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HYDRODYNAMICS OF HIGH-SPEED MARINE VEHICLES

Hydrodynamics of High-Speed Vehicles discusses the three main
categories of high-speed marine vehicles, vessels supported by
submerged hulls, air cushions, or foils. The wave environment,
resistance, propulsion, seakeeping, sea loads, and maneuvering
are extensively covered based on rational and simplified methods.
Links to automatic control and structural mechanics are empha-
sized. A detailed description of waterjet propulsion is given, and
the effect of water depth on wash, resistance, sinkage, and trim is
discussed. Chapter topics include resistance and wash; slamming;
air cushion–supported vessels, including a detailed discussion of
wave-excited resonant oscillations in air cushion; and hydrofoil
vessels. The book contains numerous illustrations, examples, and
exercises.

Odd M. Faltinsen received his Ph.D. in naval architecture and
marine engineering from the University of Michigan in 1971 and
has been a Professor of Marine Hydrodynamics at the Norwegian
University of Science and Technology since 1974. Dr. Faltinsen
has experience with a broad spectrum of hydrodynamically related
problems for ships and sea structures, including hydroelastic prob-
lems and slamming. He has published more than 200 scientific
papers, and his textbook Sea Loads on Ships and Offshore Struc-
tures, published by Cambridge University Press in 1990, is used at
universities worldwide.
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Preface

Writing a book on the hydrodynamics of high-speed marine vehicles was chal-
lenging because I have had to cover all areas of traditional marine hydrodynamics,
resistance, propulsion, seakeeping, and maneuvering. However, there is a need to
combine all aspects of hydrodynamics in the design of which high-speed vessels
are very different from conventional ships, depending on whether they are hull
supported, air cushion supported, foil supported, or hybrids.

High-speed vessels are a fascinating topic, and I have been deeply involved in
research on high-speed vessels since a national research program under the lead-
ership of Kjell Holden started in Norway in 1989. We also started the International
Conference on Fast Sea Transportation (FAST), which has a much broader scope
than marine hydrodynamics. I have also benefited from being the chairman of
the Committee of High-Speed Marine Vehicles of the International Towing Tank
Conference (ITTC) from 1990 to 1993. Further, this book would not have been
possible without the work done by the many doctoral students who I have super-
vised. Their theses are referenced in the book. Parts of the book have been taught
to the fourth year, master of science students and doctoral students at the Depart-
ment of Marine Technology, Norwegian University of Science and Technology
(NTNU).

My philosophy in writing the book has been to start from basic fluid dynam-
ics and to link this to practical issues for high-speed vessels. Mathematics is a
necessity, but I have tried to avoid this when physical explanations can be given.
Knowledge of calculus, including vector analysis and differential equations, is nec-
essary to read the book in detail. The reader should also be familiar with dynam-
ics and basic hydrodynamics of potential and viscous flow of an incompressible
fluid.

Computational fluid dynamics (CFD) are commonly used nowadays, but my
emphasis is on giving simplified and rational explanations of fluid behavior and its
interaction with the vessel. This is beneficial in planning and interpreting experi-
ments and computations. I also believe that examples and exercises are important
parts of the learning process.

Automatic control and structural mechanics of high-speed marine vehicles are
two disciplines that rely on hydrodynamics. These links are emphasized in the
book and are also important aspects of the Centre for Ships and Ocean Structures,
NTNU, where I participate.

My presentation of the material is inspired by the book Marine Hydrodynamics
by Professor J. N. Newman.

xiii
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xiv • Preface

I am thankful to Professor Newman for reading through the manuscript and
offering suggestions for improvement. Dr. Svein Skjørdal spent a lot of time giving
detailed comments on different versions of the manuscript. He was also helpful in
seeing the topics from a practical point of view. Sun Hui also did a great job in con-
firming all my calculations and providing solutions to all exercises. I have benefited
from Professor K. J. Minsaas’ expertise in propulsion and hydrodynamic design of
hydrofoil vessels. Many other people should be thanked for their critical reviews
and contributions, including Dr. Tony Armstrong, Professor Tor Einar Berg,
J. Bloch Helmers, Professor Lawrence Doctors, Dr. Svein Ersdal, Lars Flæten, Pro-
fessor Thor I. Fossen, Dr. Chunhua Ge, Dr. Marilena Greco, Dr. Martin Greenhow,
Dr. Ole Hermundstad, Egil Jullumstrø, Dr. Toru Katayama, Professor Katsuro
Kijima, Professor Spyros A. Kinnas, Dr. Kourosh Koushan, David Kristiansen,
Professor Claus Kruppa, Dr. Jan Kvaalsvold, Dr. Burkhard Müller-Graf, Professor
Dag Myrhaug, Professor Makoto Ohkusu, Professor Bjørnar Pettersen, Dr. Olav
Rognebakke, Renato Skejic, Dr. Nere Skomedal, Professor Sverre Steen, Gaute
Storhaug, Professor Asgeir Sørensen, Professor Ernest O. Tuck, and Dr. Frans
van Walree.

The artwork was done by Bjarne Stenberg. Anne-Irene Johannessen and Keivan
Koushan were helpful in drawing figures. Jorunn Fransvåg organized and typed the
many versions of the manuscript in an accurate and efficient way, which required
a tremendous amount of work.

The support from the Centre of Ships and Ocean Structures and the Department
of Marine Technology at NTNU is appreciated.
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√
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1 Introduction

Baird (1998) defines a high-speed vessel as a craft
with maximum operating speed higher than 30
knots, whereas hydrodynamicists tend to use a
Froude number Fn = U/

√
Lg larger than about

0.4 to characterize a fast vessel supported by the
submerged hull, such as monohulls and catama-
rans. Here, U is the ship speed, L is the overall
submerged length LOS of the ship, and g is accel-
eration of gravity. The pressure carrying the ves-
sel can be divided into hydrostatic and hydro-
dynamic pressure. The hydrostatic pressure gives
the buoyancy force, which is proportional to the
submerged volume (displacement) of the ship.
The hydrodynamic pressure depends on the flow
around the hull and is approximately propor-
tional to the square of the ship speed. Roughly
speaking, the buoyancy force dominates rela-
tive to the hydrodynamic force effect when Fn
is less than approximately 0.4. Submerged hull–
supported vessels with maximum operating speed
in this Froude number range are called displace-
ment vessels. When Fn > 1.0–1.2, the hydrody-
namic force mainly carries the weight, and we
call this a planing vessel. Vessels operating with
maximum speed in the range 0.4–0.5 < Fn < 1.0–
1.2 are called semi-displacement vessels. This
means that high-speed submerged hull–supported
vessels denote vessels in which the buoyancy
force is not dominant at the maximum operating
speed.

Ship speeds of about 50 knots represent an
important barrier for a high-speed vessel. At this
speed, cavitation typically starts to be a problem,
for instance, on the foils and the propulsion sys-
tem. Cavitation means that the pressure some-
where on the upper side (suction side) of the foil
becomes equal to the vapor pressure. This is only
0.012 times the atmospheric pressure at 10◦C. If
a large part of the suction side of the foil is cavi-
tating, the lift is clearly reduced relative to a non-
cavitating foil at the same speed. For instance, the

lift of a supercavitating 2D flat foil in infinite fluid
is only 25% of the lift of a noncavitating 2D flat
foil at the same speed and the same orientation
of the foil relative to the forward speed (Newman
1977). Supercavitation means that the suction side
of the foil is not wetted. Partial cavitation may
also cause damage to the foil structure in terms
of implosion of bubbles. In addition, ventilation
may occur, for instance, as a consequence of cav-
itation. Ventilation means that there is a connec-
tion or an air tunnel between the air and the foil
surface. Occurrence of ventilation also leads to sig-
nificant drop in lifting capacity of a foil. Supercav-
itating foils and propellers are used to increase the
speed barrier substantially beyond 50 knots. Such
foil shapes have a sharp leading edge to initiate
cavitation.

Minimization of the hull weight with consider-
ation of the structural strength is important for
all high-speed vessels. One early foil catamaran
design resulted in too-heavy foils and struts. The
consequence was reduced payload and unsatisfac-
tory transport economy.

The 35th edition (2002–2003) of Jane’s High-
Speed Marine Transportation refers to four major
limitations for future market developments of fast
“ro-pax” vessels carrying passengers and allowing
roll-on roll-off payloads (most often in terms of
cars):

� Limited seakeeping ability
� Reliability of the main propulsion machinery
� Cost of the higher-grade fuel used
� Limited freight-carrying ability

Wave generation, that is, wash, is also an issue for
further market expansion. The decay of the gen-
erated waves perpendicular to the ship’s course
is important from a coastal engineering point of
view. When the waves enter shallow water, the
wavelength decreases and the wave amplitude
increases, resulting in breaking waves on a beach.
This may happen when the ship is out of sight,
surprising swimmers. The reflection of the gener-
ated waves from vertical walls, such as a quay, may
also be a problem and a safety issue. The total
wave amplitude will be twice the incident ampli-
tude, and water may flow over the quay. The wash
also affects the environment, for instance, in terms
of erosion. There is no simple universal criterion
in terms of maximum wave amplitude that quanti-
fies the wash effect. The criterion must be different

1
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if the waves are affecting the seashore or affect-
ing other ships. If, for instance, the effect on other
ships is analyzed, the ship response due to wash of
a passing ship must be studied. Ferry operators in
the United Kingdom must prepare a route assess-
ment with regard to wash that must be approved by
the Maritime and Coastguard Agency (Whittaker
and Elsässer 2002).

There is a broad variety of high-speed vessels
in use, with very different physical features. The
vessels differ in the way the weight is supported.
The vessel weight can be supported by:

� Submerged hulls
� Hydrofoils
� Air cushions
� A combination of the above

Figure 1.1, used in the announcement of the
FAST’91 Conference in Trondheim, Norway, illus-
trates a fictitious high-speed vessel using air cush-
ion, foils, and submerged hulls to support the ves-
sel weight. The air cushion is enclosed between the
side hulls and by seals in the forward and aft end
of the vessel. The main types of high-speed vessels
are discussed below.

Submerged hull–supported vessels

Examples of semi-displacement and planing ves-
sels are presented. Figure 1.2 shows a SWATH
(small waterplane area twin hull) vessel. As the
name says, this vessel is characterized by a small
waterplane area and two demihulls. A SWATH
has higher natural periods in heave and pitch
and generally lower vertical wave excitation loads
than a similarly sized catamaran. The explanation
is similar to that of a semi-submersible platform
(Faltinsen 1990). The consequence is better sea-
keeping behavior of a SWATH compared with
the catamaran in head sea conditions. However,
if the sea state, speed, and heading cause resonant
vertical motions of the SWATH, it may not have
good seakeeping behavior. Wetdeck slamming is
then a danger. Further, if motion control surfaces
are not used, a SWATH is dynamically unstable
in the vertical plane beyond a certain speed. A
SWATH is often not classified as a high-speed
vessel.

The most common type of high-speed ves-
sel is the catamaran. The catamaran is often

Figure 1.1. Fictitious high-speed vessel with air cushion,
foils, and SWATH effects. (Artist: Bjarne Stenberg)

equipped with an automatic motion control sys-
tem, such as foils, which minimize wave-induced
motions. Catamaran designs include the wave-
piercing (Figure 1.3) and semi-SWATH types of
hulls. Trimarans and pentamarans (Figure 1.4)
with one large center hull combined with smaller
outrigger hulls are other types of multihull vessels.

The beam-to-draft ratio of semi-displacement
monohulls with lengths longer than approximately
50 m may vary from around 5 to more than 7
which is very different from displacement ships.
Large monohulls are often equipped with auto-
matic motion control devices similar to the ones
used for catamarans. Stern flaps and roll fins are
commonly used. A pronounced increase in the
length of a submerged hull is generally favor-
able for wave-induced vertical motion and accel-
eration. It means that a relatively long monohull
with the same displacement as a catamaran has
an advantage relative to the catamaran. However,

Figure 1.2. SWATH (small waterplane area twin hull).
(Artist: Bjarne Stenberg)
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Figure 1.3. “Wave-piercing” catamaran. (Artist: Bjarne
Stenberg)

Figure 1.4. Pentamaran. (Artist: Bjarne Stenberg)

Figure 1.5. Planing vessel. (Artist: Bjarne Stenberg)

attention has to be paid to roll motion and dynamic
stability of monohull vessels.

Planing vessels (Figure 1.5) are typically smaller
vessels used as patrol boats, sportfishing vessels,
and service craft, and for sport competitions.
Dynamic stability, cavitation, and ventilation are
of concern for planing vessels.

Foil-supported vessels

Hydrofoil-supported monohulls with either fully
submerged or free surface–piercing foils are
shown in Figures 1.6 and 1.7. The first commercial
high-speed vessels were the monohull hydrofoil
boats with free surface–piercing foils. If the flap
angle of the foils and the trim of the vessel are held
constant, the foil lifting capacity increases approx-
imately with the square of the vessel’s speed until
cavitation occurs. Because the foil lift is approxi-
mately proportional to the projection of the foil
area onto the mean free surface, the inclined
free surface–piercing foils need a larger foil area
than that required by fully submerged foils for a
given weight and design speed. The free surface–
piercing foil is self-stabilizing with respect to ver-
tical position, heel, and trim.

In the beginning of the 1990s, foil catamarans
were a promising concept, having small resistance
and good seakeeping behavior. Fully submerged

Figure 1.6. Hydrofoil vessel with fully submerged foil
system. (Artist: Bjarne Stenberg)

Figure 1.7. Hydrofoil vessel with free surface–piercing
foils. (Artist: Bjarne Stenberg)
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horizontal foil systems were used. A control sys-
tem that activates foil flaps is needed to stabilize
the heave, roll, and pitch of a hydrofoil boat with
fully submerged foils in the foilborne condition.
Another important design consideration is suffi-
cient power and efficiency of the propulsor system
to lift the vessel to the foilborne condition. This
is of special concern when waterjet propulsion is
used because of its decreased efficiency at lower
speeds. Another concern is the ventilation along
one of the two forward struts during maneuvering,
which may ventilate the forward foil system and
cause loss of the lift force.

Foil cavitation limits the vessel’s speed to about
50 knots. Proper design to delay cavitation on the
aft foil system requires evaluation of the wake
from the forward foil system. An important effect
is caused by roll-up of tip vortices originating from
the forward foil system. The wake from the for-
ward foil causes an angle of attack that varies along
the span of the aft foil, which can be counteracted
by using a twisted aft foil that is adapted to the
inflow. One foil catamaran experienced problems
with foil cavitation during operation, which were
resolved by drilling holes in the aft part of the foils
to provide communication between the flow on the
pressure and suction sides of the foils.

Very precise and smooth foil surfaces are
needed from a resistance, lift, and cavitation point
of view. These surfaces require special fabrication
procedures and frequent cleaning during opera-
tion. The high production and maintenance costs
are important reasons why few foil catamarans
have been built. There also exist hydrofoil-assisted
catamarans in which the foils only partially lift the
vessel.

Air cushion–supported vessels

Surface effect ships (SES) or air-cushion catama-
rans of lengths less than 40 m were frequently
built for commercial use until the mid-1990s. An
air cushion is enclosed between the two side hulls
and by flexible rubber seals in the bow and aft end
(Figure 1.8). The skirt in the front end is easily
worn out.

