaide in one day, but vidently tor bines vessels the wors hes to bo disbributed over several dque phie is possiblo by applyme wet to dry epory resin in the jointh to ensure a pertest bond betwon old and new moxter. Mhen plastering a Rexsbecnext boat, It wes prevlously the custom in Tev Zonlend to preae the mortas Prom the tnside through the men and thon sleiv of on the outgiclo whig method had neveral inoonvomiencos. AIl the Eorstar has to bo ght tod to the inside of the boet and $2 t 2 \mathrm{ta}$ discicut to work due to the bracing and moefolding on the inside, and It te dipricutt to ensure complete penetretion of
 mortas to the inside or the hull and coreing th throueh bine
 pinimhins on the ontbice before the morbar settles. Owar the lest three to four yceme it bas been vmul prectice to plaster in two 駘ages. The nowtas is virst rosced throwgh rwom the outeide to about haifney through the thiokness and it ie then Iinimed ors and left to herden. Some of the breving can bhen be tekou muy irom the inside before the seoond stage of playm toring is done, that ing morter ia vibreted througis the menh from the inside to itil up ary posmible void.

I agreo with Insethat it in advantegeons to have low bulwemks on fexromement fighing vescels. It is also ocsexsial to heve strong rubbing m它relses in areas which are susceptible to abresion and sbocirs.

I bave had the impression that serxo-cement will be able to compote uith obter neterials in countries with lou cost of lebour bocause the construction method still in faisly lebous intensive. What in the position in Fen qeatend in this respeot?
 and there ing thererowes e trend townd other metomisig. Fexrro cenent in one of these maturials mut our fism hes beon able to build compotitively by omploying maskilled labous for the ectunl bying of the merhg. Whach is the bult of the wosk in the construcm tion of a termomement boat. Our pownanemt work force in relem tively mall and for the plastering we bave a combrat mith an outwide ํx

JoA GROMCMFLLD:

Go VAIETLER

 gom buiddry zether big thahing vensole is mary ILauted. To do not belicve in 2uportang piohing bouta tuto oovertrica match

 uged and bosted out and modxted scoozlug to bhe nocds of thet areas

Are there, axe oxpersugate going on th the preacat trying to

 2n5uletion propowtios?

 bolng built or a comininkion os matowleha krying to wilise cech msteximd wheme its propextics ape nomb Sivantegoova.

GEMMAR FOR BTEHETIS OKXCMES
 Fubobbeg Ugamis. $22-27$ Pobmury 1971

Sesaion TMI BMCTMES TUR SMALL ETSUTNG CRAM Paper IIX/1

Experience with outboard mechanisation in the Lake Victoria area

by
J. stovianan

Contents:

IMTRODUCLTON - OUMBOARDS TM GETERALS 1
MUMBES O OMTBORDS ON LAKE TYOMORTA AMD BRODUCTON TMCREASK 1

RRASONS MOR PORTLAKTMY OR CUTBOARDS . . . 1
HyPES ow OUTBOARDS TSED..........2
DR SADNAMEAGRS OF OUTMOARDS 2
ECORONLG JUSLIEICAMTOK FOR OUTBOARDS . . . 3

AND DEVELOPMEYT PLATS $\because \cdot 0.0 \cdot 3$

MYPOMEETC - MYYQMDS TM CBHEAT

 natureg thet they are expenciva par hpy that the wigkt on the premece of emal font ar

 botore 1910 y you have acheved partection.

 mach nore than hal are mopelled by outboard motors.

REASOME FOR POPUMTCITY OF OMMOAMD

 requixomonts gratuelt.
 senge of Amerionn mantactureg and axe prinexily intomed by the mamuacturexs for gport and

Hemy advamagos of tho outbomed have boen civer oboveg butg of coumeg the hawredibly

 the fishewnon who whould be chugging asewnd laks Victorimg thoty boats wad thouselver

PYPES OE DUTBOAROS DSED

 momorios are loug and no matber how much improved and 21 cosod that model may mow beg it
 paticular motor may atili be tho only accopiable make dogpite graet amyroverante by itb competitose

 prebenco of sctive and oxficiont trade distributorb.

DEADYAEPGGES OP OUYBOADDE

 senily maloons on linos which closely resenble the current crand myu mecine cas jt does

 bonting (atthough wey yet see a maman model inmumde:).

ECONORC JUSYTE CMEICW EOE OURBOARDS

The provision or outbonn power over whore thit je not Intud mith the mecomaty you

 this requiremert must be mot and more then met for the outboand inghing baut ot the Lake Vetoria besin.

 toriene In Teanda, tho paliey hat been to Leswe the actual avolution of moherios to the
 large muberw of mmil motor vhicles opergte ell over Tganda man there ta a considereble

 advice and assistance from the finheries oficern wheme at the monent the only comperent

 elsewhere.

An inporbant Peotom in the buccen of the outboard engine mechanizetion programe nam

 have been high enough to abucrb the meletwe zrefeichenciee of outbomm motort without
 begt of jt.

 Wrobleg Uganday 22m27 Febreaxy 1971

 Paper III/2
Outboard engines for inland waters

by

$A_{0} P_{\bullet} J_{v}$ HOLNISSS

 commeral Eishinge

 or advanced boetbuntange

It yould not be proper to montion the maks of cuginet which oen be obthined in gevious parts of Fest Afyice. The only inportant thing in fom the fimhermen to bo contently

 ascure jou of all soxtw of advantages.

 better then those he alreaky haw but that the servicums and paxem will be aveilable at a11 times.

One engize distribubur wote a lettor to confimm that naw service and maxom wotha bo
 did not Iollow up simple detocts wheh wore Iown on thoiz enginas and cextasin gpares wese not aveilable.

The muthor considex that one abould nover contemplate or acoept n mon outboand engine waless you hewe derinite proct of the tollowing

1. Eeficiont mile mat viminictathive belajng
2. Guaranteed quick moving pawtu in stock
3. Trained cutboard mehanios to do mepeise
4. Cood stock of difucent miren or sutbowd exgines
5. Guarentead atarmgeles sexvice
 number of occoniona the arthor hes notod thet a ky horsepowar engune is betngused where simost hatr that powas would heye boen adequate. The overpowerive of ishing boets is not only uneconomicel but dargerous. An orerpowered boab unless bamaled by a very
 casily in ohoppy weter
 mingle engins aganat two or equatrlont horsopower.

It doon not cancol the nocempity of caxrying a mparo ongino in case of omergoney it oflshore mork is to be considered.
 lower servioe chasers and it is cheaper to purchser. If a second engine is reauired in case of an onexgoneys a minch howes horeoponer can be bought, and leopt in new conditiong so that there is vory little denaeciation and it can bo kopt at a mbendey iom a muber or joass.

The gorvicing of outboand enghnec in momt japortant; if boing usce in malt wier and

The nomwal service sumbructions will not bo mationed as they very accordine to orgines used. The above general advice applien to most makes on tho maricet tedayg but it should, of consse, be understood thet the manubeturess iastructioss ismed with cach individuel malso mutt iso be vtrictly alhored to es theo metes disior nligkthy one from enothoz.

SETMAE FUR BTETELES CWLCRS
 Entebbe. Uganday 22-27 pebromsy 1971

 Pepors ITI/3

Selection of engines for small fishing craft by

Combenta:

TMWROMTMTCW
1

ITsYODUCEC

POMER REgUTRMIESES

(1) Bosistance or voesel m moromey

 Findy of rebistances tricthon canced by tho rubbing or bhe untm an tho botbon of the

 acoont cax oniy be catricd out by nswal architect. Tor bis verehe the melection of a

 withotb boing erceesaive

 tho boot will aito pley a mace role, go there are hagh nat hon curvor doponding on the

The curvos In pigure 1 givo whp (bhert haxeopowex) thet it power dolivered to tho
 secturers

 30 peromen ast a maty horwepowai of 67 mipo

 or cimost 50 percmat.

Shath horsepow per ton against peed/lamgh rotio for displacemant boats

Mtaie 1

Apwase lougth orvere 2	Lexyth whterinm	rens arbplecomext	Gagine powers bhy					
			5 knotid	6 Lxstu	7 Luote	8 Laute	9 Inotic	10 mote
$\begin{gathered} 6.5 \\ (22 \\ m \end{gathered}$	$\begin{gathered} 6 \mathrm{a} \\ (20 \mathrm{~m}) \end{gathered}$	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 1.5 \\ & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 4 \\ & 5 \\ & 7 \end{aligned}$	$\begin{gathered} 3 \\ 5 \\ 8 \\ 11 \\ 16 \end{gathered}$	$\begin{aligned} & 5 \\ & 11 \\ & 16 \\ & 21 \\ & 31 \end{aligned}$			
$\begin{gathered} 8.75 \\ (2950) \end{gathered}$	$\begin{gathered} 8 \\ (26 \pm 1 \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 9 \end{aligned}$	$\begin{gathered} 6 \\ 9 \\ 12 \\ 14 \\ 17 \end{gathered}$	$\begin{aligned} & 12 \\ & 19 \\ & 2 \\ & 31 \\ & 37 \end{aligned}$	$\begin{aligned} & 21 \\ & 32 \\ & 43 \\ & 54 \\ & 65 \end{aligned}$		
$\left(\begin{array}{c} 11 \text { 路 } \\ (36) \end{array}\right.$	$\left(\begin{array}{l} 10 \mathrm{~m} \\ (33 \mathrm{x}) \end{array}\right.$	$\begin{array}{r} 4 \\ 6 \\ 8 \\ 10 \\ 12 \end{array}$		$\begin{array}{r} 8 \\ 11 \\ 15 \\ 19 \\ 23 \end{array}$	$\begin{aligned} & 15 \\ & 23 \\ & 30 \\ & 37 \\ & 45 \end{aligned}$	$\begin{aligned} & 26 \\ & 40 \\ & 54 \\ & 66 \\ & 80 \end{aligned}$	$\begin{array}{r} 43 \\ 64 \\ 85 \\ 106 \\ 127 \end{array}$	
$(43 \mathrm{~m}$	$\begin{gathered} 12 \mathrm{~m} \\ (39 \mathrm{mb}) \end{gathered}$	$\begin{array}{r} 8 \\ 12 \\ 16 \\ 20 \\ 24 \end{array}$		$\begin{aligned} & 12 \\ & 17 \\ & 23 \\ & 30 \\ & 37 \end{aligned}$	$\begin{aligned} & 22 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{array}{r} 35 \\ 52 \\ 70 \\ 87 \\ 105 \end{array}$	$\begin{array}{r} 62 \\ 93 \\ 124 \\ 155 \\ 185 \end{array}$	$\begin{array}{r} 90 \\ 135 \\ 180 \\ 28 \\ 270 \end{array}$

(2) Selection of opersting ypeed

 for ayy roasomble spod. the power will very very geatly dopending cu the apead actwaly

 Lastuling as oxgixa is obviously to move the bont around If tha speed. in too low wo may

 creft to irequart my be opened ups the antom may bo brought to marlot co that mexe

 noveem

 25 bly wis geve wimptso

 \%asa

 ongexams

T. 62 hown at ons thased powst

annor fuel conguaticas

$0.0256700=134.520 e 9$

For the 25 zp onaze the operathor porbod will be:
5.72 kover pas day wh pall powne or 1 144 hown per your
8.14 hows: at one thind power
carsesponting to rail powes 1 ar 543 home per yowe
Motel operating bim st full powor 1687 homs por yers
Anwos 1 Suel consumgtaicns

Anave i cost of twal $10500=0.12$ a $\mathbb{U}_{0} S_{0} 11260$
Anvon lubricating ozi oonsumptions
$0.02 \div 10500=210$ 14t\%

The annal oming axd opereting oocts ruil be:

	15 hm		2549
Domocietmon - 8 5cere	188		250
Maintenmee 12 percont	180		240
Tuel 0 ¢	805		1260
Lubriombinu ail	67		105
motal:	T. Sos 1240	Tos.	1855

Hreome cost or 25 hy over 13 lm		615
mecone incons		328
Wet loess	W. Wo	287

In this ense the docision to insist on the spocified nped of 7 lnotis wonid not be

 tries there still wald be a lone fr instailing the biges ongine.

Lst the teke one more example maing the same kypothethen vemsele Some of thene

 can sevme that the power mequined vamion as the cubo ot the not mice while the catch

 Let us assum thet the not will bo tishing tow oight howe poe day but tho engine will

 bes

In this cese the furestment of J. $5 . \$ 500$ adititonel would bo most prositablo. Hote

 drterent powsw plenta

(3) Overpowerine

 yrewexting accensive vamarymated investment.

 powarg ant mailem total cont.

(4)

Aratilars danve

 Wescels the min ongine is noxmaty used for this purpose.

In the context of the meencht discuevion of the powns secuiremaxbe to obtain a giver

 an onily stage of tio dosiga.

SEMWYTC. OF SMGTME MEES

(1) Comeral coneideretions

(2) Oubharu motom mowar pole

 selt pexetration setw in

 masempoduced isbregtam bualt.

 formar byy of ongans.

 is not nell suited to mse in rough meen but hitidea sor meny mpliombione in yivary or on

(3) Inboest carburgbtor anemat

 ognetbo mhort rookee m st ixsegulsw times.

 when compers with arecst may be Loste
(4) Dåsel ongane

 berweom overhavis.

(5) Bemandecels

 the hamde of inexpek homed opematce, wich beom to have been them mectore woricing getnst whity pornlesity.

(6) Conolusiona

 bert rethos than the cheapert molution.

Shatas	Peos	Lubutcethias	Ifie	Toasis
	ccastaption Litro pas hy/hous	©is consurntion Preenteg of suol	oxpectensy yeesw	parcontego os ongime cost
Diosel	0.25	2	7	12
Potsol (roms-3trolec)	0. 40	$3{ }^{2}$	5	15
Ontboard (twombselko)	0.50	5	3	18

(1) Pezo

 that is he mo decides. If, howover, tho purehene 10 to bo combrolicd by a tender beard os other sinilar body such doceriptions will not bo cocoptebleg and we will bo Eorced to

 of ono of the othozio.

In the Sollowing an ettempt in mude to mambal nomo of the reobere wioh thould bo
 vextons mariac onginos.

(2) Sparoc poxyicimp ymitnop rechittion

The succenc of mechax mation copont cuitionlty on the abitity of tho oparetor to

 Lon tonder.

 bosve 2 Lif equipuonty otwo

 power. Is we are onty intoregted in the powar catput of the ongine our choteo would antort

(4) Coolise netom

 yerice or the angivo.

 cooled onas.

 hoad if thoy mhip waber with tho owgho romaingo

(5)
 Accassorios and awriliasios

 point wher comyaring mition or enginos.

 itom is faice economy.

 oubboasds heve a seduction geav built into the motory beti mith a seletivoly guall qeduation

 adered coert.

 OFtioncl oxteras

SEMLAAR TOR FISHERTIS OFETCEBS
 Briebbeg Ugande 22-27 February 1971

Seseion ITI EMGIMBS FOR SMALL CRABTI
 Peper III/D

Discussion

Comberte:
OULBOAFDS AMD DIESEL BIGGINES $\ldots . . .$.
PROBLEMS WITH SERVICE AND SPAPE

D.GoLn RTCEX:
S.M. SmARULA:
D. GULBRAMESER:

Jo. Laven:
D. D. BEACE:
ϕ. CuLbratidsen:

Has mybody twid to put oxtboms motors on dugout cenoes?

Wo dugout oanoe in Uganais, es $\$$ ax as I know has bean equipped with an outboand motor.

In Senoga thore are apporimately 2500 camoes fitted with
 onnoes have been notorysed in this way. Sevexal atberyts have becn made to put inboend sugrnes on dugout onnoes but so tas withont Enccems.

Hould tt be ponsible to mit mbomed dienel exgmes into beach landixg cences?
 tionel Ghans cence ghis bype of canoe se holloved out of a tree trumk and hes a pronownced curred longsturinel shepe which melses it powgible to bring the canoe up the beach utiliwing the mocking technigue of the Chane inkemmen. The canoe tor the inboand cieal oxgine men witted uth a ctraight areg rox the mopolicy ahaft and the memit was that the camoe conid not be handled on the beeoh in the ueval way and wes. thereforey a easlure. This problem might have been overeome it the poogle installing the onglae had known beforehand the inpomtance of keeping longitwinnit rockem in the botbom of the canoes In sat, moet feilurea in boet design are tue to the sect that all the probleme turolved have not boen realsed berore the design rass gtaxted.

One importent thing to semonben whon building beach tanding boett oub of HR it the necescity of sixing mubler strukes of wood wader the keal axd st the trun of the bilge. Mre has a 10 of good properties but one of the poorer quelities is a faizly 20% zeststance to mbresion, and vuinereble areas on the besch bogt must, therefore, be sutrichently protected by wooden strips that can be enstiy zeplaced wen woma out. This detas met be considexed when the boet is botrc deaigaed.

In Jepen a lasce mubes of beach landing bowt are 8 tited whth izboard diesel encinec ubiliexug special bype of liftable propeller shett whioh maken it ponsible to withdrew the
 the boat ie hanied up on the beach. \#ith this system, these is no need for a keg protruaing outside the boet. It is a very simple axpongemomt and micht be well worth furber imege tigation ta zast Afyicas

ROS. KANYTKR:
A.B.J. HOLMESS:

MoS. MATMTKE:
A.8.J. FOTMEss:

JoA. CRUTCHILELD:
A.P.J. EOLNESS:

A.P.J. ROLTESS:
T. ODERO:

The smel. ghowe ane wed on the Bexua side of Lake Victorias

 Whis type of bow will be given ux sluce It does mot brive
 cualtw.

Can the smal thown be atted with an outboned motory
 not oconomicel in this region to put outhoend motore of mose thax 15 hy in tisturg boetb becewe of the highes cost of Euel Notoriswion of duow wil only be possiblo mith tnboerd diesel engines.

Would it be poserble to modity the desten of a Sesse canoe tomerd a sent-pinming type?

Tha Sesse amo is. In fact. a semimpaning boat Tt dxaw ony four inobes of wher but when you open the whrotho it immediately gitate ghiming I think it tis type or bost which in extmonely cructcult it not impossible, to jmpowe.

Are any of the pabhug bonts in Towra using a men?

The Sesse camo ox the rexym nide of Lake victoria can onyy we a moll gatl gove wht the wind Tho bigger dhoms are
 mind.

The use of acilc was zutwodncod to Bast Hexica by the Axcbe going down the cast coast wh thetr ahowa Latex, Iarge dhows mese built at Lake Victoma cor wansporting goods and people Imom Mumne and other parta of the lake. Smaller dhowr are used pox minhire and wers Later oquipped with aeils and quite namber of these boats are still operating. They oone ont in the eveninge helped by the orfahore minde, and stim out all neth shshung going baci to shome when the onshoze wind stasty blowng the mow day mhe dhown used por fighing axe built by lock boeibnilders st vamy low cost -

 of maller capacty then the dhow wat comting ehe 3500. Howerox he might bo intewestod in installing an ongine in his dhov. IF outboart engines wewe used the power wonid need to be high and the mumins contr axe prohibitive the oniy
 the bugcer dhons bure already beex f itted with this type of ongme ant are woxcmg auccesstuly.