The excess pressure in the air cushion is pro-
duced by a fan system that lifts the vessel, thereby
carrying about 80% of the weight. The excess pres-
sure reduces the metacentric height, but the static
stability is still good. It also causes a mean depres-

Figure 1.8. Artist’s fish-eye view of an SES (surface
effect ship) illustrating the air cushion with flexible skirts
in the bow and a flexible bag in the aft end used to enclose
the air cushion between two catamaran hulls. Fans are
used to create an excess pressure in the air cushion that
lifts the vessels. (Artist: Bjarne Stenberg)

sion of the free surface inside the cushion that
results in waves and wave resistance. However,
because the hull wetted surface is diminished, the
total calm water resistance is small relative to a
catamaran of similar dimensions. The lifting up
of the SES also causes an increase in air resis-
tance. Because resistance is proportional to the
mass density of the fluid and the air density is only
about 1/1000 of the water density, the air resistance
is smaller than water resistance. The ship speed can
be up to 50 knots in low sea states.

Resonance oscillations in the air cushion cause
“cobblestone” oscillations with a dominant fre-
quency around 2 Hz for a 30 to 40 m–long vessel.
The word cobblestone is associated with the feel-
ing of driving a car on a road with badly layed cob-
blestones. The highest natural period is the result
of a mass-spring system in which the compress-
ibility of the air in the cushion acts like a spring.
The mass is related to the total weight of the SES.
The damping is small and caused by air leakage
and the lifting fans. The excitation is induced by
volume changes in the air cushion due to inci-
dent waves. The resonant oscillations require inci-
dent wave energy at a frequency of encounter
close to the natural frequencies of the cobble-
stone oscillations, which occurs in very small sea
states. The resulting vertical accelerations are of
concern from a comfort point of view. Damping
of the cobblestone oscillations can be increased
by an active control system introducing air leak-
age through louvers. If special attention is not
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Figure 1.9. Fish-eye view of the bottom of
a side hull of an SES with the waterjet inlet.
A tube with air (white part) coming into
the waterjet inlet can be seen; this is venti-
lation. The air intake for the aft bag shown
in the figure is in the roof of the air cushion.

paid to scaling laws, the cobblestone phenomenon
will not be detected in model tests that are based
on Froude scaling. If the SES is on cushion and
no cobblestone oscillations occur, the vessel has
vertical accelerations that are generally lower
than those of a similarly sized catamaran in head
seas.

When the SES is on cushion, there is a small dis-
tance from a waterjet inlet at the hull bottom to the
air cushion, which can easily cause ventilation of
the waterjet inlet in a seaway. Because the waterjet
inlet flow acts similarly to a flow sink, cross-flow
occurs in the vicinity of the inlet. If the hull cross
section has a small radius of curvature in the inlet
area, very high local velocities and low pressures
occur, increasing the danger of ventilation even
in calm water. Figure 1.9 illustrates model tests of
the occurrence of ventilation to the waterjet inlet
in calm water conditions. Fences on the cushion
side of the side hulls have been proposed to deal
with this problem.

Figure 1.10. Air-cushion vehicle (ACV). (Artist: Bjarne
Stenberg)

An SES experiences a more significant involun-
tary speed loss than that of a similarly sized cata-
maran in a seaway. The relative vertical motions
between the vessel and the waves cause air leak-
age, which decreases the air cushion pressure when
the lifting power is kept constant. The resulting
sinkage implies higher resistance. If the fan sys-
tem does not have sufficient power to maintain air
cushion pressure, significant speed loss may occur,
even in moderate sea states.

The air-cushion vehicle (ACV) shown in
Figure 1.10 is the oldest type of air cushion–
supported vessel. Because a flexible seal system is
used for the air cushion, the ACV is amphibious.
It also implies that air propellers are used, which
may represent a noise problem. Because there is
no submerged hull to provide hydrostatic restor-
ing moments in roll and pitch, static stability in
these modes of motion needs attention during the
design stage.

Air lubrication technology (ALT) uses air cav-
erns that run for approximately half the length of
a hull in the aft part of the vessel. An air cush-
ion can facilitate the lifting to the airborne con-
dition of Ekranoplanes or wing-in-ground (WIG)
vehicles. The air cushion is part of the Hoverwing
design (see Figure 1.11 and Fischer and Matjasic
1999). A small portion of the propeller slip stream
is used to create an air cushion with an excess pres-
sure between the two floats (catamaran hulls) and
the flexible textile skirts at the front and aft ends.
The WIG flies close to the water surface. This gives
extra lift (see Figure 6.46 and accompanying text).
The Hoverwing cruises at a speed of 180 km/hour
(90 knots) and is claimed to have high maneuvra-
bility and short stopping distance. Low noise emis-
sion at all speeds is also an important issue.
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Figure 1.11. Artist’s impression of a WIG vehicle based
on the Hoverwing techology by Fischer-Flugmechanick.
An air-cushion effect is generated between the floats dur-
ing takeoff. (Artist: Bjarne Stenberg)

Papanikolaou (2002) has systematically pre-
sented the many types of high-speed marine vehi-
cles that exist today. He explains the many dif-
ferent acronyms used, together with his view on
the advantages and disadvantages of the different
types of vessels.

Table 1.1. General operability limiting criteria for ships (NORDFORSK 1987).

Merchant ships Naval vessels Fast small craft

Vertical acceleration at forward
perpendicular (RMS value)

0.275 g (L ≤ 100 m) 0.275 g 0.65 g
0.05 g (L ≥ 330 m)a

Vertical acceleration at bridge 0.15 g 0.2 g 0.275 g
(RMS value)

Lateral acceleration at bridge 0.12 g 0.1 g 0.1 g
(RMS value)

Roll (RMS-value) 6.0◦ 4.0◦ 4.0◦

Slamming criteria (probability) 0.03 (L ≤ 100 m) 0.03 0.03
0.01 (L ≥ 300 m)b

Deck wetness criteria (probability) 0.05 0.05 0.05

a The limiting criterion for lengths between 100 and 330 m varies almost linearly between the values L = 100 m and
L = 330 m, where L is the length of the ship.

b The limiting criterion for lengths between 100 and 300 m varies linearly between the values L = 100 m and 300 m.

Table 1.2. Criteria (root mean square) with regard to accelerations and roll
(NORDFORSK 1987).

Vertical acceleration Lateral acceleration Roll Description

0.20 g 0.10 g 6.0◦ Light manual work
0.15 g 0.07 g 4.0◦ Heavy manual work
0.10 g 0.05 g 3.0◦ Intellectual work
0.05 g 0.04 g 2.5◦ Transit passengers
0.02 g 0.03 g 2.0◦ Cruise liner

There are also sailboats that can be categorized
as high-speed marine vessels. The current world
speed sailing record is 46.52 knots, set by Yel-
low Pages Endeavour in 1993. Our detailed dis-
cussion of the flow around lifting surfaces and
hulls is relevant in this context. The keels, the rud-
der, and the sails are all lifting surfaces from a
fluid dynamics point of view. The fluid dynamics of
sailboats are handled in the books by Larsson and
Eliasson (2000), Marchaj (2000), Garrett (1987),
and Bethwaite (1996).

1.1 Operational limits

Operational limits are set by

� Safety, comfort, and workability criteria
� Structural loading and response
� Machinery and propulsion loading and response

Seakeeping criteria typically used for conven-
tional ships are presented in Tables 1.1 and 1.2.
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HEAD SEA

H1/3 (m)

5.0

4.0

3.0

2.0
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3.0 5.0 10.0
T1 (s)

40 m LONG SES (50 knots)

Operating region

0.2g RMS criterion
   exceeded

40 m LONG CATAMARAN (40 knots)

Figure 1.12. Calculated operational limits of similarly
sized catamaran and SES in head sea long-crested waves
with different significant wave heights (H1/3) and mean
wave periods (T1). The 0.2 g RMS value of vertical accel-
eration at the center of gravity (COG) is used as a crite-
rion. Involuntary speed loss due to wind resistance and
added resistance in waves are considered.

Those criteria are related to slamming, deck wet-
ness, RMS values of roll, and lateral and verti-
cal accelerations. RMS values mean root mean
square values or standard deviation. The rightmost
column of Table 1.2 includes a brief description
of what the criteria relate to. Light manual work
means work carried out by people adapted to ship
motions. This work is not tolerable for longer peri-
ods, and causes fatigue quickly. Heavy manual
work means work, for instance, on fishing vessels
and supply ships. Intellectual work relates to work
carried out by people not so well adapted to ship
motions, such as scientific personnel on an ocean
research vessel. Transit passenger means passen-

Load (kW) Load (kW)

2200 2200

1800 1800

1400 1400

1000 1000

600 600

200 200
0 12 24 36

Time (sec)

Starboard Engine

Port Engine

48 60

Figure 1.13. Engine load during SES
operation in a sea state with significant
wave height H1/3 = 2 m. 100% engine load.
Waterjet propulsion (Meek-Hansen 1991).

gers on a ferry exposed to the acceleration level
for about two hours. Cruise liner refers to older
passengers on a cruise liner.

The criteria can be used to determine volun-
tary speed loss and operability of vessels in differ-
ent sea areas. For example, Figure 1.12 illustrates
the calculated operational limits of a 40 m–long
catamaran and a 40 m–long SES for head sea
conditions. No active motion control systems are
used in the calculations. The criterion used was
RMS value of vertical acceleration at COG equal
to 0.2 g. However, other criteria as well as other
headings must be considered. Generally speaking,
the catamaran has the lowest operational limits in
Figure 1.12, but these can be improved by an active
control system. The reason the SES has the lowest
operational limit for small sea states (small mean
wave periods, T1) is the outset of cobblestone oscil-
lations.

Faltinsen and Svensen (1990) have pointed out
the relatively large variation in published crite-
ria, which may lead to quite different predic-
tions of voluntary speed reduction and operatio-
nal limits. For high-speed vessels, other criteria
are also needed, such as operational limits in a
seaway due to the propulsion and engine sys-
tem. Meek-Hansen (1990, 1991) presented service
experience with a 37 m–long SES equipped with
diesel engines and waterjet propulsion. An exam-
ple with significant wave height, H1/3, around 2 m,
head sea, and 35 knots speed shows significant
engine load fluctuations at intervals of 6 to 12
seconds (Figure 1.13). These fluctuations result in
increased thermal loads in a certain time period,
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caused by a very high fuel-to-air ratio. These high
thermal loads may lead to engine breakdowns.

Possible reasons for the engine load fluctuations
are believed to be:

� Exposure of the waterjet inlet to free air
� Flow separation in front of and inside the inlet
� Ventilation and penetration of air from the

free water surface or from entrained air in the
boundary layer

The phenomenon mentioned above often inter-
acts in a complicated way; for example, separation
may be one of the causes for onset of ventilation
and cavitation. Under certain conditions, a cav-
ity may be penetrated and filled with air. Sepa-
ration and cavitation are primarily dependent on
the pressure distribution in and near the water-
jet inlet. For a given inlet geometry, this distri-
bution depends mainly on the speed and thrust
(resistance) of the ship.

Exposure of the waterjet inlet to free air is a
result of the relative vertical motions between the
vessel and the seawater. An operational limit may
be related to the probability of exceeding a cer-
tain limit of the relative vertical motion amplitude
between the vessel and the waves at the water-
jet inlet. In particular, with an SES equipped with
flush inlets, the exposure to free air represents a
problem even for small sea states. The reason is
the small distance between the inlet and the calm
water surface inside the air cushion.

The seasickness criterion according to NS-
ISO 2631/3 is commonly used for the assess-
ment of passenger comfort in high-speed ves-
sels (see Figure 1.14). It gives limits for RMS
(root mean square) values of the accelerations
as a function of frequency. This criterion needs
some explanation. It refers to the az or a human’s
head–to-foot component of the acceleration. For
a broadband spectrum, frequency fc in Figure 1.14
means the average frequency of a one-third–
octave band, defined as the frequency inter-
val between f1 and f2, where f2 = 21/3 f1. Further,
the center frequency fc of the one-third–octave
band is ( f1 f2)1/2

. This means f1 = fc/21/6 and f2 =
fc21/6. A broadband spectrum should be divided
into one-third–octave bands, and the RMS value
should be evaluated separately for each of the one-
third–octave bands. Each RMS value should be
compared with the limits given in Figure 1.14 for
different exposure periods. Because the motion
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1.25
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Motion sickness region

8 h (tentative)

Figure 1.14. NS-ISO 2631/3 – severe discomfort bound-
aries (1. ed. Nov. 1985). az is the RMS value of human’s
head–to-foot component of acceleration in a one-third–
octave band of a spectrum with center frequency fc .

sickness region in Figure 1.14 is from 0.1 to 0.63
Hz, it implies that the cobblestone effect of an
SES does not cause motion sickness. According
to ISO 2631/1, there are other criteria for accel-
erations in the frequency range from 1 to 80 Hz,
which are related to workability or human fatigue.
An example is shown in Figure 1.15 that expresses
the limits of the RMS value of the az-component
of the acceleration as a function of frequency. This
figure should be interpreted in the same way as
Figure 1.14. In addition, by multiplying the accel-
eration values in Figure 1.15 by 2, one gets bound-
aries related to health and safety, and by dividing
the acceleration values by 3.15, one gets bound-
aries for reduced comfort.

Operational studies should ideally take into
account that the shipmaster may change speed
and heading. It may sound wrong, but a semi-
displacement vessel equipped with foils may
improve the seakeeping behavior by increasing
the speed. The reason is that the heave and pitch
damping of a foil increases with forward speed.
In particular, the roll motion magnitude is impor-
tant for monohull vessels. However, if the ship is
equipped with roll stabilization means, high-speed
conditions should be of minor concern.
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Figure 1.15. ISO 2631/1 – fatigue-decreased proficiency
boundaries. az is the RMS value of a human’s head–
to-foot component of acceleration in a one-third–octave
band of a spectrum with center frequency fc .

There is a need to establish better seakeeping
criteria for wetdeck slamming and the behavior of
the propulsion and machinery systems in a seaway.
The wetdeck is the underside of the deck structure
between the side hulls of multihull vessels, that is,
the deck part facing the water.

Because cavitation and ventilation of foils mean
that the foils become less efficient as damp-
ing devices and cause an increase in the vessel
motions and accelerations, these effects should
be accounted for in operational studies. However,
knowledge about these issues is still in its infancy.

It is important to investigate different vessel
headings relative to the wave propagation direc-
tion. For instance, a catamaran in following regular
waves may have a speed close to the phase speed
of the waves, that is, the speed of the propagating
geometry of the waves. Further, if the wavelength
is of the order of the vessel’s length, the catama-
ran can assume a position relative to the waves so
that the fore part of the vessel dives into a wave
crest. The slender fore part may not have sufficient
buoyancy, and the more-voluminous aft part will
be lifted up by the waves. The result is a significant
amount of water over the fore deck.

The loss of steady heel moment with forward
speed of semi-displacement round-bilge mono-
hulls is an important safety issue. When the Froude
number is larger than 0.6 to 0.7 in calm water,
the vessel may suddenly lean over to one side.
At higher speeds, this may cause dangerous “calm
water broaching” and is the main reason round-
bilge hulls are unsuitable for Froude numbers
above 1.2 (Lavis 1980).