T.A. GRETCGIFLED:

D_{0} D. BEAGE:
A.S. OBURU:

耳。 FUJLHAII:

DoD. BEACH:
D.A. GRATMCHR:

 and wo have never opened an operabing wanch, The outboast

 aro giving a sativieotoxy sewice, revixg iuto accowt the fact that in any mgzine there mutb be compomse betweat the
 2oing vexy moll.

Fow a nubur of years I have bean ixvolved with the ublizantor
 debigacd for the Ansricca pleasuro boat rasket. It is teru that a man who buys an outhoard motor laowe two posithons of the throthlog nide open or dead stop, axd there is wothes in betweone Re gemerally ignores the mantromeer he ignores it to the axtext that he nover ary opens the opgine men bomothing goen wrome An owtboakd ongimo iss aesigned yo suas i 000 is at close to full thrortle? withowb giving tronbie. For a sishermen, 1000 b of zunbing coxrespenad in maxy cesses to one jearia operetion.

Compred with an inboand diesol ougine, the owboam motor is congiderebly 1 ighter. \& 10 ap outboasd motos nay weiga exoumi 30 kg maile a maller gizo diosel ongine will neigh awowl 250 kg . Tasis arving ina wight will aso mean an increase in the spoed of the boet ox, tir the name apeed is mantakec. a Iaxger anoum of not or other tiching gea oan be caminci. Alterantively, a smaller owbowe arixe can be purchased to gite the mane spoed with the some movat of geas as inboardm powered boats.

It hes been meationed that one adveavege of outboawd rechanin zation is the possibility of reduciag tiae crow from 4 to 2 nex.
 needs a crem of a toa ta oxder to be eble to havi the gelluets and clear out the apter surciciently fast. I therefore doubt that outboard meehemieation will load to a meduction in the number of fishemuen ors the cemos.

In maxy partio of the woxid I bave goen Itrhernan utilising oax engines in theis boeta fittod with maxine severse weduotion gear. it seene to to a very chacp solutiony and it worme gaticectorily in may plecos.

A bigh perceatage of the fibhernen on the ewst coast of
 use $e_{\text {anto }}$ theis boats and it is impossible to tind a mose economio nolutions

The use of a cas ongine in a boat will oextainy creato nericoz problems with corroeloa of the cooling syberis.
$D_{u} D_{0}$ BDACE
P. 2200158

I wond itise to coment on the cuestion ot engine nge in

 secns that the heavicet betohes aso wem the opect is arourd

 cate however thet we snould go et a how gyeed and with an bexee a net as we cen get tor a given horevpowes.

PROBLESS NTGX SWEVICG AND SPAED PATES

A.S. GBURU:

D.A. GRADTGRS:

$\mathbb{A}_{0} \mathrm{~S}_{\circ}$ OBURU:

D.A GRATHETHE:
 here in Enst Africe has boen the tnelitity or the deezowe to

 oble to explain why thit is so.

One geesor tow tbe shorbege of spewe purve ts the chage in
 with mate tan then they ohange to type apa and then to types
 ommonetal compamien sopxescuting these wamberwers to keep

 easies to mevee ar adequate suphy of apare parba.

 thes nova mean great loss dus to the fent he cond not go

 211 of them that spave peuth ase not eveliable loeclyy in suricient quentibies Thin ta endangersing ows oubboert mechaxisetion profocts and in Tect. meght cause taisuseg end I world lile to adk azy ongine represcrictive here to toll us hov this cen be spotded.

I thant the Dest the yon are dealing whin sow wo five discexent
 obtan bpew paxte. Beosuse the botal zumber of engines is
 enough Beles volwhe to intememt the trude in keoming apare gezte.
D. Gelo KICEX:

中. CULBRANDSEK:
S.IN. SHMAKULA:
J.A. EOLTHSS:

The problem of ngere pextia supply is closely comected with the mubor of ongines of oerbain rabe theporetion Hormajy an englae mopresentabive will caswy iast woving mpares in Gtocks but if thore sxe ondy a sea onginem of a ocrean nabe in this
曰paxe part atocks to covos enl cyombunition.
 that to koup a full stook of apere perta som a lianted numer
 gotution to this problem wovic be a cextain atasciendimation of the maker of engines to be wed in mobomiabton projectso hovic.
 decided wast type and horacpower or cagine they dearse to go
 mentatives? Insteed of buying ben enginen prom sive difterent maxufacturersg oue conid buy filty gegines twom ono mantactwer. It would be much easter to enawo swticiext spere pexts and
 could be thet the brik oxdoz whl orton redve the price.

One cannot appeot that the ongine dealer will be abla bo pey a viaxt to Gvery Iughing vilhage in oxdor to emmue that the
 exe several bis tiehing cember buch es, tox examphe hamseke on Leke Alboxt. In thje village thero is a considexable number
 vigita to this etshimg conven 1 twole be possible soz the opgine dealer to tind ott vint pert of che engine powagly needs repaine and to adjust the apere neat atook acoordingly. In this wayg he will also ascume that bhe ongine gold is baing
 zocult in the purchesung of more oubboand angines.

Outboand ongines are Fery ensy to gerviep. you do not necd a meohanic whit a great deel of bechaical beckgroum, and I think it in this Pector that hos made the owboerd engines a succese in the pishosy. I do not think I wh wrong $1 n$ anyzig thet there are not may Rishing willagea in Tcemin without oer mechanica who cad do a bop owerban on a cat end ghange a gear
 on, What is mequiged for turbhor ootion in moze apecizic treining in the repais and maintanance of oxboprd engineso
P. PROUDE:

I think thet the Deparbmexts of Pisherion in the three pert
 towna training ta mantionmes and repejs of bhe tishemen's outboand onginos. Thay aro ocoh mumbig ge boe theining couses Ror oubboare engine mechantes, myd it nost probeblt
 how to xepals his onsine.
D. D. BEACEI:

Bos. ganymas
$D_{0} D_{0}$ BRACE:
J. LAN:
$D_{9} D_{0}$ BgAcsi

In Ghans a mole new tredo grove hea grown wig maely the

 ontionve enghes x ittor to the Chansmpo sanoez. I wathed the wanocs lard thyowgh tho gurs? a men would greb tho outboerd motor sixed on the bilb of the canoeg take it on his hay and stit dova et the botton of the canee to preverw denese to the motom when the chave sums orto tho beach As soon as the canoe wap puled ug on the beech, he would eaxy the motos on his shoulder ug the beech and turn the notor over to the outboand notom mechanice ghe mechanio mould do two thenges ha wowld. unpe th org on the outaide end put it into a 50 mg ghon dxum silled with wher end wan the ongine sor ecyeral mioxtes. Th then way he wowl wash ort the aclt ryom the znside of the ongine and dry it we from the ortaides It is vezy intezenting to note thet people with 1 ith te tehnicel beatgrowal can piok wo to chaicky the basion of good raintenawoe on owboard ongines. whey heve probebly wate mistrose onee oz trice but thene migm takos uill not bo wopeated.

 the mate has gone wut of procuctiong We are opereting lannohes

 जnof. A ocmpent thet namuaghures a procuct ad wathe to stay
 An the model geta phere and oldex. the livelihoed of tinding вperef becomes lese nod lecs. There is no lan in the Do 5. A that fomuleron how nery years a nanuteotumes de obliged bo keen apares after a cextain make hes gone oni of production. It is only good buaneess that tells the companios to toep speres Soz thenr produoter it a man buys a product end camot get aparee he will coon taxa to mocher compays.

The aecooketion of oncine nexuracturere in the UoLe has this
 comperg concemod. vixen negotiating longwerm contracts; to atate exectly hon $70 n$ a time they mill assure mpere perts. The company I an popresorbing te at presert negotieting ooxtreots to ascure spare parts tomy at least, whe nett sca yowa. I
 negobtationg zegenting the ontrects because not only nill the
日pestebg brt the deelcu wil also know how much ghock he ghould. keop and for how loag ae will koep these apeans: this will be Ferioctod tn tho cost of each anghe. 212 btg companios and I an aure thore awe no bed compenien thet will nanese to stoy in businean Sor lons. do ascure spore partsg but it nust be olecmy metced at tho time or preparing a longhexm oortract.

Establishing a boatbuilding yard

by

B.T. COODNTE

Conterts:

COSK AMD gYer ow yard 2

IMTRODUCYTOM

The establishment of a new boatyexd which is to undortako corious production noeds cereful consideretion and study. In developing countries one or the biggest probleme in availability of capital to Iinance such a vonture.

This can be overcone by an interent-charged loan Prom a comoromal bant a loen from the government or an individual who in in a position to be able to eind sureicient copital from his own resources. The needs of the fishing industry ase of primo importance when setting up a boatyasd. A number or factors must be considered within this industry before axy plans axe sinsitzed. Obviously, sizes of existing boate have to be considered. together with the derolopment progremme for the country which will be served by the boatyard. It is fas better to have a yard bigger than the inmediate demande requirep it you are certain that the gize of the craft are going to increase But ahould it be pound that there will be no need $P 0$ lasger boats than are already osteblishedg then to build a bigeer yard with more spece than is necessexy would be a wete of very valusble capital.

When the above factors have been considered and careful ntudy mode relating to the above, the aize of the required yard can be estinated with accurecy.

LOCATION

Location on site now becomen the nost importent factor. Once agein a study hould be made of a number of points. A 80 eramplos ray woll be usent at this juncture: (a) location - it wonld be munise to ostablinh a yard which wem not ecmily eccessible by either road or sail or both. This is of perticular importance not only for the steady and easy flow of materials noeded to mun the bootyard succenstulyy but also for the transportetion of the finished cxatt, if and when the noed asicos; (b) aveilability or matcrials, be they of locel content or imported. Ideally tho yerd bhould heve a power supply although this is not absolutoly neconsexy. The avaliability of povas and mechines cuts the cost of labour charges on a wooden arast by botwoen $10=15$ pescort.

PERSONDEL ATD TRATMIMC

The human olement
A bostyerd will only bo succemexul it the gleill of itt pergonnel is of a high standard.

Hese in Uganda, a fourmyeas course in Tacht and Boatmuilding in oxered at the Fisheries Treining Institute. There are other msthods of obtaining peraonol when a boatbuilding induetry has been established in a particulars country. To nsme just twe: the training of apprenticas undor a well orgeniged and reoognised appronticoship pehome within the industry, and secondly, talsing arpentorn who are temiliar with tho use of hand tools. Theer can and have been readily adeptod to the boatbuilding tredeg an orample of this boing in Chans when the Fiehoaice Doparbmont thore owtobltmbod theis simst boabyard.
 the boatbuilding treinee studexts in Ugazde ie Exon stuclente who have oonpleted thes primery educetion. A greet number of thewo have hod little or no orperionco in tho nse of amy type of tools connected with the boatbutldisg mosometomo

An average of nome $500-600$ gtudente spity annvily for tho 20 plecea which are orsered.
 Yeas During the tirert year they are taught tho basio usen of have tools and tho aore comaon joints thet are used in the field or boatbuildinge In the second year, the seutonts start the actual prectice of boatbuilding. phey work on very simple types of construction mainly of herd chine form with a ukin of plywood. Whis gives them the baisic monlodge of the problem which they axe likely to oncountor binen congtructing a bot and aleo the noed tox accuracy and care.

During the third yeat the traixees ase engeged in more advenced types of constructiong

 meinly by outboard enghase, It is during the third year thet they are also given the okance to see and prectice the skilis which are neoded to produoe a nigh quality tinimh. Whis is done by building a amall fast runabout type hull. During the fourth year. attention $t 6$ placed on the construction of the more advanced type of craft. This tnclucies the eonetruction and sitting of component $20 r$ an inbond powered craft. It is during thia yeer thet the examatione axe held.

COSP ABD PYPG OF YABD

In many of the developing comatriea the clinate does not require an olaborate shed and an open worbshop on ell four mides has gerved a vexy useful prepose.

 packed aarth or concrete. dis circulation and ventilation mast also be considered. oven if the yard is opencgided should the soot of the yerd be too low the temperatwe rill, cuwing the hoi thas oz the yearg be almost wabarable and mily, without doubt, refloot on the working efficienoy of the worknen.

Security must aleo be taken into consideration, and if an openmided shed ia used the ghorage epea nust be wede thier-proot. The timber ahed should be conetructed in gnch a manerv thet thore is aix circulation throughout. This ingroves the air geasoning potemial, but protection from the dipect rays of the aun and almo zein mast bo incorm poveted. The aige of the timber gtoreg like that of the yexdg will be determined by the gite and number of boats to bo conetructed within the morkshop. The ostablimhent or the larger type of boetyord involven more detailed study and plemange in partioniaz How atctionary olectste power mohines are to be usod.

Two omanples may be of nowe use regarding costings: a boatyard of very simple

The yard which has boen quoted as oosting Sh. 10000 would be just a covered ahed with a daily ienve btomeg but nothing olse. Whereas the yard rhich is cuoted at Sh. 320000 wowd inoluio a lowgow mould lort, machine ahop (the cost of machines
 eloctetiticat ions for powew and lighty and overhead gantrien for three building bayis This yrad would be sble to cope with boats of up to 504 y overall longth snd morld bo
 avalable at tho presext thiog

The mavil yax wowle powapo be move muitod to bimbos coostmetion but could with

One very important point which mast be remombored with e yerch such as the one in question of some $8500 \mathrm{f}^{2}$ of floos bpece eccomodeting bosts of up to 50 et overell 2 cmgh g is the actual physicel problom of moving the Einishod crevt irom the boatyard to tho vatore The size and wight of this orest wonld nocessitete the provision of a sipuay lom launclaings and also blipping ror repair or merit.

To instell a slipwey of this natrue would require a coxiceseble increame in cepital erponditure. A slipuay conld be constructed from timber, although it would be fax wore effective and lasting if it were consturucted or concrete.

MACKINES, TOOLS AMD EOUIPMENTS

Ideally, these machines shonld consist of the followinge bandewn circular aev axa plamer/thiclmesser.

Creat care mat alao be crorcined in the siting of these. Hechine space must be sutivcient betwen ach mohine to avoid interterence to the operetor when the makinos aze in use。 Serety factors mutb be considored at all timesg whether the yard is open-sided or enclosed, satety fectors which not only jncludelthe pesenmel but the building itselt. It is here that a very important itom of workhop oguipmant might prove to bo the most dangerous if not properly placod, namoly, the steam bor and bollew pixe is a gravo bezard when working with meterials which are inflamable, such es shavings orf-cutr paint. etc. The stean box should be posithonod so as to bo coutral bo that it in cons veniont for all the oreft in the yead but for reasons elseady montioned the bolier mant be kept well clear of the mechine shopy timber btore and daily insue store.

A monld loft is an expensiwe undextaling It is an important itom is you ase constructing the Laxge type of crevtg o.ge. in the range of 25 it and above. Row the maller type of crafty a mould lort is not an escomtial past of the yardo It les beon fownd that to lay ofe 1 ull gien the plan and olevation sections ase not really noceseay for craft mow undex considezetion. Hewdboesd sad plywood bleot memve the prepose edmisebly for the trensverwe moctions of the halle This cen be dome either by laying
 hoseos.

Hand tool rocuisementr vary conelderbly with tho type of cratb boing conctrncted and naterdels used. A liet or suggerted hand towle tow wormon is given below The nowe
 also given below.

(1) Specialized hard tools:

(2) Igme of tools to boatbuiding siucentias

Hand news 6 point - 24 2noh
Panel amw 10 point - 18 inch
Tenon gaw bxess beck
Ratchet brece
Fiand dmills
Smoothing plano broel - $21 / 4$ 3nch

Compase plazs
prough plano
Pump gerendrivere

Jaole plenes woodon
Ball petra hamare - 8 og
3 2t poldirg mulere
011 stones
Thy Equasen = 12 inch
Combination nemrng gacen

Screw drivere (eabinet) - 12 inch
Chisels bevelg edge $11 / 4$ inch $_{g} 1$ inohg $3 / 4$ inohg $_{g} \frac{1}{3}$ inch
Mortice chisels ${ }_{8}$ then $3 / 4$ inch
Cuttex bits $1 / 4$ inch $_{9} 3 / 8$ inch $_{\text {g }} \frac{1}{2}$ inchag $^{3} / 4$ inch $_{9} 5 / 8$ inch $_{9} 1$ inch pleness ateel
Claw hamonex
Dlumis bobs
Spitit levels, 12 ynch
Spoke shave, flat
Adre
Gourtersink bite $3 / 8$ inch
Drew lmite
Set gexbon dxillag $3 / 32$ inch to $1 / 4$ inch
slidiag bavel squares
mind cuttores 10 inch
Putby inure
Spole mhave, rowa
Gouge ohisels

ASEESAMCE CTVEN BL HCSHEEES OMTCESS

This assistancog given during the starting-up pericd, is of vital imporiance In Jgania, this bes been camried out by the Tisheries Deparbment The Regionsl Fisheries oxicicese have been of great assistance during this period. Without theis assistanceg the establishnont of the boatyaxde in Ogende would, we reals not heve been as succeseriul ea they heve proved to bes

One of the wain atwibling blocks in the zuming of a botyero is the business and tinonotal aide. Continge beve proved to be the biggeat problam Eere againg hely is Fequiped. This bas elso been done by the oxitcexs already mentioned. It is ao owsy for a workthop that has very good workmen who can pecduce sellable uxeft to find thet they ace in tinencial trouble aimply bocause not enough attontion has been given to the actual cotring of the finishod orafto this neode careful consideretion and whout obtablishing the necemeary brsinems mangyemext end accurate costing tecilitiong the yard no metter how well ecrippod with meapowos and wehines. will nevar ghow a worthwile worling profit.
Figure 1. Floor Plan of Boatyard Costing Approximately Sh. 320000

FLOOR PLAN - SCALE $1 / 16$

SEMINAR FOR FISHRRIES OHGICERS
FAO/SHEDISH TRAINING CWITRE ON SMALI FTSHING BOAT DESICN AND CONSTRUCTION Entebbe, Ugenda 22-27 Febsuexy 1971

Session IV BOATYARDS AND BOATBUILDING

Pricing a new boak

```
by
A.F. HAUC
Contents:
INTRODUCTION . ................ 1
A SIMPLE METHOD OF PRICE CALCULATION . . . I
CONCLUSION ................. 3
```


INPRODUCTION

Calculating the price of a new boat is a tast in which ony boathailder will be involved. Any boatbuilder treining should, therefore, have this included in its programaeg as a supplement to the practical training.

A boatyard can only exist am a contnercial activity it the inoome is meficient the most dangerous mistake in this connexiong therefore, is to take too lot a price for the boar. There will not be sufficient coverege for the oxpenaes and the boatyard will rua at a loss.

However being too expensive is also dangeroas espeoially if there is competition From other boatbuilders. The activity may ceace due to lack of orders,

Pricing may be subject to a cextain strategy such ass
(2) Keeping low prices in the sirst years of operation to get into the mexket, graduelly increasing the prices as time goen by
(b) Teking adventege of a fiahing "bom and increaging tho pricon when the demand for boats is high;
(c) Underbidding a competitor to catch an inportant cumboner, oto.

We will, in the following, consider the nomal oems where the parpose is to axrive at e price which gives surficient coverage for all the expenser and a justipied anonat of profit on the investment.

A SIMPLE MHTEOD OF PRCCE CAICULATYON

A simple but correot procedure for calcalating the proige of a now bowt will be ma rollows:
(1) Meteriels and supplies
(2) Labour
(3) Other direct costs

Subntotal direct coste 900000000000000000000000000000
(4) Overheads 00

Production cost
(5) Proiit

Selling price

Obviously, the celculation will be more accurate ir it oma baxpied out axtor tho boat haw been built, but often it in necescary to $8 i x$ the price af the time of contsegt.
 We will asoume thet the boat has been built already and that thore in eroome to insomation
 to the extent thi i is necescery.

(1) Meterials and appolies

 stemgeeng minch, etce all the differeat bita mad piecen that heve gome into the boat. Noke subdivisions som dirierent nateriels like timber steel, hardueseg etoon or subdivide according to the purpose on board, like hull strvoture, deckhouse, cutfittingg propalaion machinexy, etc. whatever is round convenient. Give eech job or boat a neme or muber, and keep a secord as items are taken from stock. Any aubstantial oxpences, like freight ohaxges, incursed in connexion with the purchzse of equizment, especially for this boat, must also be included. Interest shonld bo calculated on expensive equipanat which is kept in stock for a long time.

For complicated boatss it is almost inpossible to remomber all ibems unlese they are classified according to a system that can be used for all boats built at the yard. Two methods sow breaking down coste are proposed in Highing Boate of the Worid. 2, 1960, pe. $328,329,330$.

(2) Taboux

Salaries and social expenses for worle on the boat iteele and the production of parts anc equimeatgas well as their inetallation belong here. leanohing and preperation for launching should also be chaxged directly to each boat.

If moxe than one boat is built at a time, it may be necesayy to introduce a tine sheet system. Tine sheetr will also help in keepiag a divi gion between exilled and
 os toremen.

All work of adminiatretive nature thet camot be conveniently charged to ayy speciric boat is charged to "Owerheads".

(3) othex dirget copts

 is one paribiculag boet nodel has had an expensive development, with prototype conetraction and towting these expences matt be reoovered by enterins one bozt's ghere of the initial investment in the price celculation,

[^3]Overheads are such items as electricity bills, telephone bill, stanps paper. offioe equipment, manager ${ }^{\circ}$ s salary (if not chaxged directly to Labours), salaries of secretaries (if any), cleaners (if any), dxivers (if axy), wales steff (is any), as well as depreciation of buildings, machinexy, hand tools, slipway, crenes, truckes eto.

Overhead charges may be diferent in the different sections of the yerd. They may also be different for building of a boat and for a simple repair or maintenance job.

If the maxket is seasonal. like the pleasure boat maxicet, but production continues over the whole year, a considerable amount of money can be tied up in tinished boets in stock. Interest costs on this capital must be divided between the boats in one year ${ }^{8}$ s production and recovered through "Overheads or "other direct costs.

The percentage to be applied for "Overheads" cen vexy considexebly from as little ae 10 percent for a simple onemen-andee-helper boatyerd to 150 percent for a boet factory with much machinery and a big administration.

(5) Profit

Profit is nomelly calculated as a percentage of the production cost. The purpose of it is, however, to give the owners a return on the capital invected. This retuma can be taken out or invested again by expending the activity or by developing nev products.

Capital is invested in buildings, tools materiale etc. as well as personnel (treining). One guideline could be that the profit on one yearis production shonld be at least as bige as the anount the seme capital would earn is invested elsewhere or put in a bank. However, maxket situation and competition rem other boatbuilders may recuce the anticipated sales volume in one year and thereby affect the proritabilityo

COMCLUSTOM

Items (1), (2), (3) and (4) added together are the production cost of the boat. this money will be paid out again to cover invoices from nappliers, bille and celaxy chaxges. When item (5) Profit, has been added, the calculstion is complete.

It is most important thet nothing is rorgotten in the price calonlation pheretore, a certain system or procedure shenld be mainbained from one boat to anothere With gytem and oxder in the books price estimates for any new designe will aleo be facilitated.

The price calculation is particularly difficult in the beginuing of a boatyads life. but it will be easiex to caxyy ont and probebly more accurate atter aone years of operation.

STMITAR TOR MTSHERTES OMETCRRS
 Thtebbe, Tgande 22-27 Februasy 1971

Sesmion IV BOATYARDS AND BOATBUTDDIM
Papes IV/3

Simplified small fishing boat construction
 by
 DATID D. EBACE

Contents:
STMPLTMTED COMSTRUCTIOR DEMDIMD 1

pTeURES 5

SIMELETM COMSTRUGYTOM WETHKD

 bogtbuiling practicos am consider whet problems exiat los the buldex at each gbago

 who en yisualige \& complete omet whem they have only a laxge netural crook at ham trom which a stom will be fachioned. yhese anvied buildere can oyobal a pleasing act or Iinem by caxelul shaping in a mamer only years of amerience can protuos. But that exporionco is not alway available in areas whore boatbailding ha new tredichone ha being oneoxreged. It takes a loag appronticeship to Leam the methods of conctruthon mathole por lesgo crattg and to develop the mally bo bring those methode down in seale to mallez cratt scantlings. It takes aven longes to leam how to bun without loxthe

Bo it would appeas thet the cratt thet can bo laid down with a maimum of taivins and crope checking would be degavod. whe noet simply lined crett awo bhowe baving streight sections and only sheer, chine and kol liner to be dremn. These are, it is obviovey much more simple them thome with flareg rownd bilges and reverne ouver wadex the aster quarter.

Hext, one must consider the sheper of chined cxty thet can be lad down so that the taking ofe of fxane gectione will be readily cocumitshod. It would appear that those boats having easy and mual changes in sectionet oherectaxistios wonld be of that type.
 Ines bs indicated. Rapid changes in shepe nem complicated trwoture and considexpole

 which treditional buildins reavires is the cutbing of plenithe rabbebe Mhere ware good yeagone for that practice, wad they sthil apply. but it the boat could vese othex mems to Land the plaking to the streture, thet could siwplify construethon therctore, it we cax

 mechenical Pastenings and to provicde good paying sux ece tor ahomiver or bodding
 ther those of more mophsticated conetruction.

 picture, and provide our sinple boetbuilder only with loge wo would bo quxak to mdit that

 subjoct.

THEOSTRATTVE DRSTGMS

Heving derined what the simple construction chawacteristios are, it becomen necessary to detemnine how best to illustrete them in mall fighing bogt designs. Tt would appears thet aince this Seminas hes as its objects the domongtrating of construction techniques and the conaideration of better ways to produce boatrs for the catching of fishp some good boat bypes ghonld be disoussed.
(1) For the initial boat theve provided the besie dranimge for an 18 f t (5.5 m) outboard powered nodel. Whis ishased on the aingle hexaded gillnetter used on the Great Lakes in the Tnited states.

The pishermen who were the Great Lekes equivalent of the small artisenal fisherman in other perta of the woxid evolved a specific type of boat which bears some strady' Pigure Mos I ghows the beste type that was once quite nunerous on the Wisconsin shore of
 in dietingaished by the net heuling zollex net atop the atem, These boath could easily caxyy and set fowe shomt bozes of nete, each box containing about 600 ft (180 m) with Rloets and weights The mall boat fikhemen set his neth in reasonebly sballow water of 30 m 15 x (9 m 23 m), but this cowld very depending on season and species of fish being scught, The nets were nomally east oven the side but were rebrieved ovex the bow The fichermen soon found that the nets were easter hend houled over the bow than over the formerd quarter on side and the gtern wollex was adopted to the bow The outboard motor would obviously prevent any action over the trensoms go aid in pieking the catch from the mesh of the net, a brey was built on the aheer of the ceaft aft of the rollex. This was caxried att far onough to pexmit the net to be picked and set back into a box for a subsequent resettinge The catch wes tossed aft a catchwell thet was simply a set of breasverse bulicheade set agrinst a peix of side rrames, approximately anidships. Frequently, the cetchmella wese wooded and the early catch would survive in the water circulating through drilled holes the bothom Simple cleated plenks would shade the catch and an oceestonel bucket of cold leke weter held the temperatuxe in the noninstalated well to about that of the lake.

These boets prowided neny indurival fishexmen with a 1 ivelihood, almost until the decline of the fish popuation virtually brouglt connercial fishing to a halt.

While wany of the mall gilnettern were built by proressionel boatbuilders, a large proportion wexe built by bhe fichernen themselvas. A number or construction rariations should be noted, and reference is made to Figure 2 . This drewing is made in the same type as I used a decade ago, and it provides the essentsal information whereby a boat can be built. All details are not complebely mentioned. but the infometion considered important is showno

The egency considering boat of this type to be built as an eveluation prototype, would have little disticulty in constructing a firgt boat, the writerg with a longer experience in degigring small secreational craft tor ameteur builders than in being concerned with small axisisenel fishing crafty has adopted the basic philosophy that a drawing oan often be more informetive than a photogreph. The caceful preparation of aequentiel construction drawing in isometric or pergpective projaction are invaluable aids to the buildors. Whe dxawings, bogether with the explanetory notes as guidence, should point out all the intomerion thet the builder needs to know, which would not be obrious from the finel assembly drowinge of pigure 2.

The matevz bulderg, brilled on noty whovld be provided with atepmymatop discussion
 the detailed conctuction invometion bhovad be casried down to the aize of the pilot holes for screw om lacbolt fasteninges Whis weme philosophy is applicable, perhaps even more so, in the infometion provided for mall tiehing creft.

We learned, long agog in the boatbuilding intustryg thet makilled, but enthassertio builders would maderseke vast projects with only ball vast ability food drevinge and proper references to potential problems pervit ungilled butlenc to develop conciderable creaftmenship in the building of even a "simplitied constroction crait.

Returaing to the drawingss it is rether easy to denonmepto thet the creft meeta the general derinition of "simplified construction". Al easy cuxveeg no oxceabive bondsg strezight sectione, no rebbets and simple bevels all cepoble of boing worked out on the erected frenes, Fhe plenking onn be lapped as butted (is heary enough) on can be gean bettened. All of these techaiques, on boat of theae sections, are not wouly difficulto

In periomance on the wetex of the Greet hakes, these orvth proved adecuate 30 m thenw tintended purpose. The dory atyle hull was tately easily driven with oubboard motora of 12 m 2 hp , even wile laden with wet nets and perheps $500 \mathrm{lb}(220 \mathrm{~kg})$ of late fish. The bow treasom wader nomal trim was not so tull as to impede progrean in waves. It did provide a regerve of buoyancy thei held the boat up when the net wes being lifted from the bottom and hauled over the roller. Some hed more Gheer then the drabings indicateg orton betige a bit more fine forvard.

It is considered thet there ie a degree of mertt in the type to varramt eexious consideration by project officers concernod with the development of outboard gillnet tisheries.
(2) Another besic type which enjoyed a consicexable populexity shen moll ibhiog cxett
 athwartships, was modified, as power and speed Lncreaged, to incoxporebe a, gighly ree"d bow This was to present a leac hewd pownding foreroot to the waves of the waters on

 mainteining itw width for ith entirs Iength Beeause the ohines do not buck into the ceatreline of the boat, th has a full waterglene and is, thereforeg guite wtable tronsversely This makes $2 t$ adaptable to side not getbing and haninga

An inboard version of the moditied gavey is mhown aed this quatiries as wabylitied coustruction in most respects, It hes one probiem area and the gonerelly usod solution for that problem has long standing use. The garyeg has conexderable Iift to her chines and cestreline keel. In heavy acantingay theee do not readily bend into phape steaming will not sorter a 3 inch chine enough to take the Lines thowng go the techaigue is to alit
 techaigue is only thet the chine in firvt sawn to the mouldodand ajed dimencions fox the full length, then wan through the gew as long as needed. This does not out the chine into full stripg, but does produce a abructurel member bhet is one section th one end end three at the other. The erected iromes are notohed row the chine which is started from afto As the installetion pxoceeds forwaxd. the top gheip is titet bent and tastoned. then the second, and then the thind. Fech is glued and edge Pastened, Whth the bottom Ragbeningg countergunk to clear the bevelling tools used. This techiche produces what is, essentialits a leminated chine. $T t$ id not beyond the cepailities or the scmankilied builder, onee he learns it:

Asein, it conld be pointoo out that a merien of perspeotive os isometric wems would. chearly illustreto the tochnaque of gewing and sitting suct a chino log to a boet. A construction geguence sexies of drawings for the gawrey huil woud be most wowtadng exercise when one could wotch the reletive amomb ox strdy that they would be givens as compered to the more conventionat buiding plane.

The gamey is crows planked on the bottom ext, and with a slight Mherring bonem forwerd. ghe planking is full width att, bat forward it is batted on the centreline, without rabbetso Gampeys are often built with bolted franes and neiled planking. The typical construction wes upside down, and the akeg wes ritted atop the planiking butts on the centreline The skeg and keel constmuction was heavy ma throughoolting was mubstantial.

Athough many of the east coast gaxweys were provided with wheel type steering where the wheel was movnted on the cockpit coaming of the after decks the more traditional steering wes with the tiller mownted amidships to one side or the othere other characteristics of the basic bype are included in the drewing, which is informative.
(3) Mhe last type which is recommended to the study of those attending this Seminer is the launch shove in Figures 7 and 8 . The boet illustrated is a 24 号 00 ter (7.3 m) and is reiriy narrowg having a beam or $7 \mathrm{ft}(2.1 \mathrm{~m})$. It is an open cract, heving only short decked ends and a box enclosing a small engine amidships.
mis meets ow definition for a craft of simpliried conmtruction in all respects, even considering its longth. The construction features are applicable, without problems to cxest exceeding 30 tt (9 m) when the scantings should be increased proportionately.

All here is straightfownerd and the drewing are adequate for the mowledgeable boetbuilding expext to visumilime the problems he would heve in teaching this type of construction. There are only a fen points that should be mentioned in this type of cretto or these, the mont important is shom on the section at Frame 1. Note that, because there is no rabbet, the deeply vee"d fremes recuire thet the bevel includes both the keel batten and the knee. This wide landing permits anple festening or the diggonal planking. Also note that the planking on the bottow, which laps over the side planking at the chine camot be feathered fomtand of Frame 2. For the forverd 3 ft (1 m) of the chine, the side and bottom planking are butted on the chine centreline.

As boats get lawger. the options thet are available rox the builder in the matter of details become greater. All the witter of a peper of this type can do is to suggest those options. Hovever, it is hoped thet these illustrations will stimulate some considerstion of the features show.

COMGLTSTON

While no strong conclumion cen be meached regarding the mamplified features shown in the several drawings prepared for this discussion it is thought lirely thet a case can be made for the hard chined craft for mmall boat fisheries.

BWIFHREMCES

1. Beach David Dog Commercial Outboand Fighing Craft Finhing Boats of the Worid, 1960 Volume 2.
2. Colving Thomas Eg Gillaet miahing, Deck Design and Equament, Mishing Boate of 1960 the World. Folune 2.

FIGURE 1

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 7

FIGURE 8

SEITHAL FOR ETSEWRESS OHPTCKRS
 Futebbes Ugands $22-27$ Februazy 1971

Sescion TV BOATYARDS AMD BOATBUTLDTHC
Paper IV/D

Discussion

Contents:
TRADIRIONAL BOATBUILDERS TRESUS GRATMED BOATBUTLDERS . 1

N. FUJTHABI:

B. MACHOMIRWA:

S. Ne SEMAKJLA:

 been operating in ugands soz the pest 15 Jearg, with approximately 20 studexts pew yeaz being graducted, This makes, altogethery more than 300 boetbuilderre over the whole period, and I wonder thethow all these peopla et peescrt are engegod in buildiacg boata.

The course fow boatbuildexs Beems to be vory populas aince you hare more than 500 applicante pow year and oniy about 30 or then con oxter the course. Does thit indicate thet boatbuilding is a vory attractive businese in Ugander

Bven though the boathuilding coveges gtaxt with arovad 20 atudenteg aftox a 4myeer period this muber is rodueed to around 10 to 12 , go tho muber of greduate sbudents is not so high as Hro Fujuman estimateso

Of the studerta graduated Prom the boetbuilding conxes, Bome axe exyloyed in Monbase, two or three 2 m the Rest African Reilway and Hembours one is receiving treinims as a deck officer in a coastal port. There is a tremendous pressue on any kind of edroational institubion in Tgendag so thet you get a leage number of applicants sor avomy poeaibility of Iurthex education. Haxy or bhe strdeate agyiying tos boetbuilding trainigg have never becn neas to a Lelre and do not oven know that a boat looks jise The oncemtal thing is that they wam to acquire a trainimg they weat to segrinv slati wheln will give them an opportumity to get anay isom tazange Since a brained boebm builder is also able to do oaspartryy a mubor of studeates have aiso gone into bhe budiding beate or furnibume melinge

Treining of boatbuilcers 4 a seirily reoent derelopmont in Ugands and although some new types wi bosts have been buit by these boatbuilders, it has not been a buceess in the Leke Victoria exea. Tt has onily been suecenstul at Lake Albextg where a new boet bype hes bean built in a large mumber. The zeason for the feilune th the Leke Tictomis area is metniy due to the big diference in cost. A $28-\mathrm{it}$ moditied Sease canoe built by traince boatbuiIdex oosts gho 3000 , whill a beach boatbuilder in the Sesse Inlands might mook iogethes a similas sise boat tos sho $600-800$. The siehormen have not yet been corvinced that the inoressed guality and longertity of the modified Sesse canoe in worth the artre cont.

I once asted a fibherten wiy he did not buy a modiried brpe of Sesse canoe costhing bh. 3000 . H 0 asswered that sor thet price he would bo able to bry wo loesily "uxit' cenoes and have both of them equigpod with itahing geax. T\% is ewident that wadez those oonditions, the Etehorean will pretox to stey with the
 builders, therefore, mily heve to concextrete on building bigeor boats raich demand wore akill th the construetion wheae bowts wil beve to be operated by the nore Lixaketwions tiehozmen and

S. N. SERMAKULA:
(combimued)
D. CUTBRAIDSEM:
M. MUCEUMILWA:

The Mrabalegammzpe of boet buitt by boatbuilders ix Wanseko. Lake Albert, hes been suocescrut beceuse the rishexmen of this Iatse were in need of a bigger and more suitable boat. This boat can cary more nets and ensle the finkexmen to fish in the midale of the lake. Fhis would not be posmible with the type of boet built by the beech boetbuilderns. The cost of the Kabelega boat zanges between 300 and 4000 shillings.