Directional instability in following seas with the
subsequent risk of the vessel becoming broadside
to the waves and eventually capsizing, is a well-
known phenomenon of monohulls. This is referred
to as “broaching” and may occur under condi-
tions similar to those in a “dive-in.” Because a
multihull semi-displacement vessel has good static
stability in roll and is very difficult to capsize in
waves, broaching is less important for catamarans.
However, large sway and yaw motions as well as
steering problems may also occur for catamarans
in following and quartering sea.

Quasi-steady stability in the roll of monohulls in
following seas with a small frequency of encounter
should also be considered. This is of particular
concern if the local waterplane area, that is, local
width of the hull at the hull/water line intersec-
tion, clearly changes as a function of local draft
(i.e., large flare). The hydrostatic transverse stabil-
ity should then be calculated as a function of dif-
ferent frozen incident wave shapes along the ship.
These frozen conditions in following seas should
also be considered as structural load cases for the
hull girder. When calculating hydrostatic stability,
the increased importance of steady hydrodynamic
pressure on the hull with increasing speed rela-
tive to hydrostatic pressure should be recognized.
This is an implicit consequence of being a “semi-
displacement” vessel.

The propulsion unit, rudders, stabilization fins
in faulty position, cavitation, and ventilation may
also influence stability. A scenario might be two
supercavitating propellers, one of which suddenly
ventilates, causing an asymmetry in thrust with
resulting directional instability.

If the ship is in a planing condition, that is, the
Froude number is larger than one, special dyna-
mic instability problems may occur. Examples
are “chine-walking” (dynamic roll oscillations),
“porpoising” (dynamic coupled pitch-heave osci-
llations), and “cork-screwing” (pitch-yaw-roll
oscillations). However, the major part of the



P1: GDZ
0521845688c01 CB921-Faltinsen 0 521 84568 7 October 16, 2005 12:25

10 • Introduction

commercial high-speed vessel fleet does not oper-
ate in planing conditions.

Müller-Graf (1997) has given a comprehensive
presentation of the many different dynamic sta-
bility problems of high-speed vessels. This work
includes design features and factors influenc-
ing dynamic instabilities. Recommendations are
given on how to minimize dynamic instabilities of
monohulls.

1.2 Hydrodynamic optimization

A ship is often hydrodynamically optimized in
calm water conditions. Because good seakeep-
ing behavior is an important feature of a high-
speed vessel, optimization in calm water condi-
tions may lead to unwanted behavior in a seaway.
Both wave resistance and wave radiation damp-
ing are caused by the ship’s ability to generate
waves. Because low wave resistance may imply
low wave radiation damping in heave and pitch,
the result may be unwanted large resonant ver-
tical motions of a semi-displacement vessel. This
relationship was illustrated by a project with first-
year students knowing little about hydrodynamics.
A catamaran design was proposed in which each
of the two side hulls had a very small beam-to-
draft ratio. This hull form was fine for resistance,
but the vessel jumped out of the water during sea-
keeping tests when the wave periods were in res-
onant heave-and-pitch conditions. This extreme
behavior could have been counteracted at high
speed if the vessel were equipped with damping
foils.

Another example is the recent designs of pas-
senger cruise vessels with very shallow local draft
and nearly horizontal surfaces in the aft part of
the ship. These designs were the result of hydro-
dynamic optimization studies in calm water. One
does not need to be a hydrodynamicist to under-
stand that this caused slamming (water impact)
problems. Aft bodies with shallow draft should
also be of concern for directional stability and for
ventilation of waterjet inlets in waves. Hydrody-
namic optimization studies must therefore con-
sider resistance, propulsion, maneuvering, and
seakeeping. There obviously are also constraints
of a nonhydrodynamic character. For instance,
minimalization of ship motions may lead to higher
global structural loads.

1.3 Summary of main chapters

This textbook focuses on high-speed vessels.
However, some of the text on semi-displacement
vessels is also relevant for conventional ships.
Further, the discussion of slamming (water im-
pact) is important in many other marine applica-
tions, including offshore structures.

Chapter 2 considers resistance and propulsion
in calm water conditions. The two most impor-
tant resistance components of semi-displacement
vessels and SES are viscous resistance and wave
resistance. Viscous resistance is important for
hydrofoil-supported vessels, but induced drag due
to trailing vortices should also be considered.

The waterjet is the most common propulsion
system for high-speed vessels. We use conserva-
tion of fluid momentum and kinetic fluid energy
to derive the thrust and efficiency of the waterjet
system. The possibility of cavitation at the waterjet
inlet is also discussed.

Chapter 3 presents linear wave theory and a
stochastic description of the waves. This is neces-
sary background for later chapters that describe
wave-induced motions and loads on high-speed
vessels. Linear wave theory is also used to describe
wave resistance and wash in detail. This is done in
Chapter 4.

Chapter 4 considers wave resistance of semi-
displacement vessels and air cushion–supported
vessels. Ship waves are traditionally classified
as divergent and transverse waves. The trans-
verse waves have crests nearly perpendicular to
the ship’s track. The dominant wave picture far
away from the ship is normally the result of
divergent bow waves. The divergent waves are a
major source for the wave resistance of a semi-
displacement vessel at the maximum operating
speed. The effects of finite water depth on mono-
hull vessels, including the effect on trim and sink-
age, is also discussed.

Chapter 5 concentrates on SES. However, the
issues presented also have relevance for other air
cushion–supported vessels. The chapter explains
how the air cushion causes a depression of the
free surface and affects the roll metacentric height.
The air cushion typically carries 80% of the weight
of an SES. Details are given about the seal sys-
tem of the air cushion. Resistance and propul-
sion in calm water are covered in Chapters 2 and
4. This chapter discusses cobblestone oscillations
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and the added resistance and speed loss in
waves.

Chapter 6 discusses foil-supported vessels. Rel-
evant hydrodynamic foil theory is presented. The
chapter starts out describing a boundary element
method (BEM) based on source and dipole dis-
tributions that may account for nonlinearities, 3D
flow, interaction between foils and struts, and free
surface effects. Thereafter is a presentation of lin-
ear theory. The advantage of a linear theory is that
we can more easily show how the angle of attack,
foil camber, foil flaps, and three-dimensionality of
the flow influence lift and drag of the foil. It is
also shown how the free surface and interaction
between tandem foils affect the steady lift and drag
of a foil. Unsteady flow conditions due to incident
waves and vessel motions are also handled. This
discussion is used in Chapter 7 to estimate damp-
ing of vertical motions of a semi-displacement ves-
sel due to an attached foil.

Chapter 7 describes the wave-induced motions
and global wave loads on semi-displacement ves-
sels. The effects of foil damping and hydrody-
namic hull-hull interaction on multihull vessels are
also considered. Added resistance in waves and
dynamic stability are other issues.

We discuss local and global slamming effects in
Chapter 8. This is an important structural load-
ing mechanism for all high-speed vessels. The local
slamming analysis may need a local hydroelastic
analysis. This is shown to be important when the
local angle between the impacting free surface and
the body surface is less than about five degrees.

Global hydroelastic response (springing and whip-
ping) due to wave effects is also discussed in Chap-
ter 8. Springing is a steady-state response, whereas
whipping is associated with transient response,
such as that caused by water impact (slamming)
on the wetdeck, bow flare slamming. or stern
slamming.

Chapter 9 discusses both steady and unsteady
flow effects around planing vessels. The steady
lift and trim moment can, to a large extent, be
explained by potential flow theory.

The hydrodynamic performance of prismatic
planing hulls in calm water is discussed by exam-
ples. Instabilities may play an important role for
a planing boat. One example is porpoising, which
is unstable heave-and-pitch motions. This is dis-
cussed in detail.

Wave-induced vertical motions of planing ves-
sels are also discussed. It is demonstrated that non-
linear effects are more important for planing ves-
sels than for semi-displacement vessels.

Chapter 10 considers maneuvering of a ship in
water of infinite horizontal extent. A slender-body
theory for a monohull at Froude numbers smaller
than approximately 0.2 is presented. This theory
can also be applied to a catamaran and an SES.
Directional stability, automatic motion control,
and viscous effects are other items considered. It is
shown that the directional stability changes with
forward speed. Further, a maneuvering analysis
of a high-speed vessel must, in general, consider
motions in six degrees of freedom. A derivation of
Euler’s equation of motion is given.
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2.1 Introduction

The power of the installed propulsion machinery
is an indirect measure of the maximum resistance
of a vessel. However, the actual amount of this
power that can be transformed into thrust to coun-
teract the resistance depends on the efficiency of
the propulsion device. For an ACV and an SES,
power is also needed to lift the vessel. For an SES,
this is about 10% to 20% of the power needed
for propulsion. Casanova and Latorre (1992) have
collected data on installed horsepower in different
types of high-speed marine vehicles (HSMV).

Our focus in this chapter is on resistance and
propulsion in calm water. When we consider a ship
with constant speed on a straight course in calm
water conditions, the balance of forces is simple:
the ship resistance must be equal to the thrust
delivered by the propulsion unit.

It is most common in model tests and in numer-
ical calculations to consider the ship without an
integrated propulsion system. The resistance is
therefore evaluated without the presence of the
propulsion unit. We will follow this approach. This
means the ship resistance RT is defined as the force
that is needed to tow the ship in calm water with a
constant velocity U on a straight track (of course,
the towing unit must not affect the flow around the
ship). The power needed to tow the vessel is:

PE = RTU (2.1)

This is not true when wind and waves are present.
In that case, added resistance in wind and waves
has to be accounted for when required engine
power is estimated. Ship maneuvering will also
increase the resistance. Even sticking to our
assumption of a straight course in calm water,
important issues to consider are the efficiency of
the propulsion system and how the resistance is
affected by the propulsion system. For instance,
the flow in the vicinity of a waterjet inlet on a ship

hull affects the trim and sinkage of a high-speed
vessel, which will then influence the resistance. On
the other hand, the flow along the ship hull will
affect the inflow conditions to the propulsion unit
and hence the thrust. So ideally, we should not
have considered resistance and propulsion as sep-
arate issues.

We can divide the calm water resistance into

� Viscous water resistance
� Air resistance
� Spray and spray rail resistance
� Wave resistance

Actually, part of the spray resistance is viscous
water resistance, whereas the pressure part of
spray resistance is difficult to distinguish clearly
from the total wave resistance obtained by pres-
sure integration. Each component is discussed in
the following text, with the main focus on semi-
displacement monohulls and catamarans. How-
ever, SES and hydrofoil vessels are also addressed.
Additional details on resistance of hydrofoil ves-
sels are given in Chapter 6. Planing hulls are dis-
cussed in detail in Chapter 9. More in-depth stud-
ies of wave resistance of semi-displacement vessels
and SES are considered in Chapter 4.

The resistance is influenced by the trim angle,
and trim devices are used on semi-displacement
and planing vessels to optimize the trim angles.
Examples are interceptors (see Figure 2.2), trim
tabs (stern flaps) (see Figure 7.4), and transom
wedges, which start forward of the transom and
end at the transom. The entire wedge is under
the hull and is a local abrupt modification in the
buttock lines aft of station 191/2 (Cusanelli and
Karafiath 1997).

There is ongoing research on how to reduce
the ship resistance. One example is by injecting
microbubbles into the turbulent boundary layer.
Latorre et al. (2003) report that microbubble drag
reduction (MBDR) has the potential of reducing
the local skin friction by 15%. However, MBDR
will not be considered in this text.

As said above, to properly analyze the ship resis-
tance, the latter must be considered in conjunc-
tion with the vessel propulsion system. Waterjet
propulsion is the most common type of propul-
sion for high-speed vessels of nonplaning type.
Different types of propulsion systems for plan-
ing hulls are illustrated in Figure 2.1 and dis-
cussed by Savitsky (1992). The most common

12



P1: GDZ
0521845688c02 CB921-Faltinsen 0 521 84568 7 October 21, 2005 10:37

2.2 Viscous water resistance • 13

Conventional shaft system

Stern- or Z-drive

Waterjet

Surface piercing 
propeller with 
fixed tail shaft

a)

b)

c)

d)

Figure 2.1. Various propulsors for high-speed vessels (Savitsky 1992).

propulsion is a subcavitating or partial cavitating
propeller in combination with an inclined shaft
(Figure 2.2). The appendage drag due to struts,
shaft, and rudder becomes important at higher
speeds. The unsteady forces on the inclined pro-
peller may lead to undesirable vibrations. When
the maximum speed is higher than 40 knots, free
surface–piercing propellers are sometimes used.

The two other types of propulsion systems
shown in Figure 2.1 are waterjet propulsion and
stern drive propulsion. Stern drive propulsion and
outboard engines are used mainly for pleasure and
recreation craft. Outboard engines up to 300 hp
are made today. In some cases, you might find up
to four of these on one boat. In practice, outboard
engines are not often used on boats longer than
40 feet. The outboard engines also include a ver-
sion of the waterjet referred to as a jet drive. These

Figure 2.2. Propellers with inclined shafts installed on
a model of a planing vessel with hard chines. Propeller
tunnels are used to minimize the shaft angle. The rudders
are twisted and adopted to the propeller slip stream. Two
interceptors are placed at the transom to control the trim
angle (see section 7.1.3 and Figure 7.5 for more details
about interceptors). (Photo by K.A. Hegstad)

may be used on recreation craft running on very
shallow waters, where there is a risk for a propeller
to be damaged. Another possibility, then, is to use
propeller tunnels. Design of propeller tunnels for
high-speed craft is discussed by Blount (1997).

Oblique-flow conditions, locally concentrated
wake peaks, and high loading density at high
speeds make it difficult to avoid cavitation on a
propeller. Oblique flow occurs, for instance, when
the propeller shaft has an angle relative to the ves-
sel velocity (see Figure 2.1a). Propeller tunnels are
beneficial in this context. Cavitation has been dis-
cussed by van Beek (1992), who considers thrust
breakdown and cavitation at a propeller blade root
as limiting criteria for the application of conven-
tional high-speed propellers.

If oblique flow can be avoided, conventional
propellers may run with little cavitation, even at
45 knots. This has been demonstrated by trac-
tor propellers in conjunction with right-angle
drives installed in catamarans and foil catamarans
(Halstensen and Leivdal 1990).

Our way of treating resistance and propulsion
of high-speed vessels follows the traditional route
in ship hydrodynamics. However, an interesting
question is: What can we learn about resistance
and propulsion from aquatic animals? Despite
potential payoffs, relatively little work has been
done to answer this question. An introduction to
this field is given by Triantafyllou and Triantafyllou
(1995) and Sfakiotakis et al. (1999).

2.2 Viscous water resistance

A main resistance component is caused by the
friction force on the wetted hull. Pressure loads
acting perpendicularly to the hull surface matter,
but have less importance. Boundary layer theory
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y

x

Ambient velocity U

u(y)
δ

Figure 2.3. Boundary layer along a flat plate with inci-
dent (ambient) flow velocity U along the x-axis. δ =
boundary-layer thickness.

may be used to describe the effect of fluid vis-
cosity. It means that the viscosity only matters in
a thin layer close to the hull surface. The two-
dimensional boundary layer along a flat plate can
be used to describe important characteristics of
the viscous flow. We can approximate the wetted
hull surface as a flat plate. If we look at the flow
from a reference frame following the ship, the for-
ward speed of the ship appears as an incident flow
with velocity U on a stationary hull, as shown in
Figure 2.3.