I doubt that commercial boatyands will be able to build sesse type canoes at a competitive price. In Ugandag a conmercial boatyard thich has to buy its timber from comereial samills and pay the wowars a mixed salamy and social security and on top heve varions ovewheads, will produce canoes thet are considerably more expensive then the ones built by the beach boatbuilders situsted in the Pishing villages. The beach boatbuilder gets his timber by cutting it himself in the forest on straight from a local lumberes without going via the saw mills. He will chasge binself relatively little for the construction or these boats or he will mploy labour at a very Lon selary. His orembead costs are prectically zero and his profit is minimwn. The result is that he can build a $26-16$ Sesse canoe for sho $600-800$, while a conmercial boatyard will require sh. 3000 for the same size canoe. Admittedly, the quality build sor the established boatyaxd is higher, but one can hardly bleme a Iishexmen if he juxges thet the difierence in quelity and longevity is not gurfioient to wemsant the great durfowence in the cost. I coubt that it is a comencial proposition to esteblish a boatyend to produce canoes in compotition with the beech boatbuilder. Ratherg the commercial boetyard will have to concertrate on biggex boats or on a type or sige that the beach boatbuilder is meble to construct. I thint that the Rabolegemype boat on Lake Albert is such an example. This boat is much bigger and has considexably more camying copactiy than the existing traditional type of craft. The development of a trevler sleet on Leke Victoria is anothex potential mamet for the comercial boatyand and I think thet establishment of boetyards at Lake Viotoria should rether be directed toward constructing boats that will satisfy the reguisemexts of the trevl tishery

One difeicult problem in the Leke Victorma area is that of the onnership of the land and trees that stand on this land. The owner cen 1021 these trees after consultetion with the Forestry Depertment and he can hire pit-sawers to tell the trees and sew them up in pleniss and for bin the timber can be much cheaper than buying it commerciallygpartly bocause he does not have to pay sales taz phe beach boatbuildex gets his timbex fxom the landomer and, consequextly, pays very little iox it. This is one of the reasons why tho beach boatbuilder is able to construct canoes very cheaply.

Mhere were about six small boatbuilding fards being operated by om enmbuients. Some of them had to lose down after a ghort pexiod of activity because of a lack of management bbiliby. They were not able to casti theis boats properiy and cold then at m_{m} lons or they wawe meble to adapt themselves to the regrarements of the sishermen.

H.B. KTBECO:

A.S. OBURU:
W. MANYASSI:

Ø. GULBRANDSEN:

We have experienced in the past that the boatbuildere we hawe trained during our tour-year course have been wable to compete with the beach boatbuilder because the beach boatbuilder is employing inferior matorials, for cample oxdinayy steel wire nails, while the trained boatbuilder is veing oxpensive copper wils. Some of the trained boatbuilders fown that their boats becane too expensive 10 the tishermen and they were obliged to stary using steel sorews and wiwe nails sa onder to cut dow the oost. This is the problom we are up against. lio teach the boatbuilders to use proper materigis but the maxiset forces them to build with cheap materials.

We heve to go to the root of the problem of competition between the beach boatbuilder and the breined boatbuilder. Unless we manage to cowvince the fishermen that the boats built by the trained boatbuilders are better and longer lasting than the traditionally built boats, we will not gucceed. This might take a lot of demonstretion work and convincing from the Pishemies Departments. Firet, howerer, it is essential that the Fisheries Dopartmerts are convinced that they have a better boet to offer the fishermen. We have had emamples in Kenya where boats bwit of plywood were introduced to the tishermen and they were uselems in less than a year. This has created distrust from the fishermen, and it will be more difricult to convince the same men the next the we try to intwoduce a now type of boet. Tt is, thererore, essential berore introducing new boats that they axe properiy tosted by the Fishexies Departments.

It will be vexy aiesicult to convince a ishemen that he should pay three to tour times as much tor a canoe built by treined boatbuilders without this giving him adventages in higher catohes. The boetbuilding industry must be guided by whet the fichermen reguise and not by axy wisheul thinking about whet the boatbuilderg think is the best boet. In the last instance, it is the isshernan himsels who peys out the money that decides what bype of boats shovld be built.

Some time ago, our boatyard built some snell fishing boats of the dory type about 17 tt long and powered with a $4 / 5 \mathrm{hp}$ out board motor. We could sell this boat for around sh. 2000_{2} and we went rownd to the fishing villages to inquire whether axy fisherman was willing to tyy this boat out, even free of charge. The result was negetive, none came forverd to take up oux offer, and I think this example illustratos an important point - that we nanst fixst find out what the Iishexman wents to have axd whet he cen afford to pay for it beroxe we start eetablishing a boatbuilding industxy.

The isheman in not sis stupid as some poople believe. Te may not be able to sead or write but he cextalniy can count money. It might take time to convince the risheman about the new type of bost, and nobody oen bleme him for being consemvative in investing the little money he has into a new type of boat oro geas. Our oxperience ovexymere hat been thet the moment you manege to demonstrate to him thet the new boat or gear will give him more catch, then you have stamted anowball muming. and after the first ishemwan you will goon heve move following.
D. ODER
$\phi_{\text {o }}$ GULBRANDSEI:
A.PoJ. HOLMESS:
B. MACHOMTRWA:
A.S. OBURU:

In Kisumu we brought some beach boatbuilders together and gave them some assistance in the form of tools and materials. These boatbuilders built an improved type of boat thet the fishemen liked and they are coming back to this boabyaxd for new orders.

One of the ways that the Fisheries Depertments can assist the boach boatbuilders is to make it easier for then to obtain the might type of materiels. All the boats built by the beach boatbuilders at present are tastened with oxdinary iron wire nails. Gelvanized nails woulds no doubt, prolong the life of the boets et very little extra expense. However. it is almost impossible to obtain gelvanized neils in comerce. There ares hovever, firms who do galvanizingi for exampleg in Kampala, one firn is producing gelvanized nails, and the Fiaberies Departments could place a surficiently big order with thin firm to produce the aize and type of nail thet is suitable for the boatbuilders and assist in distributing it to these boatbuilders. Similarly, it would be possible for the Fisheries Departments to make good wood preservatives more easily available to the boatbuilders living fer away from the big commercial centres.

There have been several attenpts to introduoe Furopeanmype boats but these heve bean wnsuccessful. The Iisherwen complains thet he comnot operate this type of bost alome; they are too expensive in initial cost and the repairs are dieficult and expensive. He whll preter a boat built by the beach boatbuilder costing Irom sh. 250 to 600 and lasting maybe $3 \frac{3}{2}$ to 4 yeaxs.

A beachboatbuilder will be able to improve his boats by being shown better weys of building them. Fe cannot atrord to leave his home and his Pemily to attend a boatbuilding course, but he will be guick to pick up nev ideas when he is convinced that it will produce a better boat. The beach boatbuilder is doing a great service to the fishing industryy and he needs to be essisted rether then restricted in his work.

In Lake Albert it hes been possible to axrive at the standerd boat design which has become populax among the fishermen, namely the Rabelegembype of boats which are produced in three basic lengths - 24 ft , 26 It and 28 t t. The Kabalega boat has been built in a number of three to foux hundred since it was introduced. It has not been passible to axrive at the standard boat design for Lake Victoxia in spite of several attempts. If such a standend design should be developed. it would greatly Eacilitate the ordexing of materials and constructing boats of the standexd pattern.

Tn Leke Viotowieg tishing is canyied on with gilinetr up to 10 miles srom the shoreg with traps and nets close to the shore and with beach seines on the ghore itself. It will be difrioult to standantige a design that will satisfy all these types of Pishexy.

A.PoJ. ROLNESS:

I do not think it is anough to look at oniy the type of fishing gear and the bype of pishing arees in onder to decide on a suitable type of oreft. One hes also to take into consideration the people and their mocial level and background. I have found thet in Kemya there are three groups of Eisherwen. There is the beach or village Eisherman.

Where is a limited number of sishermen who are prepered to buy an outboerd engine and there are groups of anchemmen, rether $^{\text {and }}$ than individuals, who can afford to operate bigger boats on moxe distant fishing grounds. One camot roxce a cextain bype of boat or type of fishing gear on 1 ishermen who are not prepared or not willing to depaxt Erom their traditionel way of fishing.

The first group mextioned are individuel sishemnen owing a small canoe. They usumly have big famplies and are not rich by any standand. pishing is done two or three months, while the sest of the year is utilized for caltivating theis litthe Parm. These people are happy with small bostss and it will be uselegs to try and foroe on them a bigger type of boat than what they think they will be able to operate.

The second group contains the individual fisherman who is eager to improve his condition to motorige his canoe, go further away, catch more fich. He in a vexy importaxt man in the fishery, aupplying the main bulk of the Pish to the maxket. With some assistance, he might move up anong the thind group of fishermen.

The third group will ow the bigger trawlers and the bieger inboard powered boats in the futwe.

ESTABLISHIMG MEW BOATYABDS

W. MSTMASSI:

A.P.J. HOLNESS:

SoN. SHMAKULA:

W。 MANYASSI:
A. S_{0} OBURU:

What size of boat shed and secilities is Mro Holness refexing to in his paper?

I an retexping to ax open shed approwimately 60 x 60 It, which cen handle three boats being built at the same time. It will heve a concrete floor and the wole shed will be simple enough to be built by the local contrectore.

I think the figures for the cost of the boatyard mentioned by Mr. Holness in his paper ere underestimeted. We heve recently made an extension of a boatyand increasinc the area by $20 \times 60 \mathrm{tt}$ and thit will cost sh. 60000 inoluding the concrete ploor.

It hes been our experience thet sgood quality boatyard shed will cost approximately mh. $30 / \mathrm{t}^{2}$.

The ixvestment in o comercial boetyend will necescarily be subm bialy and I worder whether $1 t$ would not be a good idea to tyy to concombate on bulldine a cextein type of boat in one or the three cowntries arown Lake Victoxian wethor it is Kenye, Tensania or Ugande. In this way the number of boate to be built will be nuticiextly lasge to juetixy the ixveetmext in tho boabyand.
B. MACHUMTRH:
A.S. OBURU:
\mathbb{N}_{0} ODERE:
A. PoJ HOLNESS:
S. W. SEMAKULA:

For Lake Viotoriagit would probably be a good idea to have one boetyard for all three countries aince the brensport of the completed boats to their destinations would not preaent any problem, and they could be easily towed from the boatyard to awy place along the lake. The coastal wetere of tenya and Tenzania presert different problens, and is amy boat development were envisaged here, a e@parate boatyard would heve to be estabe lished to cater for this need. When supplying boats to the other lakes in पganda, the problem of trensporting materials or Ininshed boats must be taken into account. Since most of the sewnills and the timber merchants are situated in Kampala, it would facilitate the transport or materials if the boatyard wes situated in Kampala or nearby. Howeverg the completed boats would then have to be trensporied for long distances and over partly rough roads which might cause danage to the boats; so the question is whether it is best to transport moteriels or the finished boato

The construction of canoe-type boats could be specialized in one yexd and the construction of say, 30 It boats, in another yard. Ecch boatyand would then be able to specialize in one type of creft and, by getting subetantial ordersgthey would be able to plan their supply of timber and the work in such a way that the oost of construction could be reduced.

Berore investing $\mathrm{sag}_{8} \mathrm{sh}_{2} 500000$ in a boatyard, it is necessary to have a clear idea about the size or the maxdetg that is, whet type of boat will be built and in what number. Any boatyard developneat will heve to be based on some estimates on the need for tishing boats oves the noxt five yeare and the financing available from privabe or Government sources.

I do not thint we ahould get sidemracked in discussing establishment of big boatyards or boatbuilding industries. It is mose raturel to stert with esteblishing amallez bowtyards arourd and in the majn tishing centres thet are owned and x un by indie viduel boatbuilders.

The idea about centralization of boatbuilding yaxds is not very practical. Where are already boatyaxis established in main centres axound Lake Victoxia, and one canot stop these boatbuilders in onder to centralige the construction in one big boabyard, So Tar. canoes built by comercielly established boatyarde have been much more expensive than the ones built by the 10001 bootbuilders in the fishing villages, and I do not think one would auppowt the fishing industay by giving Covermment assistance only to itshermen who want to buy boats from comnorm clally established boatyards. If e fishernan canot afiord to pey ch. 3000 for a onoe from one of these boatyards, one should not pervent him from going to the local beach boatbuilder and acquiring e cenoe 102 sh. 500.
ю. GULBRAMDSEM:
P. MANXASSI:

M. ODERO:

J.O. ACOBAE:

Ø. GULBRANDSEN:
A.POJ. HOLNESS:

One importent point to consider wen eatebliahing a nen boetyard for the constwuction of lasece vessels is that any boate Fexd, besides building new boats, is also occupied with repaixing old boatsg and that the boatyard muet be situoted in suoh a way thet the construction of a slipway or axy other mean of bringing boats out of the water is racilitated. The boatyexd should also be situeted close to the base of a fishing Elect so that the fishing vessels do not heve to trewel long distanoes in order to cersy out repaisn or regular maintenance.

If you considered especially a comercial boatyard close to popular contren like Kempela, Entebbeg or Jinjeg Jou will orten find that the plaming boasd or the town council will not pexmit you to put up the boatyend on the location thet is most suitable sor it fron the aspect of accensg electricity construction of Glipway, etc. We run into this problom, and the mite finelly chosen is the best we can Eind but not ideal. We will have to spend a considenable anount of money to construct a slipuay becsuse in our parbiculer area we have to go out $75-100$ yerds into the lake to achieve suesicient depth fox the boats.

In Kexya there are severel boatyards situated par from the lakes or on the coast which ghow that the problem or trensportation of the boete is not too serious, Bowever, the boats they are producing axe small and evideatly, when coning up to the size of tranlers $10 \times$ Lake Victomidg it is advantegeous to have the boatyerd situated at the late itseli.

If I woxe going into the boatbuilding business I would starbs first of all, with a modest building shed aimed at attracting repeir work as much as new construction. One often finds thet there is more money to earn on repeires then on new construetion.

New boats can be all simply designed which do not require power tools. We recerty constructed in Nigeria a 40 It flat botton boat in a shed that was 15×50 xty and all the work was done by hand: we had no power tools at all. If later development wes justiried and the profit of the boatyend is surficient, then the boatyard cen be expanded and power tools added as you go along. If you staxt up with a big and expene sive bombyard yourcapital costg will be vory high wile the mexket for boats is not yet developed. It is better to start small and develop the boatyard in accordance with the maxket.

Who should rum the comerciel boattards? Should it be the Government, cooperatives or privethe industry?

It ia my deximito opiniou that boatyards shovid be sun by individuals and not by Govermments. I do not think this is a field where the Covoramemts should booone involved, and it bas been domonstrated bere in Ugende thet private individuals aro quite capeble of sumber their own business when properiy treined. The Government re role is to guide and assist people, but not to run tho business thomselves.

```
Session V FTNARCING BOAT DEVELOPNHMT
Paper V/1
```


Experience with credit schemes

by

```
JAMES A. ORUTCHFIELD
```


INTHODUCTION

The emphasis in thia seminar series is on prectical aspects of Mow to do it with respect to fishing vessel construction, ownerahip and managenento Thia peper, howevery is oriented more to basic business and economic facte of life with respect to financing capital aspects - particularly fishing vessels - in the fishing industry of developing Africen nations. Particular emphasie is laid on the uses and abuses of grants, subsidies, end loans at subeconomic rates of interest as devices for accelerating investment in fishing vesself and their subsequent operation. Special note is teken of the difeerent kinds of problems that may arise whexe fishing activities are carried on under different institutional arrangements: that is, by private individuals and enterprisee; by cooperatives; by goverament enterprises; or by some mizture of these.

EAST AFRTCAN EXPERIENCG WITH VESSEL FTNANCIHG

There are many present at this meeting who are more familiar then me with details of credit operations in East African fisheries; this aection presents in general terns my impression of the auccesses and failures of these credit schemen, in the hope that subsequent discussion will provide a fuller evaluation of past oxperience.

(1) General

In general, it seems that government credit schemes for the acquisition of fishing boats and gear have not been a speotaculax success. In Ugande, efforts to introduce nen types of sishing geas and outboard motore in the fifties and sixties were tied to relatively liberel credit from the Uganda Credit Savinge Bank, with recomendations Trom the Department of Fisheries as the principal device for channelling credit to degerving fishermen (Semakula, 1970). There is no way of knowing how much of the rapid growth in modern aylon gillnets and outboard engines - now permenent featwes of the relatively modern and efficient small boat operations in Ugande - oould be attributed to this liberal extension of credit. The record seems to indicate that a great deal of difficulty was experienced with defaults, resulting from failure to run fishing operations efficiently, expenditure of borrowed funda for purposes other than the purchase of fishing gear and outright dishonesty.

Losses were so heavy that ultimately the implicit subsidy of the loan scheme wes abandoned, The Uganda Commercial Bank became the only gource of loang, and then only on normel commercial principles with a requirement that sound personel credit and security for the loan be demonstrated,

I an less familiar with similar attempts to modernize smell boet lake fisheries in Kenya and Tanzaniag but it seems likely that the game general type of experience was common in these countries as well. Attempts to have local governments provide loan guarantees and channeling loans through cooperatives (many of them virtually forced on groups of fishermen) did not appear to produce materially better rearits.

(2) Cosstal Fisheries

Neither Tamzania nor Keaya appears to heve had much success in ueing government credit as a means of breaking the power of middlemen over coastal fishermen (Rhodes, 1966), The traditional reliance on maxketers by coastal fishernen, not only for fishing supplies and geax but also for other credit needs as woll, is part of a culture that goes far back in history, It could hardly be expected that the system could be permanently altered by a simple change in methods of financing purchases of equipnent. Over the long rung it seems clear that the "thajiri system" han a strong tendency to perpetwete a rether unsatiaractory gtatus quo, and that it must be replaced if any real progrese is to be made in improving the productivity and economic welfare of coastal fishornen, Thia will require, however,
a broadebased atteck on a wamety of problens: inedequate coastal receiving facilities; poor wholesale and reteil mexkets; leck of mowledge about the digtribution and yield copabilitics of the varions stocks areilable to coastal tishermen; and the development of vesbels and gear adapted to the emplettetion of those stocks Grodut is only one element of much a programe and probebly not the most important Tt tis herdy aurgrisings therefore, that credit schemes in the coactal 4 isheriog have not achieved spectecnler success, though they have contributed to the introduction of sone impzoved typer of gear (e.gog modern nylon nets in the shark eiwhery)

The really intereating sspet of the Best Armoan exparinnce $2 s$ thet the finheries heve manegod to acheve an axcellext ato of grovth at least on the fresh nater lekos. As pointed out in an earlier article (Stonemang 1967), government credit oan acount for only a small fraction of the total investment in outboard engines, modern Eabalegemype cenoes, and nylon nets now used on the lames by ugande fibhermeno the same tis twua, in
 to generate sufficiont privete capital to permit reixiy speedy adopblon on ay type of boat or gear that proves to be realiy profitable. Whethes thit type of funding would be availeble for leagex and much more erpongive boets (of the type requiwed tor a trawl Isbery on Lake Victoria, for example) is moxe questionable, but it cextainay should be expected to supplenent axy government progremme.

(3) Hest African Erporiemce

The emporience of chans might be worth noting in thia concecton me chazaien Goverma
 whll edantod to chane g inshore ocean rishery. and whoh could operabe much more efitciently than the beach eenoes of the treditional finheay It then undertook to mpeed up adoption of the new boats through a very liberel yoas mohene ghe recoipts pr the lome went in meny different directions, as did the vespels; meny mistakes wese made in selection of boryowers; and a very oonsiderable amomt of goverment cepitel was disempebed. over time. however, a reserwolk of valuable fishing experience and vowledge pconvilabed and the herder working and abler gkippens and owews begen to eaza eroellent incomes with the new equipment. Thexeat vex, the itshery expanded rapidly but laxgely on the bexte of private funding Even in the face of a govexment polioy thet tended to dibonvage privete fishing operation in tevour of a goverment corporetion and cooperetives, the mombes of privately ftnenced boets continned to grov (Hemson, 1969).