One important characteristic is that the water
must adhere to the plate, that is, there is no slip.
That means the flow velocity is zero on the plate.
At a short perpendicular distance δ(x) from the
plate (function of the longitudinal distance x from
the leading edge of the plate), the flow velocity is
equal to U.

The viscous flow is laminar for Reynolds num-
ber Rnx =Ux/ν less than ≈ 105. Here ν is the kine-
matic viscosity coefficient with 1.35 · 10−6 m2s−1

for salt water at 10◦C (see Table A.2 in the
Appendix). The transition to turbulent flow occurs
for Rnx between 2 · 105 and 3 · 106. Turbulent flow
is characterized by a velocity and a pressure that
vary irregularly with a high frequency. Laminar
flow means that the flow is well organized in lay-
ers. It is steady when the incident velocity is steady.
One can make the analogy between laminar flow
and a school class marching orderly in a parade.
Every pupil keeps his or her position relative to
the others so that a clear structure with rows and
columns appears. Then things get out of order
and the pupils run everywhere without an appar-
ent system except that they have a mean forward
motion. This is like a turbulent flow. This analogy
between hydrodynamics and human beings is used
in simulating evacuation of passengers from pas-
senger vessels during catastrophic events. Hinze
(1987) gives the following definition of turbulence:

“Turbulent fluid motion is an irregular condition
of flow in which the various quantities show a ran-
dom variation with time and space coordinates, so
that statistically distinct values can be discerned.”
Turbulence frequencies may vary between 1 and
10,000 s−1, and turbulent fluctuations are roughly
10% of average velocity (Hinze 1987). The upper
and lower bounds of the turbulence frequencies
depend on the field of application. Consider, for
instance, cross-flow past a circular cylinder at a
high Reynolds number. This is associated with a
vortex shedding frequency that is described by the
Strouhal number as a function of the Reynolds
number (Faltinsen 1990). Depending on the cylin-
der diameter and the ambient flow, a vortex shed-
ding frequency can be 1 Hz in marine applications.
This frequency cannot be considered a turbulence
frequency. If the frequency range around a vortex
shedding frequency was filtered out by an averag-
ing process, one would lose important information
on vortex-induced vibrations of structures.

Figure 2.4 illustrates how the flow changes from
being laminar to turbulent along a smooth flat
plate. The laminar 2D flow becomes unstable at
a critical Reynolds number Rncrit . If there is neg-
ligible turbulence intensity in the incident flow,
this corresponds to Ux/ν = 2 · 105. Rncrit can be
found by a linear stability analysis (Schlichting
1979). The unstable 2D waves shown in Figure 2.4
are called Tollmien-Schlichting (T/S) waves. As
the amplitudes of the T/S waves grow, three-
dimensional instabilities occur. Fully turbulent
flow occurs at the transition Reynolds number
Rntr . If there is negligible turbulence intensity in
the incident flow, Rntr is 3 · 106.

The horizontal velocity distribution in Figure 2.3
is representative of a laminar boundary layer in
the case of a 2D flow along a flat plate. This can
be described by the Blasius theory. The frictional
stress (longitudinal force per unit area) on the
plate is

τw = µ
∂u
∂y

∣∣∣∣
y=0

(2.2)

Here µ is the dynamic viscosity coefficient, which
is related to the kinematic viscosity coefficient ν

by ν = µ/ρ, where ρ is mass density of the fluid.
Eq. (2.2) is also applicable to turbulent boundary
layer flow, but then u means in practice a velocity
that has been time averaged on the time scale of
turbulence.
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Figure 2.4. Idealized sketch of transition
process from laminar to turbulent flow
along a flat plate. (White, F. M., 1974, Vis-
cous Fluid Flow, McGraw-Hill Book Com-
pany, 2nd ed. 1991, Printed in Singapore.
The figure is reprinted with permission of
The McGraw-Hill Companies.)

The velocity gradient ∂u/∂y at the plate is very
different for laminar and turbulent flows (Fig-
ure 2.5). Because turbulent flow implies much
a larger exchange of fluid momentum in the y-
direction than laminar flow does, both the bound-
ary layer thickness δ and ∂u/∂y at the plate are
much larger for turbulent flow than for laminar
flow.

We cannot avoid turbulent flow along the hull
surface of a full-scale ship, and we must ensure tur-
bulent flow along the hull surface during model
tests to be able to scale the results to full scale.
Because we do not have sufficient knowledge yet

1.0

1.0

y
δ

u
U

Figure 2.5. Laminar (——) and mean turbulent (- - - - -)
velocity profiles for the boundary-layer flow along a flat
plate.

on how to model turbulence theoretically, empiri-
cism has to be partly used. We discuss this in more
detail in section 2.2.4. The empirical formulas for
frictional resistance are amazingly simple. They
express the viscous resistance as

RV = 0.5ρCF SU2, (2.3)

where S is the wetted surface area. It is common
to estimate S at zero speed. However, S changes
in reality as a result of the free surface elevation
along the hull. Further, the transom stern of a
semi-displacement vessel becomes dry for Froude
numbers Fn = U/

√
Lg higher than approximately

0.4, and an SES on cushion causes a lower free
surface elevation inside the cushion than outside
the cushion. Here L is the overall submerged ship
length LOS and g is the acceleration of gravity. The
International Towing Tank Conference (ITTC)
1957 model–ship correlation line expresses the
friction coefficient CF for a smooth hull surface
as

CF = 0.075

(log10 Rn − 2)2 , (2.4)

where Rn = UL/ν is the Reynolds number.
Eq. (2.4) agrees well with experimental results for
turbulent flow along a smooth flat plate.

Figure 2.6 illustrates how CF changes going from
a laminar boundary layer to a turbulent boundary
layer along a flat plate. The Blasius solution is used
for laminar flow, and the Prandtl–von Karman
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Figure 2.6. Friction coefficients CF for flow along a flat
plate as a function of Reynolds number Rn (Walderhaug
1972).

expression is applied for turbulent flow. Later on,
we will see that different empirical formulas exist
for turbulent flows. The Blasius solution for lami-
nar flow may be expressed as

CF = 1.328
Rn1/2

. (2.5)

The Prandtl–von Karman expression is

CF = 0.072
Rn1/5

. (2.6)

In Figure 2.6, several curves (experimental data)
for CF are indicated in the transition between lam-
inar and turbulent flows. These depend on the tur-
bulence intensity T in the inflow velocity, which
may be expressed as

T =
√

u′2/U, (2.7)

u′ being the turbulent part of the longitudinal com-
ponent of the inflow velocity u, that is, u = U + u′.
Further, u′2 means the time average over the tur-
bulence time scale of u′2. When T < 0.001, there
is no influence of T and the transition Reynolds
number is 2.8 · 106. However, if T = 0.03, the tran-
sition Reynolds number becomes 105.

Because a hydrofoil has a Reynolds number
much smaller than that of a submerged hull-
supported vessel, one may be tempted to design
laminar foil shapes, which are used in connec-
tion with gliders. Schlichting (1979) gives exam-
ples of foil shapes and their CF values. The “lami-
nar effect” reduces the drag of normal airfoils by
30% to 50% in the Reynolds number range of
2 · 105 to 3 · 107. When Rn > 5 · 107, the laminar
effect is lost and the flow is fully turbulent. If we
consider as an example a hydrofoil with velocity
U = 20 ms−1 and use ν = 10−6m2s−1, we see that
foils with chord lengths less than 1.5 m may ben-
efit from the laminar effect. However, we should

note that the results are for zero incidence, that
is, the foils do not cause lift. The presence of lift
implies a change in the pressure gradient along the
foil relative to no lift. This influences the drag force
and the transition. Further, the presence of surface
roughness may change the results. This is discussed
in section 2.2.6. Attention must also be given to
cavitation inception and the effect of nonuniform
inflow in the hydrofoil design.

We will present a theoretical basis for the resis-
tance formula for turbulent flow along a smooth
flat plate. To better understand this, we need first
to present Navier-Stokes equations.

2.2.1 Navier-Stokes equations

The flow around a ship is governed by the Navier-
Stokes equations, so to study the vessel resis-
tance, such equations should be solved for the
problem of interest. Navier-Stokes equations are
presented in many textbooks of fluid mechan-
ics, such as Newman (1977), Schlichting (1979),
and White (1974). We will limit ourselves to two-
dimensional flow of an incompressible fluid and
refer to the above-mentioned textbooks for a
detailed and general derivation of Navier-Stokes
equations. For our applications, water can be con-
sidered incompressible, that is, sound waves do
not matter. The flow around a ship is, of course,
three-dimensional, but empirical formulas for vis-
cous resistance are to a large extent based on
two-dimensional flow for a flat plate. Because the
boundary layer in which viscosity matters gener-
ally has a small thickness δ relative to the local
radii of curvature of the hull surface, we can justify
that the hull surface appears locally flat and that
the 2D flat plate flow represents a first approxima-
tion. We later will see how we correct empirically
for three-dimensional flow around a ship hull by
introducing form factors.

The two-dimensional Navier-Stokes equations
for an incompressible fluid without gravity can be
written as

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= − 1
ρ

∂p
∂x

+ ν

(
∂2u
∂x2

+ ∂2u
∂y2

)
(2.8)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂p
∂y

+ ν

(
∂2v

∂x2
+ ∂2v

∂y2

)
.

(2.9)
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The continuity equation is

∂u
∂x

+ ∂v

∂y
= 0. (2.10)

Here we have used a Cartesian coordinate system
(x, y) as in Figure 2.3. u and v are the x- and y-
components of the fluid velocity, t is the time vari-
able, and p is the pressure. We have three equa-
tions and three unknowns: u, v, and p. In order to
solve eqs. (2.8) to (2.10), we need a set of initial
and boundary conditions. The body boundary con-
dition requires that the fluid adheres to the body
surface (no-slip).

Eqs. (2.8) and (2.9) follow by analyzing the
motion inside an arbitrary fluid volume and
enforcing that the time rate of change of momen-
tum inside the fluid volume is equal to the sum of
forces acting on the fluid volume, that is, Newton’s
second law. These forces are the result of hydro-
dynamic pressure and viscous stresses. Concerning
the hydrodynamic pressure contribution, the force
per unit area due to the pressure p acts perpendic-
ularly to a surface element as −pn. Here n is the
surface unit normal vector with positive direction
outward from the fluid volume. To introduce the
viscous stresses, we consider a two-dimensional
rectangular fluid volume with sides parallel to the
x- and y-axes (Figure 2.7). On the top side AB of
the volume, we have the viscous stress components
τxy and τyy along the x- and y-axes, respectively.
They can be expressed as

τxy = µ

(
∂u
∂y

+ ∂v

∂x

)
(2.11)

y = x2

A

∆y

∆x

D C

τxx = τ11

τyx = τ21

τxy = τ12

τyy = τ22

B

x = x1

Figure 2.7. Rectangular fluid volume ABCD and vis-
cous stresses τi j acting on AB and BC sides.

and

τyy = 2µ
∂v

∂y
(2.12)

The pressure force per unit area on AB is −p and
acts along the y-axis. This means the total hydro-
dynamic force per unit area on AB consists of the
components τxy and (−p + τyy) along the x and
y-axes, respectively.

The viscous stress components on the vertical
side BC are

τyx = µ

(
∂v

∂x
+ ∂u

∂y

)
(2.13)

and

τxx = 2µ
∂u
∂x

. (2.14)

Here τyx and τxx are viscous stress components
directed along the y- and x-axes, respectively. The
total hydrodynamic force per unit area on BC con-
sists of the components −p + τxx and τyx along the
x and y-axes, respectively. In order to express the
viscous stresses in a more abbreviated and general
way in three dimensions, we change notation so
that x = x1, y = x2, z = x3, u = u1, v = u2, w = u3

and introduce τi j , where i or j is equal to 1, 2,
or 3 when referring to x, y, and z, respectively.
This notation is depicted in Figure 2.7 for the two-
dimensional case. Here we have also included a
third dimension by introducing the z-coordinate
of the Cartesian coordinate system (x,y z) and the
velocity component w = u3 along the z-axis. We
define a surface element with an outward unit nor-
mal vector n = (n1, n2, n3). If this surface element
belongs to a side of a fluid volume as in Figure 2.7,
then n is pointing outward from the fluid volume.
If we consider a surface element on a body surface,
then the normal direction is into the fluid domain.
The viscous stress (force per unit area) in the ith
direction is then

τi1n1 + τi2n2 + τi3n3, (2.15)

where

τi j = µ

(
∂ui

∂xj
+ ∂u j

∂xi

)
. (2.16)

We note the symmetry τi j = τ j i . The justification
of this linear relationship between viscous stresses
and derivatives of velocity components is, for
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instance, discussed in Newman (1977). The New-
tonian stress relations given by eq. (2.16) assume
an incompressible fluid.

We will demonstrate that eqs. (2.15) and (2.16)
are consistent with eq. (2.11). For example, let us
consider the top side AB in Figure 2.7, where n1 =
0, n2 = 1, and n3 = 0. This means that we have the
viscous stress components µ(∂u1/∂x2 + ∂u2/∂x1)
and 2µ∂u2/∂x2, that is, the same as eqs. (2.11)
and (2.12). With the same procedure at the
bottom side CD, where n1 = 0, n2 = −1, and
n3 = 0, we find the viscous stress components
−µ (∂u1/∂x2 + ∂u2/∂x1) and−2µ∂u2/∂x2 directed
along the x- and y-axes, respectively. These expres-
sions are similar to eqs. (2.11) and (2.12), but with
opposite signs. This has to be kept in mind for our
next derivation of eqs. (2.8) and (2.9). As said, they
follow from Newton’s second law. We shall focus
on eq. (2.8) and have in mind the fluid volume
in Figure 2.7. The sides �x and �y are assumed
small so that all quantities can be approximated
by the lowest-order terms in a Taylor expansion
about the center of the volume. We first evaluate
the forces acting on the volume. The resultant vis-
cous force component in the x-direction acting on
AD and BC can then be approximated as

�x
∂

∂x

(
2µ

∂u
∂x

)
�y. (2.17)

Further, the viscous force component in the x-
direction along AB and DC becomes

�y
∂

∂y

[
µ

(
∂u
∂y

+ ∂v

∂x

)]
�x. (2.18)

The sum of eqs. (2.17) and (2.18) can finally be
rewritten as

µ

(
∂2u
∂x2

+ ∂2u
∂y2

)
�x�y (2.19)

by means of the continuity equation (2.10). By a
similar Taylor expansion, the pressure force on the
surface of the fluid can be approximated as

− ∂p
∂x

�x�y. (2.20)

Then we consider the time rate of change of fluid
momentum in the x-direction of the volume. Part
of this is the result of momentum flux through AB,
BC, CD, and DA. The momentum flux through a
surface element that is not moving is

ρu (u · n) dS, (2.21)

where u = (u, v, w) and dS is the area of the sur-
face element. Once more making a Taylor expan-
sion, we find that the momentum flux in x-direction
through AD and BC can be approximated as

ρ�x
∂

∂x

(
u2) �y. (2.22)

The momentum flux in x-direction through AB
and CD reduces to

ρ�y
∂

∂y
(uv) �x. (2.23)

The sum of eqs. (2.22) and (2.23) can by means of
the continuity eq. (2.10) be rewritten as

ρ

(
u

∂u
∂x

+ v
∂u
∂y

)
�x�y. (2.24)

Then we have to add the term

ρ
∂u
∂t

�x�y (2.25)

to get all the contributions to the time rate of
change of the fluid momentum in the x-direction
inside the volume. These must be balanced by the
forces acting on the volume. By doing this, we find
the following equation:

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
�x�y

(2.26)

= −∂p
∂x

�x�y + µ

(
∂2u
∂x2

+ ∂2u
∂y2

)
�x�y,

as a first order equation valid for small �x and
�y. By dividing by ρ�x�y on both sides and then
letting �x and �y go to zero, we see that this leads
to eq. (2.8).

2.2.2 Reynolds-averaged Navier-Stokes (RANS)
equations

In principle, we can directly use Navier-Stokes
equations and solve them numerically to study the
turbulent flow. However, a very small time and
spatial discretization are needed for the numeri-
cal solution. Available computer technology lim-
its the possibilities. Reynolds-averaged Navier-
Stokes (RANS) formulations are commonly used
instead.

The RANS formulation means that we decom-
pose the variables of interest as u = ū + u′, v =
v̄ + v′, p = p̄ + p′, where u′, v′, and p′ are vary-
ing on the time scale of turbulence and ū, v̄, and
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p̄ are time averaged over the time scale of turbu-
lence. Then we insert this into eqs. (2.8) to (2.10)
and time average the equations over the time scale
of turbulence. Let us show this procedure for the
convective acceleration term u∂u/∂x + v∂u/∂y in
eq. (2.8). By using the continuity equation, this
contribution can be rewritten as

∂u2

∂x
+ ∂uv

∂y
. (2.27)

This result was already shown when we rewrote
eqs. (2.22) and (2.23) into eq. (2.24). We can now
write eq. (2.27) as

∂ū2

∂x
+ ∂ūv̄

∂y
+ 2

∂ūu′

∂x
+ ∂

∂y
(ūv′ + u′v̄)

(2.28)

+ ∂u′2

∂x
+ ∂u′v′

∂y
.

Then we time average eq. (2.28). The two first
terms remain the same. Because the time averages
u′ and v′ are zero, the third and fourth terms give
zero contribution. However, the time averages of
the two last terms are not zero. Because turbulence
is 3D for 2D inflow conditions (see Figure 2.4),
we should actually have done the time averag-
ing by starting with the 3D Navier-Stokes equa-
tions (see Schlichting 1979). Because the ∂u/∂t-
term in eq. (2.8) also refers to time variations on
a time scale larger than that for turbulence, we
must include the effect of this term. Eq. (2.8) can
eventually be expressed as

∂ū
∂t

+ ū
∂ū
∂x

+ v̄
∂ū
∂y

= − 1
ρ

∂ p̄
∂x

+ ν

(
∂2ū
∂x2

+ ∂2ū
∂y2

)

− ∂u′2

∂x
− ∂u′v′

∂y
. (2.29)

The term proportional to ν in eq. (2.29) is the
result of viscous stresses. The two last terms on the
right-hand side of eq. (2.29) are the result of what
is called turbulent stresses or Reynolds stresses.
The challenge in solving eq. (2.29) is that we have
introduced several new unknowns, such as u′2 and
u′v′; therefore, we need new equations. In prac-
tice, these are empirical, that is, we need guidance
from experiments.

Turbulence modeling and numerical computa-
tions based on RANS, particularly for 2D flow
around bodies, are extensively covered by Cebeci
(2004). Efforts are also made to use large-eddy

simulations (LES). Empirical relationships are
then only needed for the small-scale turbulent
flow. CFD (computational fluid dynamics) meth-
ods relevant to ship resistance and flow are dis-
cussed by Larsson and Baba (1996).

2.2.3 Boundary-layer equations for 2D turbulent flow

Our problem deals with boundary-layer flows, that
is, we are interested in the turbulent flow in a nar-
row region near the hull surface. Therefore we
can further approximate eq. (2.29). The boundary-
layer thickness δ in Figure 2.3 is small relative to
the distance x from the leading edge. The mean
velocity varies rapidly across the boundary layer
from zero on the body to the free stream veloc-
ity Ue at y = δ. This implies that ∂ū/∂y is much
larger than ∂ū/∂x. The consequence is that the
∂2ū/∂x2 term in eq. (2.29) can be neglected relative
to the ∂2ū/∂y2 term. It is implicit from Figure 2.3
that the flow must vary both with x and y. If we
neglect one of the terms in the continuity equation
∂ū/∂x + ∂v̄/∂y = 0, this will not be true. Because
∂v̄/∂y is the order of v̄ divided by δ and ∂ū/∂x
is the order of ū, v̄ is the order of ū · δ, that is,
v̄ is smaller than ū. This implies that both terms
ū∂ū/∂x and v̄∂ū/∂y in the convective accelera-
tion of eq. (2.29) are of the same order. From
eq. (2.9), it follows that ∂ p̄/∂y is of the order of
ū · δ. This means that, as a first approximation, in
eq. (2.29) we can set ∂ p̄/∂y = 0. This gives that p̄
in eq. (2.29) is the same as p̄ at y = δ. Thus as long
as the boundary layer has a small thickness δ, p̄
can be calculated from the flow outside the bound-
ary layer. There, the fluid is accurately described
by the potential flow theory, that is, the fluid can
be modeled as inviscid and in irrotational motion.
This estimate of p̄ can be done by neglecting the
boundary layer and finding the tangential velocity
Ue at the body surface. The steady version of eq.
(2.29) based on potential flow gives ρUedUe/dx =
−d p̄/dx. We can also neglect the term ∂u′2/∂x in
eq. (2.29). In this way, we end up with the following
steady 2D boundary layer equations for turbulent
flow:

ū
∂ū
∂x

+ v̄
∂ū
∂y

= Ue
dUe

dx
+ ∂

∂y

(
ν
∂ū
∂y

− u′v′
)
(2.30)

∂ū
∂x

+ ∂v̄

∂y
= 0. (2.31)
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In the case of steady flow along a flat plate, we
will have Ue = U and dUe/dx = 0. Further, the last
term in eq. (2.30) can be expressed as

1
ρ

∂

∂y

(
µ

∂ū
∂y

− ρu′v′
)

= 1
ρ

∂

∂y
(τl + τt ) ,

where

τl = µ
∂ū
∂y

(2.32)

is the viscous (also called laminar) shearing stress
and

τt = −ρu′v′ (2.33)

is the turbulent stress.
We have pointed out earlier (see eq. (2.16))

that many stress components exist. Eq. (2.32) is
a boundary-layer approximation of τxy given by
eq. (2.11). This means that τt is also a longitudi-
nal force per unit area on a horizontal surface like
AB in Figure 2.7. Measurements show that there
is a domain very close to the body surface where
τl 	 τt . We can understand this by noting that τt is
zero on the body surface, which is a consequence of
the body boundary condition, that is, u′ = v′ = 0
on the body surface. However, τl is not zero on
the body surface, as we see from the velocity dis-
tribution in Figure 2.5. The domain in which τl

dominates is called the viscous sublayer.

2.2.4 Turbulent flow along a smooth flat plate.
Frictional resistance component

Instead of proceeding with finding a numerical
solution to the boundary-layer equations, we will
follow a very different way to find the shear stress
on a flat plate, the velocity distribution in the
boundary layer, and the boundary-layer thickness.

The first step is to define three layers of fluid
next to the surface of the flat plate:

Inner layer or Viscous shear τl dominates
viscous sublayer:
Outer layer: Turbulent shear τt dominates
Overlap layer: Both types of shear are

important

Why we can state that the turbulent shear domi-
nates in the outer layer is a consequence of exper-
imental results.

The inner layer is very thin relative to the
boundary-layer thickness δ. Then on the scale of
the inner layer, the outer layer is very far away.

It could just as well be at infinity. Therefore, the
mean longitudinal velocity ū in the inner layer will
not be a function of δ. To see what parameters ū
depends on, we start with a Taylor expansion of ū
about y = 0, that is, the surface of the plate. We
can write

ū = ū|y=0 + y
∂ū
∂y

∣∣∣∣
y=0

+ 1
2

y2 ∂2ū
∂y2

∣∣∣∣
y=0

(2.34)
+ 1

6
y3 ∂3ū

∂y3

∣∣∣∣
y=0

+ O(y4).

The body boundary condition gives ū|y=0 = 0,
and eq. (2.2) gives ∂ū/∂y|y=0 = τw/µ. If we apply
eq. (2.30) at y = 0 and neglect turbulent stresses,
we find that

− Ue
dUe

dx
= ν

∂2ū
∂y2

∣∣∣∣
y=0

. (2.35)

This means ∂2ū/∂y2
∣∣

y=0 = 0 for the steady flow
along a flat plate. Further, if we differentiate
eq. (2.30) with respect to y, we find that
∂3ū/∂y3|y=0 = 0. In this way, we have shown that
ū in the inner layer can be expressed as

ū = y
τw

µ
+ O(y4), (2.36)

where O ( ) means order of magnitude. This means
ū is a function of y, τw , and µ, but it also will be a
function of ρ as a consequence of the fact that the
laminar stresses τl decelerate the fluid particles.
This is expressed by eq. (2.30). Similar to Prandtl
(1933), this gives

Inner law: ū = f (τw, ρ, µ, y) . (2.37)

We do not know the function f in the whole inner
layer but only very close to the surface of the flat
plate, as expressed by eq. (2.36).

von Karman (1930) deduced that in the outer
layer, we can write

Outer law: U − ū = f (τw, ρ, y, δ) . (2.38)

We have used the same symbol f in eqs. (2.37)
and (2.38) to indicate a function, but obviously it
is not the same function in the two expressions.
Because laminar stresses τl do not matter in the
outer layer, we can understand why eq. (2.38) does
not depend on µ. The presence of τw in eq. (2.38)
expresses the fact that the wall retards the flow in
the outer layer.

In the overlap layer, we expect that the outer law
and the inner law match, or that both eqs. (2.37)
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and (2.38) are valid. Before proceeding with the
matching, we will introduce nondimensional vari-
ables using the Pi-theorem. The Pi-theorem is due
to Buckingham (1915) and was elaborated in detail
by Rouse (1961).

The Pi-theorem states:
Let a physical law be expressed in terms of n
physical quantities, and let k be the number of
fundamental units needed to measure all quanti-
ties. Then the law can be re-expressed as a relation
among (n-k) dimensionless quantities.

Both eqs. (2.37) and (2.38) contain five physi-
cal quantities and three fundamental units (mass,
length, and time). This means that according to
the Pi-theorem, eqs. (2.37) and (2.38) can be re-
expressed in terms of 5 − 3 = 2 dimensionless
variables. The expressions are

Inner law:
ū
v∗ = f

(
yv∗

ν

)
(2.39)

Outer law:
U − ū

v∗ = g
( y

δ

)
. (2.40)

Here

v∗ =
√

τw

ρ
(2.41)

is called the wall friction velocity. In order to check
that v∗ has the units of ms−1, it is noted that τw has
the units of Nm−2 or kgm−1s−2 and that ρ has the
units of kgm−3. This means that τw/ρ has the units
of m2s−2. We can find the function f in eq. (2.39)
very near the wall by using eq. (2.36). We then
divide both sides of eq. (2.36) by

√
τw/ρ, that is,

v∗. Using µ = νρ, this gives

ū
v∗ ≈ yτw

νρ
√

τw/ρ
= yv∗

ν
. (2.42)

We now apply eqs. (2.39) and (2.40) in the overlap
region. This means

Overlap law:
ū
v∗ = f

(
yv∗

ν

)
= U

v∗ − g
( y

δ

)
.

(2.43)

Differentiating eq. (2.43) with respect to y gives

f ′(y+)
v∗

ν
= −g′ (η)

1
δ
. (2.44)

Here

y+ = yv∗

ν
(2.45)

and

η = y
δ
. (2.46)

We then multiply eq. (2.44) by y and get the sepa-
rated variables form:

f ′(y+)y+ = −g′ (η) η. (2.47)

Let us now consider y+ and η as independent vari-
ables. The only way to satisfy eq. (2.47) is for both
the left- and right-hand sides to be equal to the
same constant, which we denote 1/κ . This means

f ′(y+) y+ = 1/κ

g′(η) η = −1/κ
.

Integrating these two equations gives

f (y+) = 1
κ ln (y+) + B

g (η) = − 1
κ ln (η) + A

,

where A and B are constants. This means that in
the overlap layer, we can write either

ū
v∗ = 1

κ
ln

(
yv∗

ν

)
+ B (2.48)

by using inner layer variables or

U − ū
v∗ = − 1

κ
ln

( y
δ

)
+ A (2.49)

by using outer-layer variables. The constants κ , B,
and A have to be experimentally determined and
are found to be κ = 0.4 and B = 5.5 according to
Nikuradse (1930). Schultz-Grunow (1940) found
that A≈ 2.35. The overlap region corresponds to
35 < yv∗/ν < 350. We should note that eq. (2.48)
cannot be valid in the whole inner layer. It does not
agree with eq. (2.42) and will actually give infinite
value of ū for y = 0. Further, eq. (2.49) cannot be
valid in the whole outer layer. We see that it does
not give ū = U when y = δ.

Based on experimental results, it is possible to
construct a composite representation of ū for both
the outer layer and the overlap layer (White 1974).
For turbulent flow along a flat plate, we can write

ū
v∗ = 2.5 ln

(
yv∗

ν

)
+ 5.5 + 2.5 sin2

(π

2
y
δ

)
.

(2.50)

When y/δ is small, that is, in the overlap layer, we
get eq. (2.48). If we substitute y = δ in eq. (2.50),
we get a relationship between U and δ.

In order to determine ū as a function of y and x
based on eq. (2.50), we need to know v∗ = √

τw/ρ

and δ. Because eq. (2.50) does not apply in the
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Drag force D

Control 
volume

Constant 
pressure

y = H

y =Y

u (y)

Streamline outside shear area

U

U

U

δ99%

y
No-slip

Flat 
plate0 x

Figure 2.8. Definition of control volume for flow past
a flat plate. (White, F. M., 1974, Viscous Fluid Flow,
McGraw-Hill Book Company, 2nd ed. 1991, Printed in
Singapore. The figure is reprinted with permission of The
McGraw-Hill Companies.)

inner layer, we cannot determine τw based on
eqs. (2.2) and (2.50). However, it is possible to
find an expression for τw based on conservation
of fluid momentum. We use a control volume, as
shown in Figure 2.8. The control volume has a hor-
izontal extent from the leading edge of the plate
to x. The upper boundary of the control volume
is outside the shear area or boundary layer. We
need to consider forces due to pressure, viscous,
and Reynolds (turbulent) stresses on the control
volume. This will be based on boundary-layer the-
ory. This means the pressure does not vary with y.
Because ∂p/∂x is zero for flow along a flat plate,
the pressure does not vary along the sides of the
control volume. The force on the control volume
due to pressure is therefore zero. We use eqs. (2.15)
and (2.16) in combination with Figure 2.7 to con-
sider the viscous stresses on the control volume.
There, a viscous stress τ11 = τxx = 2µ∂ū/∂x acts
on the vertical side parallel to the y-axis at x. This
is negligible according to the boundary-layer the-
ory. The only viscous stress acting on the control
volume is at the side coinciding with the surface of
the plate from the leading edge to x. This means
that on the control volume, a longitudinal force
D acts where D is the frictional (drag) force on
the plate. D follows from integrating τw given by
eq. (2.2) from the leading edge to x. τw also follows
from eqs. (2.15) and (2.16) by noting the difference
in normal vector n = (n1, n2, n3) that applies.