It would be illwinating so have careful study of the actual sources of tuxding that underlie the rapld growh in privately owned itshing boabs in both chene and Fast Arica. A preliminary anelysia of the Ghanaian apperience, by Kirej and Lerson (1969) indicates thet mort or the money anverted in the modermised manll boat pishery came from small frioan busthessmen who had accumalated fuads in various shorembesed ventwres, including but by no
 netion with highly developed capital mapdets a aupprisingly lage proportion of the money required to finexce fishing vesgels comes from direct investment by individualag both outaide and inside the fiahing industrys rather than from comnerctal bembs or other financial ingtithtions, There is evexy reason to encourega the bendency in Dast Africa for men who make gueoescrul inventments in roed breasporty for exemple, to ase mone of the proceeds of those investmonta in financing sicilled fiahermen who can use better equipment profitably. In adation to the self-genereting nature of this kind of investment activity, it involves a closer relationahp between boxrower and lender, and therexore a much smaller proportion of bad debts then mont publio loss achenes aohieve. A privabe lender ig likely to do a muoh more sewrhing job of evaluaking hishermen as borrowers than a govemment loen amminicbrator or even a goverment or comaercial bank.

This is not to gay that government chould avoid participation in providing credit to an expanding fishing industry. It does auggest, however, two imporbeat considerations, Pixst, government fundinge ghould be undertaken in a way that doen not discourege en expending Slow of privete capital at the sene time. Second, the experience in both dest and West Africa suggesta that even where government aid is required to bhift fishernen to e radically new type of level of investment in fishing vessels and gears the ultimate objective ann and should be self-austaining internal investmeat once the industry has become well established. These points are developed below.

(4) Cooperatives as Financing Agencies

I have not had sufficient experience with cooperetive fishing ventures as a vehicle for edminiatering loan funds to comment on them with any degree of confidence. it is perfectly possible, in theory, that the cooperative could gerve useruly as an intexmediaxy between a government loan progremme with money but no expert knowledge, and groups of fishermen with no money but with a range of fishing experience and knowledge Mhwai (1969) streasec this aspect of the cooperatives. The important point is thet the cooperative must be able and willing to aubject ita potential member-borrowers to the discipline of reaponsible, honest, and officient use of borwowed funds. If it can perform that difficult rationing function, while retaining a close personal contact with the operating fisherneng it may be a good choice to handle vessel financing along with other semyice functions essential to the development of a aew and more modern type of lishery (e.gog freezing and storage facilities, processing planta, vessel and engine repair facilities, and marketing capacity - outwerd for finished products and inward for raw meteridals and suppliea). In factir control over loan capital is a naturel adjunct to some of these other activities. I camot stress too strongly, however, the fact that these axe difficult functions to perform, and that the cooperative is inherently a dixficult type of business oxganization bo manage. If it works well it works very well indeed; if it wozke bedly it can be disestrous.

SOME CENERAL FRITNCIPLES

The importance of going behind the financial aspects of fishing vessel construction and operation to more fundamental effects on physical and economic productivity is peculiarly important in the setting of developing African nations. From a purely atrategic point of view, the fisheries are not as important as agriculture or as dranatic in developmentel impact as manufacturing and foreign trade. Thus, the politioal weight of fisheriea in most developing countries is not likely to be very greato It is theretore all the more important that fisheries programes presented to governments by the deparbments of sisheries in tast Africa be thoroughly documented. More apecifically, it is simply inadequate to demonstrate that a progranme involving commitment of capital funda to the development of new vessels or other equipment would pay for itself in terms of fishery output alone. It must also make clear that the impeot on the overall econony of the country (or on a particularly herdmpressed region) is more favoursble than any other use of the funds requested.

(1) Cepital Allocation

The reasons for these words of caution are rooted in the besic aconomic problems of all developing countries. They are, above all, short of capital - physical and hunan (in the genge of trained personnel in whom governments beve invested large anounts for education). Any progxame that places additional demands on govermment budgets actually requires cutbacks in consumption sitandards or in other investment in private ox government projects.

Rven if fundig cen be obtained from internationel sourceng the dobi most whately be repaid the burden ia simply shifted in time. thile nome of the phyaical and human cspitel may be provided whtout cost by internationel or bilaterel aid progranmes, even these giets place demands on the resources of the recipient cowtry for fem meterialsg associated equipment and cownerpert personen at the requixed oducationel level.

The typical functional orgent zation or governments conceals the dismutita erfects of invertmeat in one sectox on potentially more productive activities in another. Thus, lom or othex credit schemes must be ovalwated within the broadex setting of the national and regional economies affected. One could make a good argunent thet sound fishery programes in Aryice may have been geverelyxegtricted because or mbaidized eapension in agriculture and wome menufecturins emberprices, but tieheries are not likely to gain mad by brying the same tection in reverge.

(2) Intorest Rate Subsiaieg

Gero (or vexy low) interest pates commonly essociated with oredit schemes aimed at developmont of a particular type of economic activity can ba a particnlarly dangerous kind of subsidy if improperiy used. First, this technique tends to encourage investment in larger units or larger numbers of wite then the borrower ia really equipped to manage, sinoe the cost of capital is nade artiricelly low Perhape more serious, the erfect of a new type of fishing activity finenced through intereatmiree loans may be geriously detrimontel at a letex period when govermment wighes to withdrem and transfex the activity to the priveto sector or to cooperativee. sn industry built up on the besis or a subsidy of this type may prove to be a lat failure when the subaidy in withdram, and the subse quent sbock erfect may hurt future development for a long period of thme even where the underlying efficienoy of the new type of wemsel or geax is percectly adequete to justivy its use. Finally the use of very low interest ratea for government loang makes th extremely difxicult to encourage privete irvegtment in the industay even efter the besic technolocy has besn torwed out and the nem methods hewe been widely adopted by the better tishermen. Privete financiel resouree aimply will not be athreoted at rates lower than they on receive in other ventures of roughly the ame degree of misis axd uncertainty about the length of time in wich a govemmentesubsidized loan schene will be in operation Eways depwesses private pasticipatione

TME MEBD TON GONEROMEM RTMANGTNG

If the introduction above gounds momewhat negative, bean in mind that all economists aecm to be somewhet gloony as a matter of proiegsionel pride. We turn now to the legitimate reasons for goverament perticipation in financing the development and use of nev types or vessele and geax in risheries like those of Hast Arricen There are a number of perfectly accepteble gconomic angunents for doing no.

(1) Poor Oxganization of Financial Haxkets

Bven in the highly developed mavketmoriented and socialistic economies, the asmumption thet privete or govexmment capital is automaticelly alloceted to the highest and most productive use by naxicet rorces ox detailed govexment pleming is at best a rough approximation. Bexriers anong varions capital maxketa may be gevere indeed, and wide dirierences in retes of retum are anything but uncomon, In less developed countries, the absonce of sophistiontod zinancial institublons for mobilizing gavinge, coupled with the fect that the mejowty of the people are aimply unfamiliar with benleing and other savings inctibutions, males it oven more imporbent to assure, through govermment ectiong thet highly productive opporvinities for inveatment are not pessed upe Thin is peculiarly important with reapect to the fisheries, since the industry typically operates on the
"fringe" of both economic and social activities of most conntries. Both the opportunities and the problems of investment in nev types of fighing vessels and geas axe often unfamilias to enterprenews in other industries with capital to invest.

(2) Extormal Bonefits

In both developed and less developed countries, government partioipation in financing new types of investment, tuch as fishing veasele, may be deairable because of the axistence of whet economiste call "extexmal economies". maplan Engish, the development of a hishly productive fleet of amall traviers, to use an appropriate illustration, mey male possible a fundanentel reorganization of processing and maxketing syetems in the Rest African countries, with ma,jor economic gains at each stage. But since these new profit opportunities lie outside the activities of the fishing enterprises themselves, they are not likely to be recogaized and taken into accomt by privete investors weighing the desirability of investing in new typer of productive fishing geare horeover many of the associated kinds of investment needed in order to make the most prositable use of the new type of equipment would be in public facilities: improved access roads to landingeg construction of cold stores available to a variety of asers. construction of propar docking fecilities, eto.

(3) High Risks

A closely releted reason for government participation is the mestrictive effect of high risk on investment by private individuals or by small wits of government with lhmited funds. Mishins ventwes have always been regerded as rethex high risk boxrowexg? even ith higily developed fishing natione the risks ase multiplied if the credit proge ramme is designed to speed the adoption of nets bypes of boatg and gear with potential operating pxoblems that cannot be fully foreseen trader these circumstances it in perfectly possible, even with a generally favourable forecast of the reaults to be obtained by moting more energetic and competent fishermen into better equipment, that the individual riskg involved are too great to attract private investore (or the limited funde that might be evailable from cooperatives or local government sources). In effect, the central government cang in accordance with the principle of lasge numbers, apread the riaks efficiently so that the favourable outcomes will more then offset the occesionel disastrous one.

(4) Credit Control by Maxiketera

In interior Best Africa competition for fish at the landinge is muficiently vigorous in most areas so that the problem of middeman control over the fishexmen in not very serious. In the cosstal fisheries, on the other hand, the middlemen so cominates financing and all other activities of the fishermen as to present a real obstacle to moderniaation and development of the fishery (Crutchfield, 1959). In cases like this, provision of govermment lending capacity may be essential if any important change in traditional dighing methods is to be achieved. As indicated above, breaking the hold of the middeman calls Sor much more than the elimination of his position as creditor to the fishing commanity. But thet position is crucial to his control, and no broeder developrant programe is likely to make much progress until it is eliminated. This miget well recuire thet credit be made aveilable by government at low intereet rates (and with substantial losses) for en extended period.

SOME MEY PRINCIPIRS OR CREDTY MANACEMENTS

If we accept these reasons why government credit progxames may be neceasary undex sone circumstances, what principles should goverr the extension and edministration of oredit schemes to finance the purchase of new types of fishing vessels?

Boonomio Feasibility

The first principle, generel in ratureg is thet the lom programe ag a mole should. meet the test of economio seesibility shat ing the aditional catones generated by the new boatw minus the combs of construction and equipnent ghould jield a net economic zetwm as attractive as any alternebive thet might be considered. th follown that if this condition is met it shonld be possible to charge a reasonable interest rete on the losns, and the overell payment ceperity of the boxrowers should be sufficiert to make the programe completely aclfalidudating gn obber words, the loans should be repayable within the amerul life of the equipment with an attractive morit remaming row the avesege borcower.

(2) Administrative Conizol

Whe experience whth oredt prognamen of every fishing nation a developed ox developing m emphasizes the need $f o r$ tight control over cdministration and collection procedurese I offer no magic fommla for golution of the difficult probleme involvod, pishermen are, by neture, highly individualistic, with a wide range of mbiliby and energy and a rather high degree of mobility (perticularig whon thinge begin to go bedy financially) Duder the very best of circumstances, these are bowae to be high losses in any loen achere involving large outlays for long periods of time (as wond always be involved in financing the purchese of a veasel thet con ape inboerd power eftiesently and hande noderm equipment.
 a veniety of additional mextct problens impoed by the pexishability or the product. Any credit scheme must therepore be prepared to assune atary high failure rete, at least in
 ontright seand or dichonerve pailure to provide rigorous control oworn scheduled repeyment of principel and interest and the uae of boxrowed funds simply is an open invitation to Sailure of the ascociated develowent programe.

Tnnecescamjiy high Tosees fron dishones or irresponsible fishemen seduce the anount and quelity of the help thet on be provided to tishernex tho could make genunely good use of $i{ }^{6}$ 。

There in no single may to guarentee thie hind of tight contan one measure thet onn detinitely help is to tie the loen ma repayent to the fishing licence. As Iong an the fishermen hes a longenem interest in fishing he will heve a grong incentive bo meet the condibions of his lown agreement in order to retain his licenoe and hig right to engage in the fishery. on the other head, the greategt trouble is likely to come from fishermen whose inebility to repay loens and cerelessness about maintaining equipment purchased with borrowed sunde maked them indisterent as to whether they loge a licence or notw

(3) Incentives

It is criticeliy important that loox conditions be witten to provide mazimun incentive fox repayment, In generel, this xequires two things firct, a cown peyment large enongh to guaramtee that the ownerig equity will alway make it desixable for him to continue payments rether then to abendon the ecuipment; gecond, the the term of the loen be less then the expected userui $1 i f e$ of the equipments Under these circunstences, the originel boxrowex stands to lose mistentially mowe by felling to maintain the boat and gear (or abandoning $4 t$) than by continuing to meke payments. If he shovid find it impossible to continue idaing, his equity shovid be suricicient bo make it atiractive for other investors to buy the vessel and assume the balence of the loan It is also assential that the loan conditions include a reasoneble degree of control over actual fishing operations, this is necessary to assure thet the vescel will be operated in a way that providos fude for repayment (and, in the process, the beat return to the owmer). In additiong if the loan
programme is tied to a more general programme of fiehery development, control over credit axrangementa frequently can be coupled with a requirement that the borrower keep records that will be of direct assistance to the department of fisheries. This is no particulex burden, aince the kinds of records that would be most useful for that purpose ars likely to be equally useful to the veasel ownex himself - for example, recorda of fiahing effort, location and catch composition.

(4) Proper Definition of Optimal Vessel Type

Probably the single greatest cause of casualties anong government oredit schemes for fishing vessel development is inadequate analysia of the physical and economic aetting within which the new boats will operate. There is a universal tendency to equates? moritically, "bigger" with "better and greater physical catching power with better economic performance when dealing with fiehing vessels.

Unsortunately, neither generalization is necessarily true, The purpose of eny fishing operation is, of course, to maximize the difference between value of catch and costs of operation (including anortization of the cost of the vessel and itse equipment)。 Laxger vessels, with more powerful engines and capable of using larger and more varied types of gear, will usually catch mors fish. What is less obvious is that such vessels may impose unnecessarily high costs on a country in which capital is a very scarce and expensive factor, while labour, even with a seasomable degree of akill, is typically cheap and abundant. In addition, even though the vessela may be locally built, the engines and other apecialized gear required to make them into efficient fiching uaits are cextain to impose an additional demand for foreign exchange. The "cptimel" vessel for a given type of fishery must be designod with a careful eye on the size and composition of the stocks to be exploited and their location, and with due attention to the effect of the new type of equipment on traditional fishermen. For many fisheries, small boatr using oheap outboard. or inboard engines and relatively large amomats of labour, axe still the most efficient vilts.

The point to be emphasized is that a loan, grant, or subsidy scheme aimed at promoting the use of a particular type of vegsel gives it a aignificant advantage over all other types. If the programme is worthwile, it will have substantial and perhaps permenent effect on the structure of the fishing industry. It is vitally inportant that the right kinds of vessels be selected for promotion, and that a careful sconomic malysis justinying that selection, togethex with a study of the impact of the new geas on existing fisheries, be undertaken as the first step in preparing the programe,

(5) Relation of Credit Programmes to Overall Development

I must take this opportunity to hanmer again at an old theme ${ }^{\text {a }}$ Boat financing programes usually mean growth and change, not only in the equipment used, but in the average gize of landings, the location of primaxy markets, and the ultimate consuner markets to be served. Assuming that the proponent of the credit scheme has done his homework well, and can make a good case for improved efficiency and longman profitability of the new varsels, the dopartment of fisheries must make equally certain that the progran me is integrated with other elements of its development activities. A change of any real magnitude in the kind of fishing effort exerted by the industry is almost certain to require additional investment in landings, markoting fecilities, docking and repair facilitien, and similar adjuncts of the fishing industry, Mothing is quite as sed as a successful scheme for promoting additional catching facilities for which no edequate market or aupport facilities existo

In general, the rast African countries deserve high maxks for their attention to this broader view of fisheries development. The work now going on in ell three Depertments and in the UNDP project to expand fiehing development on Lake Victoria are good examples of integrated plaming that ties increased production to appropriate acelingmp of marketing and support capability. Wewfoundland offers an excellent example of the consem quences of an incomplete (and often politically motivated) programe in which loans and grante were a principal element (Copes, 1969).

gomondstog

In sumary, a lom programs ained at weodiug wo the introduction of moxe eficient fighing gear should be able to generete the mocac of hts owa sopayment, thas meeting its obligation to the netional oomony and acheang borsowe twad for obher purposes. It

 strated twe proftrability, ti whould be poasible to tinence both reinvertment and further axpanston through conventional gources of tuading this wold leave the govermant free to move akead in other micly areas of develowmento
 carried on by privete operatore or cooperatives, the principles are equally appliceble to ons in which governuent plemiag ad drect economio octivity axe more fropertant The basic idea is the geme in elther oean.

Gnless investment in wetten thehing vaseela and techiquee produces enough oddtionel output to recover all costs and yiela a not revara, it in subtracting from the procuctive potontiel of a mocielist goonong no lest hea tron one geared to private markets.

Th should be emphashed that the angumbt above is essentially a longmberm one is a

 the overell strengbi of the thang tadustry as a whole. There still renezns the real posability of using governnent rumds to gpeed up the edopthon of nev gear watays a
 a definite texmination dete. The oost of such a progreame way easily be orfset by the addtionel tomage produod in a shorter changever period.

IT this stituetion eciets it word wean we to follow the Ugande sproch of providing
 anosidy or loose oredit on excessively low taterent wates. Such a mone ja eesier to btart, easier to explein to tichomen, and, bove ails easier to what wo once the job is
 ansily be tied to an ageenent that gives the Department of Fisheries the neceasary control over operations mad recomblabeptag.

Rumgrences

Crutchfield. JoAe, Report to the Covemment of Kerve on the See Pisheries of Kenye 1959 Report To. Rop/ERE 998 Food and Agriculture Orgenizetion of bhe United Netions.
 1969
 1969 Conference on Thvastment in Fisheries, Rome, September.

Rhodes, $\mathrm{D}_{\mathrm{H}} \mathrm{H}_{4}$, Report to the Goremment of Konya on Fisheries Devoloment Pogebilities, 1966 Report go. MA 2TA4, Food end Agrioulture Organitation or the Thited Mationse

Semakula, S_{0} pergonel conmmazation, Nowemben
1970
 1969 on Investment in Wigheries, Rones Septembers

SEMITIAR FOR FISHERIES OMTHCEES
 Entebbe, Uganda 22-27 Febsuary 1971

Sossion V HINARCIVG BOAT DEVELDPMENT
Paper V/D

Discussion

Conterts:
FISHERMEN, TRADERS AND COOPHRATIVES 1
LOAN OR SUBSIDI 4

FTSKIERMEIV, TRADERS AND COOPMPATIVES

A.S. OBURU:
P. PROUDE:
C.C. TAIT:
J.A. CRUPCHFTETD:
J.S. MUMBA:

We must develop some kind of systom that permits classixication of the fishermen which will provide a besis 10 planning our assistance. In the past, too often the fishermers have been lumped together in one group and the ascistance has been distrim buted to this wide group rithout a clear specification of the objectives one wented to achieve with this assistance. We will be faced with two groups of fishermen on Lake Victoria, nemely the industrial fichermen opereting trawlers and the artisanel fighermen. These two groups should not be mized together in one when we are talking about fisheries development in the future. Each group hes its apecirio problems and must be treated separately.