Then we have to consider the turbulent stresses.
The turbulent stress −ρu′v′ acting along the flat
plate is zero. This is a simple consequence of the
fact that u′ and v′ are zero on the plate. The lon-
gitudinal component of turbulent stresses on the
vertical side of the control volume placed at the

horizontal position x is −ρu′2. This gives a negli-
gible effect according to the boundary-layer the-
ory. We can also see this from eq. (2.30), where no
stress effect comes from a term like that.

The conservation of fluid momentum in the x-
direction can then be expressed as

− D = ρ

Y∫
0

ū2 dy−ρ

H∫
0

U2 dy. (2.51)

The first and second terms on the right-hand side
of eq. (2.51) correspond to the momentum flux
through the vertical side at x and at the leading
edge, respectively. The integration limits Y and H
are defined in Figure 2.8. Because eq. (2.30) fol-
lows from conservation of fluid momentum, we
could obviously have integrated this equation over
the control volume and obtained eq. (2.51). We can
rewrite eq. (2.51) by using conservation of mass for
the control volume, that is,

UH =
Y∫

0

ū dy. (2.52)

This gives

D = ρ

Y∫
0

ū (U − ū) dy. (2.53)

This means that D can be expressed in terms of
the momentum thickness

θ =
Y∫

0

ū
U

(
1 − ū

U

)
dy, (2.54)

that is,

D = ρU2θ. (2.55)

Eq. (2.54) is a general definition of momentum
thickness, whereas eq. (2.55) applies only to our
considered boundary-layer flow along a flat plate.
We define the friction coefficient

C f = τw

0.5ρU2
(2.56)

expressing the frictional stress on the plate. By
using that D = ∫ x

0 τwdx, i.e. τw = dD/dx, we have

C f = 2
dθ

dx
. (2.57)

Because eq. (2.50) is valid everywhere in the
boundary layer except in the viscous sublayer,
which is a very small fraction of the boundary
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Table 2.1. Total drag computation for turbulent flow along a smooth flat plate

Rn

CF , “Exact”
(White 1974,
Table 6.6) CF , ITTC Error, % CF (eq. 2.66) Error, %

CF

(Hughes
eq. 2.67) Error, %

106 0.004344 0.004688 7.9 0.004210 −3.1 0.004188 −3.6
107 0.003015 0.003000 0.5 0.003030 0.5 0.002672 −11.4
108 0.002169 0.002083 −3.9 0.002181 0.5 0.001852 −14.6
109 0.001612 0.001531 −5.0 0.001569 −2.6 0.001359 −15.7
1010 0.001236 0.001172 −5.2 0.001129 −8.7 0.001039 −15.9

layer, we can use eq. (2.50) as a good approxima-
tion in calculating θ given by eq. (2.54). We then
set Y = δ. This gives (see White 1974)

θ

δ
= 3.75

λ
− 24.778

λ2
, (2.58)

where

λ = U
v∗ ≡

√
2

C f
. (2.59)

We can also express λ by using eq. (2.50) at y = δ.
This gives

λ = 2.5 ln
[

Uδ

νλ

]
+ 8. (2.60)

Eliminating δ between eqs. (2.58) and (2.60) gives

Rnθ ≡ Uθ

ν
= λ

(
3.75
λ

− 24.778
λ2

)
e0.4(λ−8).

(2.61)

By using that C f can be expressed in terms of λ by
eq. (2.59) and by curve-fitting, White (1974) found
that eq. (2.61) can be approximated as

C f ≈ 0.012Rn−1/6
θ . (2.62)

By substituting eq. (2.62) into (2.57), we find

Rnx ≡ Ux
ν

= 1
0.006

Rnθ∫
0

Rn1/6
θ dRnθ

or

Rnθ = 0.0142Rn6/7
x . (2.63)

Substituting eq. (2.63) into eq. (2.62) gives

C f = 0.0244Rn−1/7
x . (2.64)

According to White (1974), a more correct for-
mula is

C f = 0.027Rn−1/7
x . (2.65)

From the expression above, C f is infinite at x =
0. This means the local behavior near the leading
edge is wrong, but this causes a negligible error
in predicting the drag on the plate. By integrating
eq. (2.65), we find the frictional force coefficient
CF or

CF =
∫ L

0 τwdx

0.5ρU2 L
= 1

L

L∫
0

C f (x) dx

= 1
Rn

Rn∫
0

C f (Rnx) dRnx,

where Rn = UL/ν. This means

CF = 0.0303Rn−1/7. (2.66)

In Table 2.1, this formula is compared with what
White (1974) considered the “exact” solution of
CF in a broad Reynolds number range. The lower
Reynolds numbers are typical for ship model test-
ing, whereas the higher Reynolds numbers are rep-
resentative for full-scale ships. CF -values based on
the ITTC formula and given by eq. (2.4) are also
included in the table. Also, other formulas not con-
sidered here exist for CF for turbulent flow along
a smooth flat plate. We must also mention the
Hughes (1954) formula that was commonly used
in ship model testing:

CF = 0.066

(log10 Rn − 2.03)2 . (2.67)

Calculations by eq. (2.67) are also presented in
Table 2.1 and show that the ITTC formula is in
general a better approximation than the Hughes
formula. However, eq. (2.66) generally gives the
results closest to what White (1974) considers the
correct expression.
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In order to estimate the boundary-layer thick-
ness δ, we first find a relationship between C f and
δ, for instance, by using eq. (2.60). By curve fitting,
White (1974) found that

C f ≈ 0.018Rn−1/6
δ ,

where Rnδ = Uδ/ν. Using eq. (2.65) gives

Uδ

ν
= 0.11

(
Ux
ν

)6/7

.

However, using eq. (2.64) gives a relatively differ-
ent result, that is,

Uδ

ν
= 0.16

(
Ux
ν

)6/7

or

δ = 0.16x

(Rnx)1/7 . (2.68)

Let us consider the case U = 20 ms−1, x = 100 m
and use ν = 10−6 m2s−1. This gives the boundary-
layer thickness as 0.75 m. This has relevance for
the boundary-layer thickness at the aft end of a
100 m–long monohull at a speed of 20 ms−1. Let
us consider the corresponding thickness at model
scale and assume a model length LM = 4 m. The
ratio between full-scale ship length LS and LM

is 25. Model testing is done by Froude scaling.
This means that the model speed is (LM/LS)0.5

times the full-scale speed, or 4 ms−1 in this case.
Assuming turbulent flow in model scale and using
ν = 10−6 m2s−1 and eq. (2.68) gives that the bound-
ary layer thickness is equal to 0.06 m at the aft end
of the ship model.

Eq. (2.68) is a geometrical measure of the
boundary-layer thickness. There are also other
measures of the boundary-layer thickness. One is
the momentum thickness θ defined by eq. (2.54).
Another is the displacement thickness δ∗. We will
introduce this by means of Figure 2.8. From con-
tinuity of fluid mass of an incompressible fluid, it
follows that

UH =
Y∫

0

u dy =
Y∫

0

(U + ū − U) dy

(2.69)

= UY +
Y∫

0

(ū − U) dy.

Here Y = H + δ∗ so that δ∗ expresses how much
the streamline at y = H at the leading edge has
moved outward with respect to the plate at the

location x (Figure 2.8). From eq. (2.69), it follows
that

U (Y − H) = Uδ∗ =
Y∫

0

(U − ū) dy

or

δ∗ =
Y→∞∫
0

(
1 − ū

U

)
dy. (2.70)

We can use eq. (2.50) to calculate δ∗. We introduce
then η = y/δ as an integration variable and inte-
grate from y = 0 until y = δ instead of until infinity.
Eq. (2.70) can be rewritten as

δ∗

δ
= v∗

U

1∫
0

(
U
v∗ − ū

v∗

)
dη.

Further, eq. (2.50) can be expressed as

ū
v∗ = 2.5 ln η + 2.5 ln

δv∗

ν
+ 5.5 + 2.5 sin2

(π

2
η
)

.

This means
U
v∗ = 2.5 ln

δv∗

ν
+ 8.

Further, integrating and using eq. (2.59) gives

δ∗

δ
= 3.75

√
C f /2.

We have already found δ and C f as a function of
Rnx (see eqs. (2.64) and (2.68)). This gives

δ∗ = 0.066 x/Rn3/14
x . (2.71)

We note that δ∗ is clearly smaller than δ. This thick-
ness parameter can be used to measure how much
the flow outside the boundary layer is affected by
the boundary layer. As shown in Figure 2.8, the
slope of the streamline is dδ∗/dx. Because the flow
is parallel to a streamline and U is the dominant
velocity outside the boundary layer, we find that
there is a vertical velocity

v̄ = U
dδ∗

dx
(2.72)

at the outer part of the boundary layer. This rep-
resents then a boundary condition for the poten-
tial flow outside the boundary layer. Eq. (2.72)
expresses that there in the potential flow appears
a flow coming out from the plate. A consequence
of this is that there exists a pressure gradient in the
x-direction. However, when calculating the effect
of this pressure gradient on the viscous flow, we
must also correct the boundary-layer equation.
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This effect is not negligible in general, but the anal-
ysis will not be pursued here.

In order to find a measure of the thickness of
the viscous sublayer we use the information about
the velocity distribution given by eq. (2.50), which
is valid in the outer and overlap layers but not in
the viscous sublayer. The lowest y value for which
eq. (2.50) is valid corresponds to yv∗/ν = 35. We
then need to determine the friction velocity v∗ =√

τw/ρ, where τw = 0.5ρU2C f . Using eq. (2.65) for
C f gives

v∗ = 0.114 U/Rn1/14
x . (2.73)

We define the thickness δVS of the viscous sublayer
by δVSv

∗/ν = 35. This means

δVS = 307
x

Rn13/14
x

. (2.74)

Using the previous example with U = 20 ms−1,
x = 100 m, and ν = 10−6 m2s−1 gives δVS = 70 ·
10−6 m or only 0.9 · 10−4 times the boundary-layer
thickness we found.

The above-discussed formulas for the frictional
force constitute only one part of the total viscous
resistance effect for the ship. We consider other
effects in the following section.

2.2.5 Form resistance components

Experimental results show that eq. (2.4) has to be
modified to describe the viscous resistance of high-
speed monohulls and catamarans. A form resis-
tance component exists because of the interaction
between the ship’s three-dimensional shape and
the viscosity. Wave resistance is also a function of
the ship’s three-dimensional and finite transverse-
dimensional shape. However, viscosity does not
have an important influence on wave resistance,
or at least it is common to assume this. This means
wave resistance is not considered as a part of the
form resistance. The form resistance can be asso-
ciated with the following three effects:

� Frictional resistance
� Viscous pressure resistance
� Flow separation

We discuss these different effects in the follow-
ing text. When we derived the formulas for vis-
cous resistance of a flat plate, we used the ship
speed as the tangential velocity outside the bound-
ary layer. However, the ship’s three-dimensional

form affects (and in general increases) the tangen-
tial velocity just outside the boundary layer. As a
consequence, the frictional stress on the hull gen-
erally will increase along the ship. When calculat-
ing the contribution due to viscous resistance, the
frictional stress must be resolved into a compo-
nent parallel to the longitudinal coordinate of the
ship. However, this effect is small, particularly for
slender hull forms. We should also note that the
ship’s three-dimensional shape causes a pressure
gradient along the hull. This influences the velocity
distribution in the boundary layer and therefore
the frictional stress at the hull surface. Another
important aspect is that the flow in the boundary
layer is 3D and not 2D as we assumed in the anal-
ysis of turbulent flow along the flat plate. Further,
we have implicitly assumed a thin boundary layer,
which may be less appropriate in the aft end of the
ship.

The second main contribution to form resis-
tance is the viscous pressure resistance. We explain
this by referring to a situation in which vis-
cous resistance is dominant and wave resistance
does not matter; this means for Froude numbers
U/ (Lg)0.5 less than ≈0.15. In this case, there
is negligible free-surface motion and the normal
velocity on the mean free surface can be set equal
to zero. Let us look upon the flow from a reference
frame following the ship. This means the forward
speed of the ship appears as an incident flow veloc-
ity U along the longitudinal x-axis pointing toward
the stern of the ship (Figure 2.9). The free-surface
condition and the horizontal direction of the inci-
dent flow make the flow around the ship the same
as the flow around a double body consisting of the
submerged part of the ship and its image about
the mean free surface. This is a consequence of
the fact that the steady flow around the double
body is symmetric about the xy-plane. This means
zero normal velocity on z = 0 outside the body,

x

z

L

Image ship

U

Figure 2.9. Double-body approximation. For Froude
number Fn = U/

√
Lg < ≈0.15 the flow around a ship

with speed U can be represented by the flow around a
double body consisting of the submerged ship and its
image about the mean free surface.
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Pressure distribution

Pressure distribution

U

U

Figure 2.10. The flow and pressure distributions around
a ship when Fn < ≈0.15 (see Figure 2.9) Ambient pres-
sure is excluded. The upper figure does not account
for viscosity. The shaded area in the lower figure is
the boundary layer and wake where viscosity matters
(Walderhaug 1972).

that is, a similar condition that we have specified
in the free-surface condition for the ship problem.

Having now created the equivalent to the
double-body problem, we can use knowledge
about the flow around a body in infinite fluid. If
viscosity is neglected, the flow at the waterline
and the pressure force distribution look like those
in the upper drawing of Figure 2.10. Remember
that the spacing between the streamlines is an
implicit expression of the flow velocity, with high
velocities in regions with narrow spacings. Because
increasing velocity means decreasing pressure, we
see that the pressure increases in regions with
wider spacing. Because the ambient pressure is
constant in space and gives zero force, its effect on
the pressure force distribution is not included in
Figure 2.10. The resulting force on the ship due to
the pressure force distribution in the upper draw-
ing in Figure 2.10 is zero. This is the well-known
D’Alembert paradox, that is, there is no hydro-
dynamic force acting on a body in infinite fluid
due to steady potential flow without circulation.
However, the pressure influenced by the bound-
ary layer changes this situation. The shaded area
in the lower drawing of Figure 2.10 indicates the
boundary layer. Because of this viscosity region
next to the hull, the pressure force in the bow part
does not cancel the pressure force in the aft part
of the ship, so the boundary layer affects the pres-
sure distribution. We discussed this previously in
connection with eq. (2.72). Where the boundary
layer ends at the stern, a wake forms behind the
ship, where turbulent stresses are important. The
pressure approaches ambient pressure (or zero in
Figure 2.10) at some distance downstream in the
wake not shown in Figure 2.10. Actually, the pres-

sure has not yet reached its maximum value in the
small part of the wake presented in Figure 2.10.
From this figure, we see that the effect of the
boundary layer on the pressure is negligible in the
bow part, where the boundary layer is thin rela-
tive to that in the aft part. The lower drawing in
Figure 2.10 illustrates clearly that there is a viscous
pressure resistance.