It is imperative to kow your fishemen, to know theis habites where and how they live, how well they iish, how reliable they ares and be on good texme with thom so that Jou can select the right people. It is no good having an application from a maxa 50 miles awey and saying "let us give him a loan. Fou must know the men you are dealing with so thet you are sure to put your limited resources in the right baskers.

Over a period of seven yeax. sinheries breining wom underbelen on Lake Karibe in Zambia. Fishemnen were brought into treining courses lasting two weeks to one month. Notes were made on the verious qualities and abilities. Out of these fishermen. two were selected initially for an advanced course and given inatruction in running an outboard ongiae, mombing their own nets. ctc., and they were subsequently given a loen for boat and equip meat worth approximately C 500 . These two fishermen were suem cessful in their operetion and maneged to repay their loans. There is no reason why something aimilax could not be done with the introduction of laxger fishing boats on lake Victoria.

There should be a close link between any loan scheme and an associated training scheme. Orten, fishermen bave been given equipment mich they hed not the faintest idea of how to operate properly.

The problem of the middieman taking a large part of the profit from fish distribution can probebly best be nolved by orgeniejne cooperatives. In the past, there hare been some failures with these cooperatives due to bad managenent. but I believe that. with assistance from the Government in training cooperetive managers, this problen could be overcome.

The oredit schemes alone will not improve a situstion were the middleman ow somebody else has complete control of the mesketing fecilities. Loan achemes will not rencte the fishexmen from the dependency of this kind of control. Thether cooperatives ase the beet wey to do it might well be an open quegtion In Kenye there are two extreme situations. Lake Rudolf is a plece ideally suited Sor a cooperative, whexe the Eish can be maxketed without

JoA. CRUMCHMELD: (combinued)
N. ODERR:
A. S. OBURU:
T.A. CRUPCHPTELD:
much oompetition. The bxperponce on Lake Vicboriag where you here guita an sctive competition and whew tieh landings ame mose comthered wes thet "he cooperative meamt an addithonal cost for the dinhermea for which they ielt they got very lithle in meturn. One nuyg 3 the ane oomtry. find both these cxizems casesp in one cast the cooperetive is whl adapted to it and, in the othex, the cooperative represeats an adcitionel expense jor the insherm men.

A cooperative will wot surceed unless the fishernaw in some way is obliged to celiven his catch through the coopervitive. In a place where the Pisheries Department has tull cornnol over the sishernem there will be litble dipgicuty in hevixg the sishere man sell his catch thzough the cooperative. One such cooperative 2n Eemya had made samving of a 5000 and this has kept in a bavk ve adyased them to gpend this money on bigger Eaking bodts and to lemd these boats ont to the members of the cooperem thwe. ghis hat wosted vexy well and sove of the members heve put ue as muoh as hait the cost of the boet as theix comtrim bution. This success wes only possible because or the cextreIised marketing of the tinh. On the coesty the cooperettye
 of his eavxings in this account. In this way. individual seving wes cacouraged.

In an area where the Elchemen land theix catch st the same place and aell it at the mane mexket, the problea of providing Loen mohemes ts much facilitated boceuse it is posstbie to take
 st十vation exiets in Reke Meivashe On Zeke Victoxitug howevery
 the landing places mae scattered arownd the coasty it is extmemely dipricult to assum a proper oontrol of lom schemes. It will. for example be vexy difincut to tomvince a sishemaxa that he should land his catoh in Port Victomia if be known that he can obtain bettes pwices fox it in Jinja tha loan scheme It is, theretoweg necessary to intwoduce an element of compulsions that the Eishemen must land theix fish at a certein place, In Texya he have started with titting in better fecim Litios for hanting timk at certain lendinge but if the sishernen are not in some way compelied to mextet thois eish etthese tasilitiess we might find that they are mademutilised and will not justify the ixwestmext. The itshernan neght want to manket his inish in the old whygievic wey and any improvenent vill be zmpossible.

Thus seems like comradictione Tf the new tacilities give the itshemen some adventages. you do not bawe bo compel them to mblise the seciluties. Te you have to compel them to do it they you wre in a vemy diterent situation and it seens Tike somebody made the mistake in the decistox of what type of fecilities were required and where they should be placed. I hed the expexience with these kinds of peojects that either did wowk and paid their wey ow did not work at elly kut do not think I would like to retwieve my mistakes by forcing the sishemen to utiniwe the samitiob because the facilities were not wat

$J . A$ CRUPCHFLELD: (continued)

M. ODERO:
J.A. CROTCHFIELD:
the fishermen really wanted. T do not beliove thet it is poesible to use the compulsion tcemaique in oxdez to get a cooperative to function. on luake Ruchots there has been a clear demonstration that the cost of an opesating cooperative is more than weighed by the peturn to the fishermen in thet aree. If that is not the case, and you restrict the Eiskesmen to aell only to the cooperetive then you achieve only one thing; you create a mole nen act of vexy ertacient Axrican fish traders who will taise the 1 ish arowad the cooperetive in mpite of the prohibition. Again. it eibher yavg ita may in retum to the dishorren on it does not and it it does not ${ }_{7}$ then to try to toree all the E tha mexisebing into the cooperam tive is going to lead bo econonic weste.

A fisheries cooperetive whth larding secilithea wes established in Port Victoria. The cooperative had an inambered van that could transport the figh from Port Victorie to the more populous axeas arown Kisumu The sish arrived in a Fexy Treeh condition and_{9} aither the initial aceptionsm. the customers started to
 the midalemen did not like this developmext and created problems for the cooperetive. In the tuture we murt axpure thet somohow the middlemen are brought into the scheme so thot one gets their coopervition.

I do not know whother any of ws propose en altemative to the laxge number of fish deacrs that operete amomd Leke Viotowies Thexe is a real clager in wherentimating the exiciency mith which these dealexs move laxge quantitios of tich to supply a lot of people in a vexy mubstantial exean The problem on take Victoxis is paxt of a lasgen issue. Bven though the catohing units on Lake Victoria are rether small and the production per wit is also smallg the fisking brede itself is tairly offim cient and highly sophicticabed. and I would be vexy seluctert to aee a vessel financing schene tied up with Pestriotions that prevert the fish going to pleces where \mathbf{i} th wold fetch the highest prices for the rishemen and tos bhe countay es well. I think that one of the reasons tox the sucoese of the Eishexy development on Leke Viotorie hes been the way in which the traders were able to soll diferent species of fish prepered in different waye on maxkets where they vere most needed. Haybe more inprowements could be introduced ${ }_{2}$ not by forcine these fish dealers, but by offering them a betbex altemntive in the form of 8 for oxamis, more centrelized landing.
N. FUJTMAMI:

In maxy countries the fishermon's cooperatives provide xeal benefits 50 the fichernen in the form of reduced prioes in engines, fishing geax and oven clothes and shoes. This in possible by balk purchesen through the tishomies cooperetivos. Unless the cooperative in abie to give the fishermen special advantages, I think it is hopeleas to twy to oxgenise them into cooperetivor.
J.A. CRUPGETEDLD:

な.

LOAN OE SUBSTDY
A. $S_{\text {. OBURU: }}$

There are a couple of reasons for the rather limited succesa of cooperatives in sishory. 0,0 is to do with the attitude of coverment agencios that axe in busingas to form cooperatives; and the guccess of these egencios in measured jn how many cooperabives they are able to etart, segardlose of whether they ase needed or not. In some cases, fisherien cooperatives were formed because somebody said "we have not done enough in the field of siahery so let us stazt up aome coopexativerm.

The second point is that access to Lake Fictoxia in most areas is vexy grod and the concentration of population within short distances of the lake ghose in very heavy, and anybody that has viaited the shome landings will agree that there is vigorous denand for tigh in most of the Lake Victoria area. You are not witnessing a monopolistic problem of the type that is so serious on the coesti. The cooperative is often an expensive and diffieult bype of busimeas to meintain, requiring gbod management and a high degree of personal loyalty anong its members, and these are Tery bevere sequirements.

I have never boen ookvinced that sooietios of people that did not lnow how to opearte Eishing boats will do botter than indie Yiduels wiso do not know how to operete boats. If the peopie jurolved are efriciont and hard-working sishermeng I think they will work well within the society and also as individuals. If they are ineriticient and dishonest and in they are not able to judge the effectiveness of the boats and equipment available to themg you will not change that very mach by organizing them into socierdem.

When studying loan gchomes that have tailed one often discovers thet this is often due to lack of understanding of what the loan scheme is intended to do, One might have cases where the loan sohene itself has baen a failure but it has oreated so much interesti and it bas demomatrated possibilities which has attraoted oapital from differert sources, and the total result has been development of rishery. This Whole aspect must be taken into coneideration wen judging the swocess of loan sohemes. The loan schemes might be considered as a digect contribution to tine industry sablas than intended to create a xevolving fund

In Kenya, I have had pexsonal experience of new boate being introduced whthout a prior testing of the life expectancy of the boat. I ves, myself, involved in such a case with a private fishing boat wioh turned out to be a iailure. Too often it is the government that has to carxy the responsibility in such cases. Private industry often looks on the goverrment services es an institution to fest their new products and expects that the government will beas all the conts of making these experiments. Ghen failuxe then comes the government receives all the blame. I think that in the future, if private jatustry is interested in introducing a new bype of boat, it should be requested to bear part of the oostr of the experimenting, sether than piliug it all up on the goverment. Another
experionoe from loan sohemes is that one should not introduoe a new bype of boat whout a similewintroduction of a more ofjem cient gear. The new boat will be more oxpensive then the tradio tional crafty and the fisheman will not be able to pay the increased expense unem he has, at the geme time, nowe efficient gear. Intaoduction of new boab bypes should, bhereforep be coupled uith inproviag the aidiciency of the rishiog gearo In the gillnet fishery on Lave Viotorias it will be vexy dircicult to convince the sighemman to 2 navest $3 n$ n nek type of boet if he is continuing to use the present type of gear.

One problem we man into when trying to provide betien boets and oquipment for the fisherman ia that the fisherman biaself really cannot axford to put up the money required for the purchese of these itoms. 0 onteng it in the njoher peonle thet aill bup new boats and geas.

It is also important that ocuipment, boets os geas are well tried out by the LAsheries depastwextw betore they ase passed on to the fishormer through a loan schome. Tou will bavo pasea where tho fishermen come back after a shoxt tike vith shoz boate and say that they will not oontinus to pay the loas beenve the boet hexs boen damaged.

There is often a tendency to regand finaooing from outside the fiehing community as somethivg majestrable, I canmot aee enym thing wrong in getting javestors that have earned money on road tremsport or othex businees investing theis money on now boats as long as this does not extend to an vadue scarrol ovez the fisherman's life, Tho expexding of the riahexy by tinazeing from soumees other then the fishery is sonething to be welconed.

Uganda has had a relatively long experience with both 1 oem schenes and subsidies fon PLshernen. The problen we experienced with the loan schemes wes thet it is diftucut to commol the fishermen and to assure a segular payment irom him Tou give him a loen, he goes tishing and you might not meet hin again. He might not be unilling to repay the hoan, but there exe also maxy other thinge he wovid like to use his money fore He would
like to build a houseg teke the kids to school or heve a second wife, Due to these diriculties, we have given up the loan scheme approach and we have gone over to a subsidy scheme wioh is purely and sinply an incentive. The problem then is thet the funds are continuousiy dreined and sone sort of remedy bea to be created to compensete for this.

We have had a couple of cases where the onnoe and inshing geen that hewa been granted hewe simply diseppecred awd also the fisherm man that owned it has disappeesed. Buty aparti iswa that, our experience has been good.

It in clear that as youm uxit of operation beconem biggex it is
 is difficult to administes the loans pertly becase he has not sufficient securitiec. Sumpose the tianemman was not paying back, you would go and twy to sedze some of his catthen but

S． $\mathrm{N}_{\text {－}}$ SERAIKOLA： （contimued）

J．A．CRUFCHPLELD：

Po PROUDE：

I．A．CRUPCHFIELD：

ф．GULBRANDSEM：
you would．find he had sold off most of it or the animels had died of some disease．Fie might have put security in his bouse， but by the time you come and want to seiseg it is half way to falling down．

I think this is an illustration of a case unere there is no single anawer to a speciric question From wy personal experience in Jgandag providing streightoout grants will cost you no more，and may cost you substentlally less，if you are prepared to tesminate it once you have made your point，that the gear will make money and that it is a good workable propom sition for fishing。

However，it seems that the proposed trewler project for Lake Victoria will have to prove itself as a profitable venture without subsidy．If this cannot be done then you are in deep trouble．

AE a field officers I was once involved with revolving fund loen Echemes for inboasd engines，now boats and new fishing geax．etc．Eventually，we san out of funds and the money had to be written ofti because the rishexmen would not pay back，but I believe the tmpect thede projects hed on the fishery develope ment resulted in a tremerdous surge Irom the privete sector in further mechenization the dealers brought in the new types of Pishing gear at prices in reach of the fishexmens and the public施多 assured of a more regular fish supply．The total anowat of money that was imested in ach developmert by the Pisheries Department was about U．So 25000 ，wich is a fairly small amount of roneys taking into consideration the following development and the increases in the total cetches of sish．

This exemple，I think，demonstratos a case where an initial subsidy on owimight grant was justified，that isp provided you know beforehand thet the type of geaz engine or boat you introm duce will lead to increased eatches and increased revenue for the fishermen．Extension work is fine if you know what to extend．but in the bype of boat or the type of geax you intro－ dueed had not been the right onee for the local conditions，you might have ended up with $U_{s} S_{0} / 25000$ speat without having any－ thing to show sor it．

I know of severnal cases where loan schemes failed because it wens impossible to corkrol the landings of the fishermen and theseby assure a regrax repayment of the loans．If the fisher man knows that he can get a bettex price by lending on the open beach or even selling his oatch to other boats at sea，he rill do so，whatever measures are taken to twy to \mathcal{T} ，ree him to land at a certain point．This is one of the reasons that small boat mechanization schemes are so difficult to manageg and maybe a better Comula is to give outzight subsidy to selected fisher－ men for buying now equipment and boats．

B. BUCHUMLRHA:

SoA. CRUPGHFIELD8

N. ODHPO:

TqA. CRUPCHFIELD:

In Uganda, the subsidy schemes have succeeded in providing new boats and outboard engines mad new gear for the sishemen and evon though this hes been done by using taxpayexis money, I think the result has juatiried the expense. The success of the acheme can be meanured by the large number of applicants for new boats and engines.

When you reach the point wimere you have staried the anowball rolling and you have a gubstantially higher number of well qualified applicants than your sunds allow forg then I think there is en indication that it is time to stop the subsidy scheme.

In Kexta, we beve experiexced thet fiakexies loen gohemes heveg in generel. been nore succeservl than $30 a n$ sohemes in obker areas of the economy In spite of the inherext difijculty in obtaining paymentr fron E Sisherman, there have been fewex cases of deraults in paymems in tisheries loan schemes then in agricultural loan schones.

On Lake deivasha the income of the tishexmen has been quite goodg and most of ther have been able to repay their loans. However, te find that the earnings from the sishexy are often imested in areas outside the fishing industry suoh as new houses ghops gite. In this may, the fishing industry is drained for capital which should have been utiliaed to puranase bettor boets and batter equipnent.

I find it frightening thet some of your countries have bowroved the worst type of agmiculturel subsidy schemes from the Uos.d. Agricultural subsidies are likely to be lerge enough in coverege and to involve a sufliciently laxge mumber of people that once they are esteblished they ase extrenely difficult to get xid of We are still subsidining in my courtxy crops already in surplus supply thet cost us millions of dollare to store, Subsidies of this sort are tap lesa justified than the trpe of subsidies you normelly find in Sisheries. I heve no other explanetion for this other than thet onoe a lerge aunber of people become involved, the political attrection of doing this becomes vexy great and hard to getwid of o

A point which has come up repeatedy in the discussion is the mere fact that a loen scheme ox mubsidy schene imvolves. for a shorter or intermediate length of time. mon-recoverable cash outlay by govermments. This means a responsibilithy on the governmext's side in pioking which of the severel ways you ean obtain the broader aociel geins and thexe is no justificetion for using an ineficichent vay of doing it when a more exticiont one with better economic analysia cen be selected.

```
Session TI TVIURE DEVELOFMIEMS
Peper TI/1
East African fishing boats - 1980
by
SeNB STEMAKULIA
Contents:
INTRODAICITCAI 0.0.0. 0.0.0.0.0 &
FIBHIMG BOAT DEVEGOPMHNLE a 0.0.0.0. i
BOATS OF MHE FUIURE O.0.0.0.0.0. 2
MARTETALS FOR BOATEULDDNGO.*:0.0.0.3
HHMATCE 0 0.0.00 0.0.0.0.0 3
```


TMPRODUCTION

Tiching in Hest Africa hes, for a long time, been an mpoxtext occupation of tho poople living in the coestal and lekemhore aroes. It bas, howaverg been a simple operam tion, carried out in mudimentery refts, $\mathrm{tog}_{\mathrm{g}} \mathrm{b}$ bats and dugout canoos of verious kindes Tho fishing has been mainly of a subsistonce nature, and consumption has been reatricted to the ooagtal and lake-shome aress. Fighing activitien havog at most binosg beon portmimag mat levels of investment in firhing vessels have been very low Recent dowelopmente in tho fishing industry, hovever, heve chenged the pattern of congupption and the acalo of operem

MLSHITIC BOAT DEYELOPYETM

(1) Traditional vessels

Fishing boats used in Bast Africa have for a very lomg timeg penged rroverats to cances of vatione types. Dugout canoes of up to 27 m in length have beer secorded. shthowg it is probeble that these large canoes were only used in marrares thile those or up to 9 a in length were used mainly for fishinge These vessale were propeliod by paddlec ar long poles g_{8} and theix operations ware limitod to the inahore wators gince they were unatoble and not capable of withstanding severe phoms. The cost of these cancem was ostimated at only about EA Sh. $300=500$. Dhagout canoes however, ware or long 15 Fe which Tuxther reduced the amount of monsy involvod in the initial invagtmant. Fo loan syblem existed to onsble fishermen to acquire boatag but, in mazy ceses, the entire anount of monot for the purohase of tuch boatt did not necesmarily heve to be in cash as this could be oftmot by other iten auch as food in lien of cesh or the mharing of the osth betseen the boetha builder and the canoe owmex, when the boat bed startad operating.

(2)

The Sesse canoe

As fishing apread to the open waters of lalces, more abable byou of versel wan requirec. The fixst otagen in the nodiricetion or theso tranithonsh dugout cemoes was
 planks, attached to the rudimentary koel, of a traditionel canoso Ageing these were wey cheap boats, the tagtening being made of sative palan and the habows for building thow not necescarily haviag to be paid tor in oash. These canoos wore of geenter abebility and caxried a lasger catch than the traditionel dugont capor winchp therereren enonareged wider Lishing activitien by tue tishermen.

(3) Introduction of nev ishing gear and outboerd notore

 and axtended rishing activition wore gtimuleted. Howeves, the ixakox vaters or laker
 modiried in order that they whould be able to brave the more distext watere.

At this time outboasd motors were intreduced and it mas dibeovered, that tho Secce
 of the pointed ond of the canoe to form a trensom onto wheh corid bo bartellod the owtbourd motor.

The Rrablega amoe

 of कenoe orsginatec.

EMTS Ye THE TUOTE

 En Iosatho

MESERTALS MOR BOAEVULDMTS

 no sonchusive result have been obteingdo As the popuhtions of Frat Axpine are groviny
 from thaber would not. btesefore appacs to be vory briente

 of sibreglass boats is that the natoriale world invariablat have to be impured trom overm seesg which would xetise the cost of each boot beyouk the reach of most fumberon.

TRMASCE

A diccussion of new typen of boats anc the malothathon of tichery nocowrees tim the
 Gisucmaz to accuise thenc nev boets.

 nocencaxy turds to purcence thone lurewr boatso

It should alao be realized that most or these fishormon are simple peolog who lack a. kowledge of businese administration Brperience in som Hast Africen commbies bas show that where credit facilities heve been extended to fichermen, they have failed to repay the loans, not necescanily bocanse thoin fishing buelnosces could not provide suficient cash for the reprymmta but simply becense much businessem have been bady administered, and any profit obtained used for theis personal setimeotion.

One possibility of enabling at least a few progressive rimhermea to own the larger typen of boats mould be through a dubidy scheme such as that aperated in Ugandag whore a fisherman is assisted with a subsidy to the ertent of one third of the total cost of the boatg to enable him to acquire an improved vessel.

 minoble, Ugands. $22-27$ Hebmary 1974

Soesion VI RUTHRE DUTELOPNEMT
Peper VI/2

Problems of mechanising fisheries in East Aricon lokes
 by
 $\mathrm{F}_{\mathrm{A}} \mathrm{B}_{\mathrm{O}} \mathrm{A} . \mathrm{JACKSOM}$

The need for constructing laxger finhing boatsy as exomplisied by the existence or this Training Centrey caxied with it many implications not least of wich is the recog nition of the necessity for laxger boats and more exficiont nothods of fishing than have been carcied on in the pest. It implies almost a revolutiong with mobleng inevitable whth 211 industrial revolutions. The Industrial Revolution which took place in Burope 150 yeara ago brought with it problems, both humen and social in the moving of lasge noctors of the populations from musel to urban axeas, and technical in devising the nev machinery and methods needed for the nem exa. In the acme way, a fishing revolution, in the catching of fish by mechaniged methode, will bsing both social and technical problems with ito

In the past, while several methods of fishing have boon used in Arican froch woters only three to date have been of real commercial importance in most aseas. These ame gillm netting, longlining and beach selning, and of these gillnetting ing in African lakec in general, by far the most important, accounting for more than 90 percent of the catch value. This is despite the fact that, unlike longlining and soining which axe much older methods. being for example already in existence on Lake Malawi (Myesa) when liviagstone 4 ingt saw the leke in 1859, gillnetting wes first introduced into Africa an recently as 1905 (Jackson, 1971). Gillnetting is a simple method of fighing eesy to leam and requirine only a small investment in equipment and gear. Dn the other hand, mochanized fimbing (which may be defined as fishing where the gear is hauled by powered winch instead of by hand) is costly requiring a large investment in boate and landing recilities and is much more difficult to learn.

Because of its simplicity it hes been possible for very lasge mumers of people to establish thenselves in the trade of fishing using gillnotg seines and longlineme mhus on many lakes, Lake Tictowia for example, there axe fishing villeges or tish landing beaches being used at very shoxt intervals, there being often only a sen milee between each along the lalse shorelines.

To discuss the advantages and disadvantages of these methodeg it cen $x i x \in$ of all be seid that advantagen are quite considereble. Thie is due to the cheannese and aimplicity or the gear, and wich concerns us more at this Boatbuilding Gentres the inherent adventagen of simple canoemype fibhing vensele. The two great adventages of pative canoes are the low itrst cost and their ability to be beachod on landing This fecility mokes far numerous smell landings simply on the beechg these needing no costhy cepital construction much as whaves or jetties. Fiven access roeds are not oceentialg as the catchg either rresh or dried, cen be trensported by heedmload or bicycle sueh menllmanle camps as mentioned above, repeat themselves innurarebly around the thoseline of meny lakee, and. their simplicity militater against mechanized craft entering the gillnot fimbexyo To havi gillneta by powered drum moens much geetex capital cost or vessel and racilities; to onsure prositability the catch must be highs requiring a lasge voscel which in turn requires the laxge cont of a jetty to lie alongaide a cold atore bo preserve the lasge catch until sold ox processed, and a good accean road to enabIe truoles to briag in guppliee axm bransport the catch It is very probeble thet the mecherient gilnetter canot prositably compete against the canoos. Thus because of the low erbablinhment oogt the gillnot/long ine/canoe fishing technique provices a livelihood sos many thousemde of otherwise parheps unemployed people, an adwantege wich for economic reesons if no others is unilrely to be oliminsted by laxge mechanized gillnetters. From a mavietins point of view the system
 tate the distribution of the catches to consumere in the noighbouring himterilaxd without the necessity for elaborate and costly road systems with gameong rermeling pointa for vehicleas bridges otce

It has boen maid above thet a mechanized gillnottor ommot profitably compote againgt the canoes and wen the above aditional advantages of a canoe tishery are considered. one may be bempted to wonder whether it is in fact necessery at all to change anch an apparently
 and lasge an ineficient method of tiehing, in using much manpower tor lon metumse it is
ecsentimiz an inshore sheltemed water method and becauce or this it my watae the threat of over-timing of certein species, particulariy ghlapie becuse it orten tekes plece near nuraery grounds. Above an it camots in bodies of water of any size ar depthg yield by itcelt the totel hawest of which the weter is capoble. The cances ase rot seaworthy anough, do not go out fax enough. and do not brimg back bis enough catches. Doach meiningy toog is at once inefricient in exploiting only the inmediate shoreline exea and tithe same trin vexy likely detrimental to a hilapia inchery amost the nost conmercially veluable of all fisheries of the region Tilavie in an inshore tish with m olabovie breeding beheviourg ทaing courtship displays and the construction of often eleborate neste in which to year the young in the eaxly etages. A seine not mey intexfere with this mocose by dragging over and flattening out nests, intextexing whth premoeding courthip behoviour and taking brooding females with eggs and fyy in the month There is conelickeble evidence tbat any reduction in beach seining avch am cansed in the last deosde in may African latee due to ungwecedentedy high rises in lake level. flooding the geine beaches has proved benericial to the ${ }^{\text {mingia }}$ Lishery. For these reasons it is desixable to introduce mechmiaed fiahing using laxger boats, but the dificulties that the mechaniaed fichery is up against, partim cularly in the early stages as outlined above, mast be claxiy uxdexttood is the venture is to be a success.

While the mechaized gillnetter canots as previously montioned. protitably compete aganinst the canoesg a trawler or puswe moinex can ompete Thia is because it will in a shorb timeg and iromi further avay greatly exceod the catch of a lexge muber of cances whose gillnets require setm of approximately 14 houre to bring in vemy moh mallez catches.
 omoe whin a crev of throe mon will catch. on the avorage, sbout 6 tove of risk per yoer. Compared with modern piahing motbods thas is very litble indoed. A modem pishing trewler, for exampleg also with a cen of three men wombug on Letre Vietorian migh oesily catch the same anown in a day but consideretions of the high cost of the vesacl and shore instellem tions apply. The vessel must be lerge, which in twm, requirea the high cost of a jetby to lie alongsideg cold store to proserve the large catch uxtil sold or processed, and a good sccess road to enable wheelec reaicles to bring in supplies and transpory the catch. For proritable operationg vessel size mast be laxge enough to bring in e lasge catch per unit time of use.

Such oonsiderations awe cxitical on Lake Victoria where long shose installations such as jethies, cold stores, ice plants, etcs are at prement extirely lacking This prompted the UNDP (ST)/FAO Leke Victomia Fisheries Eesearch Project to calculate that the minimum size of creft, more exficiemty and economicelly to catoh a nigniricently lamer anount of rish than the present canoe Eishery, in about $11-12 \mathrm{~m}$ in overell length with an insulated. hold of about 10 m 3 to hold approximately $5-6$ toxs or simh at a tinos Iclealy guch a vessel with e crev of tour or sive would catch 6 tons or pich at en average of $300 \mathrm{ks} /$ hour in 24 hours contimous rishinga mey 60 houm prectical sea tima Deing the data or hiting (1969). an average daily catio of 16 kg by onemail power oratt carcying 60 gilimets totalling 3000 yd of hung lemeth in 20 boure prectice see timeg it wonid take epproximatoly
 would. howewerg need no jetty and as 6 tons af isish can be handod by bicycle or hoad-load at a 120 manoe fishing cemp in two and a half days they would nesd no tee plent on cold roomg or no access roads.

These oniteria enconmge the belier thet, mader prevaning conditions the mest wine up Arom the native canoe is a veasel 40 it longo Mothing in betvean ib coonomicaliy precticabie in the risest etwee of a broakthrough into mechanged iichingo But there ares of courme, other conmiderations, the most zmpartant of which ie the meed to incweeno greatit the preceat catches to movide adationel anime protedig to distribute it more widely and
 anviseged as being economically visble unitw fox Lake Victom tas oatching onongh ish (500 tons per anmm cach) to justrify the cost of erection of the presently non exigtent ghoremade racilities ensentiel for theix use.

The trawler of approximately 12 in overall length which is being constructed at this Centre Lollows very lasgely as a result of the above conesderetionse It is alao the result of other considerations, some of them human $i_{0} \theta_{0,}$ to do with the crew to run herg and technical in regard to the details of construction and equipmento Prom the personnel side it wes necessaxys as is usual in many developing countrien that the vesiel itself in generais and its equipment and gear should be as simple as possible to operate in view or the preseat lack of expertise in any rield of mechanised siahing on of lasger vessel construction. From the economic atandpoint, capital costs should be kept as low as posmible. From the technical viewpoints it was desirable that such vesselsg of vich this may hoperully be the prototype, could be constructed locally in Arrica To import fishing vessels for a mechanized fishery onterprise from well established boetsexde overseas would have the disedventages both of having to pay foreign currency for the vessela and to lose the employment, job and skill opportunities that the establishment of locel boatyards vonld provide. Because such ships are to be built locally similem considerations eajoinod that local materials be used as much as possible This ruled ont the use or glags reinearced plastic as a construction material aince it would all have to be prarchased overseas. The present high cost of timbers due to its relative scarcity and itm increasing demad for use in the building and fumiture trades together with high incidence of dxy roty nilitetod against the use of this naterial. Because of these frocoss, ferromement was tinelly clecided upon as a building material due to the fact that both cement and sand are $100 a 1 \mathrm{ly}$ available and much of the reinforcing motal wosk is also locally mamuactured. Othes. pepers deal with technical details of manuecture of this type of vessel; let it suffice to saythet with its very large hold, its aimple winch and gentrymbpe gellows such a Fessel as this holds out every opportunity of providing the medium 50 the vexy desirable breakthrough into mechanized fishing on a Lerge scale in Aryican lakes.

REPERENCES

Jecisong $P_{0} B_{0} N_{0}$ The African Great Laices Fishexies; Pestg Prosent and Fituree AtroJe 1971 Tropotivarobiolomisheries (in press)
 1969 Repori968. EsAO Commuity Printer, Neirobi

SEMTNAR FOR FISFERTES OFWTCERS
FAO/SWEDISH TRAINING GENTRE ON SMALL FISEINC BOAT DESTGN AND COMSTRUCITON Fntebbe, Uganda 22-27 Februaxy 1971

Session VI FUTURE DEVELOPNENT. ?aper VI/O

Discussion

```
Contents:
TRAWLERS AND INFRASTRUCTURE ............. 1
IWTERMEDIATEE STEPS IN BOAT DEVELOPNHNT ......4
```

$J_{m} A_{B}$ CRUFCHETELD:

S.N. SEMAKULA:

P.B. N_{G} JACICSON:

N. FUJTMAMI:

$\mathrm{P}_{\odot} \mathrm{B}_{0} \mathrm{NH}_{\mathrm{O}}$ JACKSON:

At thin eanly stage of develomeat of the orfohore fashery on Lake Victoria, thie desixable to ley the groundroxle pon a very close cooperation at every level anong the thwee countries involved. For example, there secme to be a tremencove advantage in haviag the rigat of a tranlen belongine to one of the countries to zead the eatoh in way of the othex countries. There are good peasong to do so the maxket nill finchuete and there aight be a ghroagez donend in one cowntry then in another. There are many advantages in regexding the Lake as whole for production and mazkethag recsens, but solutione to the probleme must be planed ton noto

There is generelly a good ocoperation mong the three East African cowtries in this pield but there are gone instanoen where the cooperabion conld be betber. A citizen from Ugenda takes out one trpe of licence and a citisen from anothex country will have to have a disrerent bye of licence. When we go fighing in lake Viotoris, we do not bnow where the boundarien between Ggenda, Kenya and Taneania axep and wo hear from time to time about tighting on the heke between Kenyan Tishermen and Ugadan os mencanien Sishemen. As Laz as I knome thore are no rectuctions regardiag the landiags. A Eenyo fishing boat mey land $3 t 6$ catch $2 n$ Jgada and there ghould be no restrictions regarding landings in any of the comtrieg. This should only be dinected by the flow of the mextet. If neceasary, it can be decided that the weasel peys a certain landing chaxge for the inacilithes 它zt are used. We mightg however, Soreae problems when it comes to the establishnent or ahore fecilities for the nev development in a regional project. Some decision mill heve to be taken on where shore facilitien will be inctelled, at ieast in the initial stege, and here netionel pride will cone inwo playo Tr oach of the three countrien nomb the same reonitibes then we no longen beve any regionol project: we may fust as well have national projects.

What is required here on fato Thetorse th some lind of compasion thet meets regaleriy and diccusser problene and trise to deolde on a menegement polioy that createg as far es posibleg whicom rules for the mexagenemt of the Leke. Such a oomicsion to deel mith prectical probleme in the manesement of the the doen not exist at the moment. Hhe East Armican Fronhwetex Hishesies Research Oxgentavion in limited to research and is theretore not the right medium.

Hes any estimabe been naria on how many branters cond operate on Take Victorsa?
 has made a vexy thorough myembigetion by biological purveye

$\mathrm{P}_{6} \mathrm{~B}_{0} \mathrm{H}_{\mathrm{H}}$ JACKSON:
 (continued)

A.S. OBURU:
$P_{0} B_{0} \mathrm{M}_{0}$ JACKSOM:
and by trawling to try to establinh the maximum susteinable yield in Leke Victorim The stook asmesment eywerts have come to the conclusion thet a outions estimate ma doubling of the prement catch. The presext catohy according to statio gtice provided by the three countries arowat the loke, is around 110000 t of wich roughly 3000 t ant Bghlochromie. Most of the ancrease in the catch will have to consist of Heplognomig but $2 t$ would not be mentistio to expect a gubetantial increawe by utiliming gilinets. It has been clowzy demonstreted that tramling in e very efficient method for catching this type or fish. hamet inventigation has indicated that a sether mall pert of them catoh increase cen be absorbed in freeh form. Howevex, our investigetions showed that there wes a great deat of fish meel bezag imported into the three cowtries for feeting chickang cattles pige, etc. Approximately $1000-1500$ of fish meal could be oesily sold in Ugenda clone. Thum means aproximetely 7500% of
 cetch spproximately 400 kg of ench per hour morking 220 days per year givine atotel of apyrozimetely 500 t per yeex. If we divide 7500 安 by 500 twe cone out with 15 bosts. whe apeed of development of the trewins fishery on Lake Viotoria will therefome be determined by the develoment of the marketo

Sone thought should be given to the futwere management of the trawlers. Ti the inisinal project shows succeas, private investmente will come in and might dominete the development, while the fishernan matbe receives very 1 thtle out of the whole business. Uncontrolled priwete development might also lead to overtimhing of the Lake.

I quite agree that the cevelopment of the twawling industry on Lake Victowis must be managed properily if it in proven procitablen mrivete ontbrprise wil cone in cnd there might be chacs if the develoment in not propery controlled. one thing Is wuxe, it will be relatively easy to acquxe depexdeble cata on the operation ma cstrhes of these tremlers gince they wil be besed in a rew mejor portb around the Lake. Based on the data arailable, 1 icenming regulstione vill here to be introcuced sooner on leter to areid the depletion of the tish stock. Mobody can at the monent entablish a meximum number of tranlers thet should be permitted to fich in a certain asea. These willg to a laxge extent, depend on how ereicient this trawler is in catching tich. Por one thing the aize of the boat is not yet determined and nly aiter tryins out various types will we be able to detemnine which size is moxe profiboble. The training of crew for the trevlere will be of ubnowt importance and. foreseeng the developnent in thit fiold, there are already plans being made for an exteamive troaning acheme for trevlex fichermex, In sact, a mission is axmiving very moon to look into this matter and we aro hoping that extemel financing can be ensured to inence the troining veswele and the required technical assiftance.

J.A. CRUTCHFTED:

D. D. BEACH:

$P_{0} B_{0}$ N. JACKSON

In most fishing countries of the wor $1 d_{8}$ a ance bult of the catch is brought ashors by a reluthyoly ametr but arinelent numbex of operators, waing latge type vessels, while the zest of the oatch is contributed by targe mumber of smanlex fiohermen. In any fishery develomment me has to take both groupa on people into consideretion and refemsing to the situation in Lake Victoris, I mane aimo that need for protein created by tho increasing populetion muet somehow be brought into the picture. Thirey tremlers on Leke Tictoria. I am just baking a number, will amploy no nore than 150 people dixectly involved in pishing and maybe 250 engrged on the ghore. Thin is a very mall number of people an relebion to the total number of tishexmen on Lake Victoria but the contribution these people will make to the aupply of much needed protein by landing thousends and thousende of toms of fish is going bo be very gubebentiai.

The problen of providing intraswructure for new fiching fleet development has been mentioned by several parbicipants, and I mould like to draw attention to the technology that is used on the Pacitic nowhwest coast of the U. $S_{0} A$. and Caneda. Almost all of the fishing fleet, which in comperable in size to the small brenlexs you are trilting about heres, is serviced from the type of flooting dock which id nede out of concrete. By tloating dook i sirmpy mean a seriesmproduced barge made of ferromement. Constrootion of much e barge involves basicelly the same method as wis used for the 4 loft twewler built here in Entebbe This i a mon more economie molution then conetructing jetties and in percectly gatiafantory for the size of fishing boat in question. This possibildty in certainly worth further inveatigetion.