The third main cause of form resistance is flow
separation. If the flow separates from the hull,
we get a larger domain aft of the separation line,
where viscosity matters. This implies a larger influ-
ence on the pressure distribution and increased
form resistance. Cross-flows past a circular cylin-
der and a sphere are classical examples of sepa-
rated flow. When the Reynolds number is larger
than ≈103 for circular cylinders, the major part of
the drag forces is the result of the pressure.

If a surface has a sharp edge, the flow will sep-
arate from the sharp edge when there is a cross-
flow past the edge. However, the flow may also
separate from a surface without sharp corners, as
we have seen, for example, in bluff bodies such as
spheres and circular cylinders. We illustrate how
flow separation starts for a 2D flow situation by
means of Figure 2.11. If there is a point S on the
body surface where ∂u/∂y = 0 and there is back-
flow aft of the point S, we get flow separation from
point S. If ∂u/∂y = 0 also aft of S, we do not get
flow separation from S. This situation is beneficial
because ∂u/∂y = 0 means zero shear stress τw on
the wall. This can be obtained by a proper design
of the hull surface (Tregde 2004) and is referred
to as Stratford (1959) flow. The position of point
S depends on the pressure gradient ∂p/∂x along
the hull surface and on the flow conditions (lam-
inar or turbulent) in the boundary layer ahead
of the separation point. An adverse pressure

y

δ

∂u
∂y

= 0

Figure 2.11. 2D flow with a boundary layer of thickness
δ. Illustration of conditions for flow separation, that is,
∂u/∂y is zero at the surface at S and there is a backflow
near the surface aft of S. The flow will then separate at
point S (Walderhaug 1972).
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gradient, that is, ∂p/∂x is positive, is necessary for
flow separation according to boundary-layer the-
ory. We can see this from eq. (2.30) by first noting
that ∂p/∂x = −ρUe dUe/dx. Applying eq. (2.30)
for y = 0, that is, on the body surface, gives

∂p
∂x

= µ
∂2u
∂y2

for y = 0. (2.75)

We recall from calculus that the condition du/dy =
0 for flow separation is also a condition for u (y) to
have either a local maximum or minimum value.
Because in our case we obviously have a minimum
value, it follows that ∂2u/∂y2 is positive at the sepa-
ration point S. It then follows from eq. (2.75) that a
necessary condition for separation to occur is that
∂p/∂x is positive on the hull surface at the separa-
tion point. Because ∂p/∂x = 0 for flow along a flat
plate, flow separation will not occur in this case.

Cross-flow past a circular cylinder is a classi-
cal case of flow separation. Figure 2.12 illustrates
the different regimes of boundary-layer flow for
2D cross-flow past a circular cylinder at trans-
critical flow. The instability point of the laminar
boundary-layer flow is Reynolds-number depen-
dent. No instability will occur ahead of the sep-
aration point for subcritical flow. The subcritical
flow regime is for Reynolds number Rn = UD/ν

less than ≈2 · 105 for flow around a smooth cir-
cular cylinder with diameter D in steady incident
flow with velocity U. The critical flow regime is
for ≈2 · 105 < Rn < ≈5 · 105. The supercritical
flow regime is for ≈5 · 105 < Rn < 3 · 106, and the
transcritical flow is for Reynolds numbers larger
than 3 · 106.

If the flow is turbulent ahead of the separation
point (line in 3D case) S, separation occurs further
downstream than if the flow is laminar ahead of the
separation point (line in 3D case). The reason is
that the large exchange of fluid momentum occur-
ring in turbulent flows causes less deceleration of
the boundary-layer flow relative to laminar flows.
Even if the boundary-layer flow stays laminar up
to separation, the wake flow will become turbu-
lent for Reynolds numbers of practical interest.
The mean drag on a circular cylinder will decrease
as a consequence of turbulent separation. This
is related to the fact that the wake behind the
cylinder is narrower than that for laminar sepa-
ration. The frictional drag on the cylinder at high
Reynolds number will be lower for laminar bound-
ary layer than for turbulent boundary layer, as we
have seen for the flow along a flat plate. However,

Instability
Point

Separation
Point

Laminar
boundary

layer

DU

Transition

Turbulent
boundary
layer

Figure 2.12. Schematic view of flow domains in the
boundary layer of a circular cylinder with steady-state
cross-flow at transcritical flow. The incident flow veloc-
ity U is constant. The instability and separation points
depend on the Reynolds number UD/ν.

the frictional drag is a small part of the drag on a
circular cylinder for Reynolds numbers of practi-
cal interest to us.

When the flow separation occurs from sharp cor-
ners and shear forces have secondary importance
relative to pressure loads, the Reynolds number
effect is not important in scaling drag forces from
model to full scale. An example is the cross-flow
past the rectangular cross section illustrated in
Figure 2.13. The model is 2.63 m high and of con-
stant cross-sectional form with side lengths 0.5 m
and 0.42 m. The model was towed vertically in the
middle of a towing tank of breadth 10 m and depth
5.5 m with the longest cross-sectional side in the
towing direction. The submergence was 2.5 m, and
the constant carriage velocity was 0.3 ms−1. This is
a sufficiently low velocity to avoid the influence of
surface waves. Further, the cross-flow at the free
surface can be approximated as two-dimensional.
Even though the towing speed is constant, the flow
is unsteady relative to the body. Pictures of the flow
were taken by covering the water surface with con-
fetti and using an exposure time of 1 s.

Figure 2.13 shows an instantaneous picture
when the flow is symmetric about the center plane
of the model. The separated vortices from the two
leading edges are much more oval in form than
the two vortices downstream of the body. Later
on, an asymmetry is created in the wake, causing
alternate vortex shedding from the edges. The con-
sequence is an oscillatory lift force perpendicular
to the towing direction. The drag force contains a
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Figure 2.13. The photo on the left shows visualization of initial instantaneous flow around a rectangu-
lar cross section that is towed with constant velocity in the left direction. The flow is unsteady relative
to the body and will later be asymmetric about the center plane, resulting in alternate vortex shedding
from the edges. The photo on the right is from Prandtl (1956) and shows separated flow around an
airfoil at a high angle of attack, resulting in stalling.

steady part and an oscillatory part. If the structure
has natural frequencies in the vicinity of vortex
shedding frequencies, strong dynamic oscillations
of the structure may occur. Vortex-induced vibra-
tions are a classical problem associated with cross-
flow past cylindrical structures (Faltinsen 1990).

Flow separation should not occur at continu-
ously curved surfaces of a properly designed ship
on a straight course. However, we cannot avoid it
at the transom stern. When the Froude number is
higher than about 0.4, this flow separation causes a
dry transom stern. The flow separation at the tran-
som stern has an important effect on the hydrody-
namic lift on a planing vessel (see Chapter 9). Gen-
erally speaking, the flow separation at the transom
stern is not beneficial at low Froude numbers, but
has clear advantages for the hydrodynamic perfor-
mance at high speed. In Chapter 10, we discuss the
effect of cross-flow separation during maneuver-
ing of a ship.

When the angle of attack of the flow around a
foil is not small, there is also the possibility of flow
separation near the nose of the foil (“stalling”)

Sinusoidal roughness

Geometrically regular roughness

Nikuradse’s sand roughness

Roughness due to paint

λ

k

ks

L

s

k

Figure 2.14. Visualization of different
types of roughness.

(see Figure 2.13). This decreases the mean lift
force on the foil relative to no flow separation.
Flow separation will then also affect cavitation
inception.

2.2.6 Effect of hull surface roughness on
viscous resistance

In the previous sections, we assumed a smooth
hull surface. Actually, the frictional resistance is
affected by the roughness of the hull surface. The
influence of roughness depends in principle on
many parameters, such as the height, form, and dis-
tribution of the roughness. Figure 2.14 illustrates
both idealized types of roughness and roughness
due to paint. If we look by microscope at the flow
around the roughness structure on the scale of the
roughness dimensions, the flow we see has simi-
larities to flow around macroscale structures. For
instance, we have the possibility of flow separa-
tion. If we look at the sinusoidal roughness in
Figure 2.14, this will depend on the roughness
height k and the wavelength λ as defined in the
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figure. The larger k/λ, the larger the possibility of
flow separation. We are sure that the flow will sepa-
rate around a single rectangular type of roughness.
If there is a geometrically regular system of rec-
tangular roughness elements, the flow will depend
on k, the horizontal length s of each rectangle, and
the distance L between two subsequent rectan-
gular elements, as defined in Figure 2.14. Even if
the flow around the roughness structure does not
separate, there will be a form resistance on the
roughness structure similar to that discussed in the
previous section. The details of the flow become
very complicated to describe. We must also real-
ize the irregular shape of realistic roughness, for
instance, because of paint, as shown in Figure 2.14.
If these were irregular sea waves, we would use
a sea spectrum to characterize the “signal” (See
Chapter 3).

A common practice is to use an equivalent
sand-grain height to characterize the influence
of roughness on viscous resistance. This is based
on Nikuradse’s (1933) experiments with closely
spaced sand grains of equal height kS as shown in
Figure 2.14. We will come back to that later. For
the time being, we assume that the roughness
is uniformly distributed over the plate, like sand
grains of the same size and constant density. The
roughness height k is used as the only roughness
parameter.

We can derive expressions for the mean longitu-
dinal velocity ū on the boundary layer of a rough
plate the same way we did for the flow along a
smooth plate. This means, by dimensional analy-
sis, we can establish a logarithmic dependence in
an overlap layer. The coefficients in the expression
are then experimentally determined. Once the ū
behavior in the boundary layer is identified, we
can proceed as we did for a smooth plate to obtain
frictional drag on the plate.

Let us show the procedure for finding ū in some
detail. We first assume that the roughness height k
is larger than the thickness of the viscous sublayer
for the smooth plate. This means kv∗/ν is larger
than about 35. It implies that there is no viscous
sublayer, but we can postulate that there is an inner
layer, where

ū = f (τw, ρ, k, y) . (2.76)

This has similarities to eq. (2.37) for a smooth
plate. The difference is that µ is substituted with

k. Using dimensionless variables as we did for a
smooth plate, we can re-express eq. (2.76) as

ū
v∗ = f

( y
k

)
, (2.77)

where v∗ = √
τw/ρ. The outer law is the same for

smooth and rough plates (see eqs. (2.38) and (2.40)
in dimensional and dimensionless forms, respec-
tively). By defining an overlap layer and following
the same procedure that leads to eqs. (2.48) and
(2.49), we find the law

ū
v∗ = 1

κ
ln

( y
k

)
+ const (2.78)

for the overlap region in fully rough flow. Exper-
iments show that 1/κ is about the same value as
that for a smooth plate, that is, 2.5. White (1974)
showed that it is possible to construct a formula for
ū valid for any roughness, including a smooth plate.
The expression for closely spaced sand grains is

ū
v∗ = 2.5 ln

(
yv∗

ν

)
+ 5.5 − 2.5 ln

(
1 + 0.3

ksv
∗

ν

)
.

(2.79)

We have set k = ks to indicate that it is valid for
closely spaced sand grains. If ks = 0, eq. (2.79)
agrees with the expression for a smooth plate.
If ksv

∗/ν is larger than 60, which corresponds to
fully rough flow, then 1 + 0.3ksv

∗/ν ≈ 0.3ksv
∗/ν

and eq. (2.79) becomes

ū
v∗ = 2.5 ln

[(
yv∗

ν

) (
ν

ksv∗

)]
+ 5.5 − 2.5 ln (0.3),

that is,

ū
v∗ = 2.5 ln

(
y
ks

)
+ 8.5. (2.80)

This agrees with eq. (2.78). We are interested in
finding the frictional force on the rough plate. This
can be achieved following the same procedure
we used for a smooth plate; however, this is not
done here. Instead we present the final formulas
for the frictional force coefficient CF as given by
Schlichting (1979). These corresponding results
are shown in Figure 2.15, in which curves with
either Uks/ν or L/ks constant are indicated. Here
L is the plate length. We note that CF along
curves with constant L/ks becomes independent
of Reynolds number beyond the broken line; this
is called fully rough flow. The CF -value can then
be expressed as

CF =
(

1.89 + 1.62 log10

(
L
ks

))−2.5

(2.81)
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Figure 2.15. Resistance formula of sand-roughened plate; coefficient of total skin friction. L = length
of flat plate, k = roughness height. (ISBN 0-07-055334-3, Schlichting, H., 1979, Boundary-LayerTheory,
7th ed., New York: McGraw-Hill Book Company. The figure is reprinted with permission of The
McGraw-Hill Companies).

for 102 < L/ks < 106. Let us try to estimate when
the flow can be considered fully rough by using
ksv

∗/ν > 60 as a criterion. We use eq. (2.73) for
v∗. Because this applies to a smooth plate, the
results would not be exactly the same as those in
Figure 2.15. Further, because v∗ changes with x,
the criterion for fully rough flow will depend on x.
We have just set x = L in our estimate. This gives
that a minimum value krough of ks for fully rough
flow corresponds to either

L
krough

= 1.9 · 10−3 Rn13/14 (2.82)

or

kroughU

ν
= 103

1.9
Rn1/14. (2.83)

Results from these formulas are presented in
Table 2.2. They agree reasonably well with the
dashed line in Figure 2.15.

We note that the results in Figure 2.15 become
nearly independent of roughness when Uks/ν is
smaller than the order of 100. We can use this to
define an admissible roughness height kadm given
that there is no increase in drag compared with a

smooth plate. Schlichting (1979) proposes that

kadm = 100
ν

U
. (2.84)

Because Froude scaling is used in ship model test-
ing and the model speed is lower than full-scale
speed, we see that it is easier to obtain a hydrauli-
cally smooth surface in model condition than in
full scale. As an example, if we consider a model
speed of 5 ms−1 and use ν = 10−6 m2s−1, this leads
to kadm = 20 µm (or 20 · 10−6 m). Let us say that

Table 2.2. Estimates of lowest sand roughness
height krough for fully rough flow along a flat plate
of length L as a function of Reynolds number a

Rn
L

krough

Ukrough

ν

106 7 · 102 1.4 · 103

107 6 · 103 1.7 · 103

108 5 · 104 2.0 · 103

109 4 · 105 2.3 · 103

a Estimates based on eqs. (2.82) and (2.83). The latter
uses the wall friction velocity v∗ for a smooth plate as
a basis.
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Table 2.3. Effect of roughness on viscous frictional resistance

L(m) Rn
L

krough

L
k

CF,ITTC CF,ROUGH �CF

�CF

(eq. 2.85)

50 109 4.3 · 105 3.3 · 105 0.00153 0.00259 0.00106 0.00045
100 2 · 109 8.2 · 105 6.7 · 105 0.00141 0.00232 0.00091 0.00038
150 3 · 109 1.2 · 106 106 0.00134 0.00218 0.00084 0.00035

L = ship length, Rn = Reynolds number, krough = minimum roughness height for fully rough flow, k =
roughness height = 150 µm, CF,ITTC = ITTC friction coefficient for smooth surface, CF,ROUGH = Schlichting’s
friction coefficient, �CF = CF,ROUGH − CFITTC, U = 20 ms−1, ν = 10−6 m2s−1.

the corresponding full-scale speed is 20 ms−1. This
gives kadm = 5 µm. A ship model is always made
hydraulically smooth, but this is not possible for a
full-scale ship hull, even for a newly built ship with-
out marine fouling accumulated during service.
This is connected to standard fabrication proce-
dures and the low value of kadm. However, efforts
are made to fabricate hydraulically smooth foils.