The ferromenent flocting bexge in en intexesting solution to the problem of riading quaym tor the tremler Pleet. Although we do not have a problen of tides, there are longmerm fluctuetione in the Letre in 196i, Late Victorie ax most other lakes in the region decided to go up by aromod 12 rv and as a result all the old jetries made br dxiving piles of loge had to have an extee 6 or 8 ft odded on to them. cood floating dooks might well be a vexy dearseble and economicel method of desling with this kind of problem, providing the infrestructure is an important part of develoning the nev fishery. For larger boats, jettios will be required. Tou cannot anchox a 40 s b boat ofs the beach and trensport the figh by canoe to the shore. This would be much too themeonaminge Shore facilities will ofton be of help to the liehermen for a long period of thme, and it is e bithard to request a Beheme like the one we are contemplating on Lake Viotoria to repay these thore fecilities over a period on any 10 years. Rowever. in 10 years the boats might well be on the bottom of the gea but ahore facilitios might Last for snother 100 years. Provision of shore feoilities is field where Govemnent perbiojpation should cone in gtrongly.

VI/D

Jo ${ }^{2}$. MJGSTROET8
 saO in cuxrenty ovaluating harbour conetructicn achewes in Indias the tom contxives to find ont the movi nuitable location sor the construction of harbours thtilimirs a cont/benefit manlyais. Ghe benerit of the harbour geneme is the estimated Walue of the tigh axporbed fron this harbows and the fich consweed by the conswners. In the cese of shrinp, this is the export price; in the case of fish locally consumed, it is the mezkot price。

Whe costs are the direct coste to the country excluding texes, and the eveluation is done over a period or 20 to 30 years, with a pate of intereet of axound 6 percent. The schemes I have seen so iar have quite good returns on capital invested ranging from 30 to 50 percent. This ia before the tengible benenita, like employment, health, eto. have been taken into consideration.

Theze must be a close coordinetion between the haxbour conge truction and develoment of the fighing fleet and the market. If this is not done the benefit of the harbow will not accrue as ragt as it corald have done.

ITHMRIDTAFE STEPS TM BOAT JEUELOFTHMY

ϕ_{0} GULIBRAKDSEAS:
P.B. ${ }^{3}$. JACMSON:

From the popars and the following dincussiong I have the imm preasion that there it generd agreement on the one hand that the canoe fichery will continue to play an important role in fighery in the next ters years. On the other hand, the new devalopment seems to be montly repreaented by fairly laxge tramlerg opereting in the offehore weters of Leke Victoria. In the inist cese we have an invescment of axound she 1000 s which may be increased to axound sh. 4000 in an outboard motor is uged. In the second case, we heve an investment of sh, 150000 . I would like to ask the participents where they think there might be ax intermediate atep between theae two investment levals. It is possible that an inboaxdmpowered boat, fishing with gillnets and sepreaenting an investment of sh. 15000 , could proritably be employed in the tishery at Lake Victoria, or should thate altornetive be discerded and the conclueion be made thet there if no intermeajate step for the tishing boat development on Lake Fictoria between the canoe and the trawles in the 40 to 50 wit range?

I think there is room for an intermediate boat that would be a lot cheaper then the trawlers we have in mind at the moment. Such a boat would not fish with the same gean and on the same grovade as the canceg. It will have to catch more fish to cover the increased expenses and it mould have to operate offchore and will need shore faonlities auch as quays, cold atorage, etc. I do not think that a scheme consisting or gaty boats around 25 it with an 8 m 15 hp engine, will justify the expenses of ostabliahing these facilitios. The twawlern, however, are cetching fish in sufficient qumbity and on a sufficient scale to justiny expences of the iraregtructure, but, once the facilitios have been establimbed, there is no reason why they shonld not also be utilized by natiler boats and I then foresee a development in mell boat fightige operating on the same besis as the treviers.

So ${ }^{2}$. SHMAKULA:

JoA. CRUFCHFIRLD:

N. FUJTHAMI:

IN. ODERO:

If a ghore base for the trewlora wore embatinhed in Post Bells I an cortain this would stimulete inveriment into the finhery fron people in the Tempala area and they woult probably aee a development of a veriety of Eiching boass, not only travlexw but also gillnetters opereting from this port.

Boats Pawhing with gillnete will anve bo operete on inchore Pishing grounds. I cennot see thet wuch a boet will Pish for Haplochromis in ofshore watere. Anew sishing bow operebing with gillnetts will therexore not come ass an adition to the canoe but more ag a phesingmont of the cenoe when the tine has cone to do so. Thit ig probably going to heppen in exean close to the main citien where coet of lebour will, naybe st the next ten yeares, rise to a level where it will meke the present bype of canoe fishery mproritable.

As I mextioned before, helr century ago there were about 400000 Pishing reasels in Jepen. Today there are efill almost the aame number of fighing vesaels. This is in spite of the development toward bigger wits and high-sea fishing operetion. The mein reason is that the men practising fishing did not have ary othex oppoxtumitaes for work Over the last 10 yeass, however, the induetry hes absoxbed a greaser pert of the labour force mainly from egricalture and sizhexyo Ten years ago about 40 peroent or the Japanese population wes engaged in agriculture, including tiaheries, Today, the percontage ie leas than 20 percent. Fhis is, howevery only a recent developm momt and for a long time the metn problem of the Figheries Agency had been to protect the poom tishermen and it wes well known thet this was not an economic problen but mainly a nocial one. Fifty years ago the fiahiag hleet congisted of a very mall creft not much bigger than the cenoeg that you are uging on Leke Victoxia, The first eteps toward development wore mechonim zation with inboard exginee. The frumben introcinction of noderm equipnent made $i 6$ goseible to build lasger boetp enc it hes lead to today 'a big factory trewlerse A lot of thin developrent was due to aupport of the Covernment. Capital has been concentrated and 30 percent on the Japanese finhing flee' is owned by a sew large companiess Eowewer, this developnent lert a lame number of poor fichermen. Unlegs the industry is able to absorb the large amount of labour in mast Arrica, you will heve for a Iong period the problem of the poor cenoe fishemen which is not really an economic problem but meinly a, social one.

It must be remembered thet these bas already been a development from the preaent type of canoe boward biger crett. Mris we can mee on the Kenya pide of Lake Victoria where the tishemen are now utilizing bigger boats, and theim main problen in in What way they cen itt an inboard diesel engine to these boats to extend their redius of ection. Fere we heve a neturel development which is mupported by the Tisheries.Depertment.

POB J JACRSOM:
P. FROUDE:
φ_{0} GULBRAMDSET:
P_{0} PROUNS:
$J_{0} A_{0}$ GRUCAFTID:

DoD BIEACH:
$\mathrm{G}_{\mathrm{C}} \mathrm{C}$ gaIs:

The Kenyan tiahemmen are already now ventwing oxt in some open water and actting their gillneta outaide Pisagam Islanc, They are returning to ghore and neybe picking mp the gillnets two ox three deys lates with the reault that much of the fish hes gone rotten. We have come across lots of catisah Ploating on the surface, killed by the gillnets and so this ia obvioumly a wasteful method. This is an area where a mechaniged gillnetter with crew accomodation to stay out for several days could operate, and there are also other places where an offshore gillnet fiahery covld be eateblished.

The question of what will be the future fishing vespel for Lake Victoris should be kept open for one very good reasons bottom trawling has been demonstrated to work but we still have to find out what fish cax be ceught in midmeter and neax the日urfece. This works I hope, will be carried on by the Fisheries Project in Jinja if we have the anticipated eatension of the project, We camot, therafore, at this stage, lay down what is going to be the ideal deck arrangement for a dishing boat on Lake Victoria. He may have to have combinatiox vessela which will make posaible trawling and purse seining or tranling and gillnettings

Do you know anywhers else in the world where such a combination boat is used for gillnetting and trewling

I believe on the great lakes in Canada a peculiar type of combination gillnetter/trewler was utilized. However, I do not think we should copy the deck layout of these boats as they were designed to operete in a different climate and conditions.

Although we nave many examples of combination trawler/purse seinere, I do not lnow about any cases where gillnetting and trawling axe done from the name boat.

In the coestal waters of Ploxide mall inghore vessels around 30 it are tranling for ghrimp part of the yeas and gillnetting for the reat. The number of there boetr is very limited.

Gilnettexs showld have the whe日inouse aft so that the helmgm men have a clear view of the hauling operation and the hauling is carried out with the vessela going slowly ahead, Since the ideal layout for a trewler is with the deckhoure forward and clear working deck aft, it' geema that it in difficult to achieve a setisfectory deck armagement that will suit both tramling and gillnetting The deck layout for a combination or purse seindmg/traming in onsier to achiove.

¢. GULBRAFDSEIN:	From the discussion I think we can fram the conelnetion thot a combination gilinetter/trawler does not perm to be a reasonable proposel for Leke Viotomia and that boetr in the future will be either 100 pereent tranlers, megbe with a posgibility of purge seining: os 100 percent gillnettors. Can the past experience incicato eppurimately mas type or improved gilueb boat wil be uatheble fow Leke Fietorict Experimental pighing han been done with a $32 \mathrm{~m} t$ aduantun gillnettex from Ganede fittod with a Igdreulicelly detpen drum. What has the experience boen go ras whth this boet?
SoNo Strakulas	The 32 mit aluminim gillnetter wes intended sor cotohing Hsplochromjs with gilnets. This did not work out weli bocause the Haplochromis got entangled in the net and too much time wes werted in olearing the neta whea hewlinge Byen though the nets can be wets out very cruckly, the hauling operation took a very long timo. Leter, trenling kas proved to be a more afjicient way of eatching Haplochronis.
C.C. TAIM:	The deck layout of the 32 mit mechanzed gillnetter could be inproved. The hydranlio drum is pleced too fax eft and there is not enough torkhag space between the drum and the stera of the boat. Personally I do not think that surficient experience has bean geined with mecheaized gilinetbers on Leke Tictoria gettrag long lengthe of net.
¢. GULBRAMDSEN:	Bven though the expexience with the 32 mt mechanged githothex hen not been successint. are there any indicatsona thet mecham nized gillnetting conld be prositeble on teke Tiotorte on on any of the other Rast atrion leker?
$J_{\text {O }} A_{*}$ CRUTCEHPIELD:	Since the fish caught by ginhnets are mainly found in inghore waters, I feas that a meoheal zed gillnetter will heve to womk in competition with inghore canoe tighermen. I doubt wery much able to compete nith canoe fiahemens batrag into acoont the very high investment needed row the bigger vessel and the mechanized hauling equipnent.
P. FROUDS:	I think this might be true sox gake Victomia but fox other leas explojed lates in Eest Arrice they might worls vexy well indeed. However, competing on the same Eishing grounds and in the same maxkots as the canoe riaherwen might cavae social problems.
M, M, MALE:	The mechanized gilmet tiehing boet seemp a rethez big and expensive oxatto te there axy posenbiltw of bringing this boat within the financial grasp of the mell tishemmen?

CoC. TAIT:
A.B.J. HOMTMSS:

CoCo TATM:
S. N. SEMLKULA:
P. PROUDE:

I do not think that this boat wea meant for fae individual fisherman: it wonld have to be run by cooperstyves or companies.

There is no doubt that the gillnetm rbilized by the fighermen here on Lake Victoria could be inproved upon. Mhese nets are not very ericicient.

It is my impression that the gillnets wilized by the fishermen on Lake Victomia are faixly ericicient and I do not think thet any expext on gillaetting wovld be able to improve on the conotruction and the hanging of the nets. I think that the catchea are very high in relatson to the anount of pish avallable in s certain mas.

I would Iike to take Mro Eolness down to the nearest itsh landiag and show him thet there are obvious ravits in the construction of the gillnots utilized. The weights for example do not give an efficient hanging of the vebbing. These bhinge definitely can be inproved upon. If you heng your weighte 5 rom 4 to 5 m apart you are bound to have an uneven hanging and therefore an inefficient net. On the averege, the nets are not wainteined very well, but this is probebly due to comomis considerations. The netr are mede of very inne twine and ase therefore cheep; it might be more conomic to use the net minil it is worn out and then replace it with a new one.

I think we must make a distinetion between the inshore gilinet fishing and the type of ginnet fimhing we ate talking about now, nanely, mechanized fiehing in offehore waters where nets as long as 3 mi will have to be set and hauled. With this type of advenced gear it will be necessery, for example, to replace stones with lead. These netr will isso have to be maintained properly. At the monent the fishemen ere not doing axy repairing of their nets ath all. shey get their nets even when they are full of gaps and holee.

Whe type of deck layout for gilnet fishing boatry, an propoaed by Mr. Illugeson and Mr. Tait. would wndoubtediy be a great etep corward from what is generelly practised in thin finhery. Eren though it might seen redicel, I believe thot whis deck layout or something very similax will be used on future gillnet Pishing veasele. I believe that once we can get the right type of vessel here on Luke Victoria, it would be reletively easy to demonstrete the possibilities such a boet has in offehore gillnet fishing.

Whet kind of compromise in the generel artangement of gilinet fichine boate will be necessaxy to make it powable to also perform a general type of tianing?

C.C. ${ }^{\text {chtw }}$	Whis is a question which is difeicult to anmer without mowing opecifically what altomative fishing gear woald be utilized. how much of the year one would fish with a different bype of fishing geax, etc, Tt is the opinion of Bro Illugason and maself that for Lake Victoria the idea of having a gillnet fiahing boet arranged also for other typan of fiching ehould not be pursued.
J. Land:	In the Jo_{o}, it is normal for a tramler of around 40 m 45 It to be operated with a crew of 3 men. . Tt would simply not be economia cal to have more peopla on board.
C.C. TAIT:	I think the level of gelaries in Rast Arrice is mech that it allows us to have a crew of 5 men on boerd.
P. PROUDI:	Iou can either go in for a highly nophigticated operation with as much mechanical oz hydraulic equipment as poseible and thereby reducing the number of crews, or you cen try to keep the amount of mechanical equipment to a minimum and go, retherg for more laboun-intensive methods. I think that we should follow to a cartain extent the second line in the trawier development on Lake Victorien having regard to the countries need for higher employment.
O.C. TATM ${ }^{\text {a }}$	Does the Fishery Research Unit in Jinje have on 1 the programe (project fox experimenting with mmallex fishing boats and byper of geaw other than trawling and purge seining?
P.B.I. JACESSON:	We have not done vexy much in this iold aince we have mainly been working with oxploxatory fiehing over the whole leke area. We have experimented with a twomboat trawh, 2 canoes fitted with outboard notors and thie worked vexy well provided that the bottom wes amooty and the operatore possessed the required mill.
	It ia all very well to may that in 1980 there is going to be on one side a canoe rishery and on the other side a highly developed trewl ficheryo There muet bo roon for some inberm mediate development away from the present canoe fighery which is very restrictod to inehore weterg toward somewhat bigger boatr and more sophisticated gear. Pilot projects shonld determine what type of gear and what type of boat this could be.

Participants in Seminar Gor Pigheries officers

(22 to 27 Februexy 1971)

IMNYA

Holness $A_{8} P_{9} J_{0}$
Aasistant Director of Risheriek Ministry of qourism end Wildlise $\mathrm{P}_{5} \mathrm{O}_{0}$ Boz 241, Neirobi

Mumbe, $J_{8} \mathbb{S}_{0}$
Fisheries Officer
hinistry of pourism and wildine
Po, Box 12, Melinda

NTGMRTA

Achobah, $J_{.} \mathrm{O}_{0}$
Counterpart Boatbuilder
Lake Kainji Regearch Project
c/o unde
P.O. BOX 2075

Lagos

SUDAH

Torahim Ali Hasean
Gene and Fieheries Department
Minintry ot Animal Resources
P.O. Box 336
thartown

UCANDA

Kanyike, Ros.
Sonior Binheries octicer
Miniatry of Arimel Induetry: Game and misheries
$\mathrm{P}_{2} \mathrm{O}$. Boz 4 , Entebbe
Makoro J. $_{80}$
Ficheries 0rficer
Rinistry of Animal Industry Game and Fisheries
P.O. Boy 274, Heaindi

OBERRUERS:

Gombe Merines and Contrectore Litd. Jgande
Beach $\mathrm{D}_{0} \mathrm{D}_{\mathrm{a}}$
Noval Axchiteot: Boeting Industry Aasocra.
333 Morth Michigen Avenue
Ghicago, IItinois 60601. U. S. A.

Oburna A_{8} S $_{5}$
Fisheries Ofeicen
Minimbry or Mown and Hildise P, O. Bos: 1064. Kisuma

Odero, Mo
Dinactor of Firhexion
Ministry of Towicm and Wildise
PoO. Bow 241, Tairobi

Molos Mon.
Prabasien oreicas
Miniatay of Andmed Induatirys Game and Fienestes
Po, Bow 22. Kabale
Mracijbi。 D_{0}
Regionel Piahories oneseer
Ministyy of Animel Tudustry, Game and Pisherises
Po, Bos 689. Mageta

Busbonwohe A. A.
Princinel: Ficmorice Mreining motitwo 3nebbbe
B1toromates P。
Foreetwy Demertment (Jemade)

Bjammasong S.S.
nester Boatbuilder
P.O. Box 72
Mangochi Malawi
Crutchrield, Pxore JoA.
Depertment of Economics
University of Washington
Seatble, Washington 98105, U. 5.A.
Fngetroin J.E. $_{\text {. }}$
Fishery Economics and Development Branch
Department of Fiaheries
FAO, Rome, Italy
Fujinami. No
Chief: Fishing Vessels Section
shery Industries Division
Depastment of Fisheries
Maschalls (E.A。) Limited
Nairobi, Kenya
Guzbrandsen, ϕ_{0}
Fiehing Vessels Section
macry Tndustries Division
Department of Fisheries
Jonksong PoBow.
Lake Victoria Pigheries Research Project
P.O. Box 343
Jinja, Uganda
Kaxim, H .
Gombe Maxines and Contrectors Ltd.
Ugande
Kibego, Kin.
Fisheries Training Inetitute
Entebbe, Ugenda
Layn, J_{0}
Petterg Ltdo Hemble
$\mathrm{U}_{\mathrm{s}} \mathrm{IK}$.
Machumixwe. Bo
Pisheries Trainiog Inotitute
Hatebbe, Ugande

[^0]: I/ This refere to those frequent ceses where the local currency according to the official exchenge rabe -1 overvained in relation to otber currencies.

[^1]: $1 / 50 \%$ Heplochromis at $250 \mathrm{ch} /$ ton 50% Other at $900 \mathrm{gh} / \mathrm{ton}$
 2) $\frac{185}{140}=1.30$
 $3 / \frac{25-14(\text { depreciation })}{140}=7 \%$

[^2]:

[^3]: Mi soellaneouc expences in connexion with the ande and doliyexy may aleo belong hexe but axe often dideicult to wepaxtse rrom the generel admini stretiwe orpenges and, could be recovered through "Overheads".

 ## (4) Qvexheads

 Overheads are related to tine and are bherefore oomvententy calculated as a percontage of the laboux cost. Ovexheada axe all the covta and oxpenses in conmezion with the woxk that is negescery to keep the boetrard rumaing but not vigible on the boat itgelf.

 The wateat method ig to add up the ovexhead oont in a repreacmettive porjod, agy one. year, end then compare then with the labour costr in the eane periodg to tind the perontege to be epplied.