It is worth keeping in mind that the results in
Figure 2.15 are for a sand-roughened plate. The
practical use of the results for our purposes
requires that we define an equivalent sand rough-
ness height ks . This is, for instance, 1 µm for pol-
ished metal such as stainless steel used for foils
and 60 µm for antifouling paint. Because rough-
ness may vary significantly in size and density, it
may be difficult to find an equivalent sand rough-
ness height.

Example: Effect of hull roughness on
viscous resistance
We consider an average hull roughness height
k = 150 · 10−6 m or 0.15 mm, which in practice is an
upper limit for a newly built ship. We assume a ship
speed U = 20 ms−1. If ν = 10−6 m2s−1, this corre-
sponds to Uk/ν = 3 · 103. Let us for simplicity set k
equal to ks and use eq. (2.83) to estimate if the flow
is fully rough. This depends on the Reynolds num-
ber or the ship length. We consider only fully rough
flow and use eq. (2.81) to calculate CF and define
�CF so that CF = CF,ITTC + �CF , where CF,ITTC

is the ITTC formula for a smooth hull (see eq.
(2.4)). We have already pointed out that there are
many formulas for CF of a smooth plate and that
they do not give the same results. For instance, CF

for a smooth plate presented in Figure 2.15 does
not give the same results as the CF,ITTC formula.
However, because CF,ITTC is commonly used for

ship hulls, we prefer such a formula in this context.
Results for different ship lengths are presented in
Table 2.3. In the same table, �CF values from

�CF =
[
111 (AHR · U)0.21 − 404

]
C2

F,ITTC

(2.85)

are also given. Here AHR means the average hull
roughness in micrometers. This has been set equal
to 150 µm. U should be given in units of meter
per second (ms−1). Eq. (2.85) is relevant only
for full-scale ships and is used by MARINTEK
(Minsaas, private communication). We will com-
pare �CF for ship lengths equal to 50, 100, and
150 m. Because L/krough in all cases is larger than
L/k, fully rough flow can be assumed. We note
that �CF for fully rough flow is about twice the
value given by the MARINTEK formula. Why is
that so? The reason is simply that AHR is not the
same as Nikuradse’s sand roughness height ks . In
a way, it accounts for differences in the details of
the roughness as shown in Figure 2.14. Values of
AHR for newly built ships may vary between 75
and 150 µm, and �CF between 0.0002 and 0.0008
are commonly used. From Table 2.3 we note that
�CF is not small relative to CF for a smooth sur-
face. Other empirical formulas exist for the rough-
ness effect. The formula

103�CF = 44
[
(AHR/L)1/3 − 10Rn−1/3

]
+ 0.125

(2.86)

by Bowden and Davison (1974) accounts for cor-
relation between model tests and full scale and
includes the effect of roughness. In this case, AHR
has dimension meter.

2.2.7 Viscous foil resistance

Special formulas are used for the viscous resis-
tance of a foil. Before we discuss details about
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D

F

U
c

α

L

Figure 2.16. Flow past a cambered hydrofoil section.
The angle of attack α is generally defined with respect to
the “nose-tail line,” between the center of the minimum
radius of curvature of the leading edge and the sharp
trailing edge. L and D denote the lift and drag compo-
nents of the total force F, and are defined respectively
to be perpendicular and parallel to the free-stream velo-
city vector. (Newman, J. N., 1977, Marine Hydrodynam-
ics, Cambridge: The MIT Press. The figure is reprinted
with the permission of The MIT Press)

it, we need some definitions. Let us refer to the
two-dimensional case shown in Figure 2.16. The
length c is called the chord length. The lateral
extent s of the hydrofoil in three dimensions is
called the span. The incident flow with velocity U
has an angle of attackα as defined in the figure. The
lift force L and the drag force D act perpendicular
and parallel, respectively, to the free-stream veloc-
ity vector. The planform area A is defined as the
projected area of the foil in the direction of the

Start of
stalling

1.5

1.0

0.5

–15 –10 –5 0 5 10 15 20

CL

α (deg.)α0

dCL 
dα ≈ 0.11

Figure 2.17. Lift coefficient CL as a function of angle of
attack α for a 2D foil with turbulent boundary layer in
infinite fluid and steady inflow conditions. Linear theory
predicts a lift slope dCL/dα = 0.11 when α is measured
in degrees.

lift force for zero angle of attack α. This means
that A in the two-dimensional case shown in
Figure 2.16 is the chord length c. Further, A for
a thin foil is close to half the wetted surface. The
aspect ratio  is defined as

 = s2

A
. (2.87)

A large-aspect ratio means that the flow is close to
two-dimensional at each cross section of the foil, as
shown in Figure 2.16. A planar foil means that the
angle of attack is the same at each cross section.
A foil is uncambered when the foil is symmetric
about the “nose-tail line,” shown by the dot–long-
dashed line in Figure 2.16. The camber line is the
mean line between the upper and lower surfaces.

Lift and drag coefficients CL and CD for a foil
are defined as

CL = L
ρ

2
U2 A

(2.88)

and

CD = D
ρ

2
U2 A

, (2.89)

respectively.
Figures 2.17 and 2.18 show examples of lift and

drag coefficients as a function of the angle of
attack α for steady flow past a 2D foil in infinite
fluid with turbulent boundary-layer flow condi-
tions. The ambient flow velocity or the foil speed
U is assumed small relative to the speed of sound,
that is, the fluid may be considered incompress-
ible. Abbot and von Doenhoff (1959) have pre-
sented comprehensive experimental results for CL

and CD. If linear theory and an inviscid fluid are

–15 –10 –5 0 105 15 α (deg.)

Bucket

0.01

CD

Figure 2.18. Example of drag coefficient CD as a func-
tion of angle of attack α for a 2D foil with turbulent boun-
dary layer in infinite fluid and steady inflow conditions.
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assumed, the lift coefficient can be expressed as
2π(α − α0), where α is in radians. If the foil sec-
tion is uncambered and there is no flap or zero
flap angle, α0 is zero (see Chapter 6). If α is mea-
sured in degrees, linear theory predicts dCL/dα =
2π(π/180) = 0.11. The comparison with experi-
mental results shows good agreement for a broad
range of angles of attack and for many foil shapes.
Good agreement means less than a 5% difference.
Less good agreement may, for instance, occur
for large foil thickness-to-chord ratio t/c, that is,
t/c > ≈0.14.

When the flow separation occurs from the lead-
ing edge (see Figure 2.13), the lift coefficient
will start decreasing with increasing α. This is
called stalling. Flow separation is affected by the
boundary-layer flow and occurs much easier in
laminar than in turbulent flow. This means a higher
maximum value of CL is obtained for turbulent
boundary-layer flow. A necessary requirement for
flow separation is an adverse pressure gradient
(see Section 2.2.5). Because this occurs at the aft
part of the foil forward of the trailing edge, flow
separation may also happen there.

Inviscid theory for steady flow past a 2D foil in
an infinite and incompressible fluid predicts zero
drag. The drag forces illustrated in Figure 2.18
are therefore the result of viscous effects and are
Reynolds-number dependent. The CD coefficient
presented as a function of α has a bucket form
with a minimum drag coefficient. It is obviously
desirable from resistance and operational points
of view, with a wide bucket causing lowest possi-
ble CD values for the broadest range of angles of
attack.

Many aspects of viscous foil resistance have
implicitly been covered in the previous sections.
The first step is to assume a smooth flat plate and
use the ITTC formula given by eq. (2.4) to cal-
culate frictional resistance. However, the viscous
resistance depends on the pressure distribution
around the foil, which is a function of the angle
of attack α. Because the difference between the
pressures on the pressure and suction sides gives
the dominant contribution to the lift force, we
may say that the lift force affects the viscous resis-
tance. Further, the viscous boundary layer flow will
affect the pressure distribution, as illustrated in
Figure 2.10.

We can estimate the viscous resistance of a 2D
foil by using information from Hoerner (1965). If

we disregard the influence from lift, we can write
the drag coefficient defined in eq. (2.89) as

CD = 2CF [1 + 2(t/c) + 60(t/c)4], (2.90)

where t/c is the thickness-to-chord ratio of the
foil and CF is given by eq. (2.4). This means that
eq. (2.90) applies to a smooth surface in turbulent
flow condition. The formula may also be applied
to a strut.

If the aspect ratio is large, we can use strip
theory to obtain the viscous drag force on the
foil. This means the foil is divided into strips of
small lengths and with cross sections as depicted in
Figure 2.16. The flow is assumed two-dimensional
at each strip. A contribution to the viscous resis-
tance is then found by using eq. (2.90) with cor-
rection for the angle of attack on each strip
(see Figure 2.18) and simply adding together the
results obtained for each strip. In addition, we
must add the induced pressure drag due to the
trailing vortex sheet (see eq. 2.98). This is a 3D
flow effect that increases with decreasing aspect
ratio. The strongest effect is caused by tip vor-
tices. Figure 2.19 illustrates this together with other
strong trailing vortex systems present behind a
submarine. The tip vortices behind the wings of
a big airplane can cause strong rotating flow.
This requires that a small airplane coming after
a big airplane must wait some time before takeoff.
The effect of tip vortices can partly be counter-
acted by using winglets (Figure 2.20) on hydrofoils.
Winglets are used on many airplanes. They force
the flow to be more two-dimensional at the foils,
which means smaller induced drag due to the tip
vortices.

The vorticity in the trailing vortex sheet down-
stream from the foil comes from the boundary
layer along the foil and in the numerical flow sim-
ulations it is often assumed are concentrated in a
thin shear layer downstream from the foil. Actu-
ally, both the boundary layer and the free shear
layer are assumed to have zero thickness in the
calculations. If we look upon the flow in the free
shear layer on the scale of thickness of the free
shear layer, we find a rapid change of the flow
across the free shear layer. On the other hand,
looking upon the flow from outside the shear layer,
we will just see a jump in the tangential velocity
across the shear layer. The pressure is continuous
through the thin free shear layer in a similar way
as we deduced for the boundary layer, that is, as
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(a)

(b) (c)

Figure 2.19. (a) The major vortex configurations around a submarine at a small angle of attack in a
slight turn. (b) Two cross sections of the hull at and behind the sail. In the latter case, the local angle
of attack (drift angle) is larger. (c) Necklace vortices around the control surfaces at the stern (Lugt
1981).

a first approximation, the pressure does not vary
across the boundary layer.

There is zero vorticity outside the boundary
layer and the free shear layer. Vorticity ω is a vec-
tor defined by

ω = ∇ × u = i
(

∂w

∂y
− ∂v

∂z

)
+ j

(
∂u
∂z

− ∂w

∂x

)
(2.91)

+ k
(

∂v

∂x
− ∂u

∂y

)
,

Figure 2.20. Winglets on one of the two low-aspect ratio
foils in the front strut-foil system of a foil catamaran
tested by MARINTEK at Technical University of Berlin
(side view).

where u = (u, v, w) is the fluid velocity, (x, y, z)
is a Cartesian coordinate system, and i, j, and
k are unit vectors along the x-, y-, and z-axes,
respectively.

Because the vorticity is zero outside the bound-
ary and free shear layers, a velocity potential ϕ can
be introduced so that

u = ∇ϕ = i
∂ϕ

∂x
+ j

∂ϕ

∂y
+ k

∂ϕ

∂z
. (2.92)

We can now combine eq. (2.92) with the assump-
tion that the fluid is incompressible, that is, use the
continuity equation

∂u
∂x

+ ∂v

∂y
+ ∂w

∂z
= 0.

This gives

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
= 0. (2.93)

Eq. (2.93) expresses the fact that the velocity
potential satisfies the 3D Laplace equation. In
order to solve this equation, we need boundary
conditions on the foil and along the free shear
layer. This is just one way to solve the poten-
tial flow problem. We also could use the Euler
equations that correspond to the Navier-Stokes
equations with a zero viscosity coefficient. If
we substitute eq. (2.92) into Euler’s equations
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and integrate these equations in space, we get
Bernoulli’s equation for the pressure p, that is,

p + ρ
∂ϕ

∂t
+ ρ

2
|∇ϕ|2 + ρgz = Constant. (2.94)

Here we have included gravitational acceleration
g in Euler equations and assumed that the z-axis
is vertical and positive upward. The terms −ρgz
and −ρ∂ϕ/∂t − 0.5ρ |∇ϕ|2 will be referred to as
hydrostatic and hydrodynamic pressure terms,
respectively.

Another way to represent the potential flow
solution is by means of Biot-Savart’s law (see sec-
tion 6.4.2). This expresses the influence of the vor-
ticity on the fluid velocity in the potential flow
domain. If the foil is thin, this represents the com-
plete contribution to the fluid velocity. We will not
pursue these different ways of finding the poten-
tial flow solution in this context, but use eq. (2.91)
to express the vorticity in the boundary and free
shear layers.

We start with the boundary layer and use
(x, y, z) as a local coordinate system, with the y-
axis normal to the foil surface. Consistent with our
derivation for a 2D boundary layer, we assume
that ∂u/∂y and ∂w/∂y are much larger than ∂v/∂z,
∂u/∂z, ∂w/∂x, and ∂v/∂x. Eq. (2.91) can then be
approximated as

ω = i
∂w

∂y
− k

∂u
∂y

. (2.95)

By integrating eq. (2.95) across the boundary layer
and noting that u and w are zero on the foil surface,
we get

δ∫
0

ω dy = iw − ku, (2.96)

where δ is the boundary layer thickness and u and
w are tangential velocity components on the foil
surface as calculated by potential flow theory.

As for the free shear layer, the integration of
ω across the free shear layer gives i�w − k�u,

where �u and �w are the jumps in the tangen-
tial velocity components u and w across the free
shear layer. �u and �w can be obtained from the
potential flow solution.

What we have tried to illustrate in the previous
text is that the induced drag due to a thin trailing
vortex sheet downstream from a foil can be cal-
culated by potential flow theory. This is possible
because vorticity generated in the boundary layer

is convected downstream in the fluid in a thin free
shear layer and does not diffuse much into the rest
of the fluid.

As an example, consider a thin foil with zero
camber and an elliptical planform. The aspect ratio
is then given by  = 4s/π�0, where s is the span
and �0 is the chord at midspan. If the aspect ratio
is high, the angle of attack α is small, and we con-
sider steady incident flow in infinite fluid, we can
use Prandtl’s lifting theory as described in sec-
tion 6.7.1. The lift and drag coefficients defined
as in eqs. (2.88) and (2.89) become then

CL = 2πα

1 + 2/
(2.97)

and

CD = 4πα2

( + 2)2 , (2.98)

respectively. Here eq. (2.98) represents the
induced pressure drag due to the trailing vor-
tex sheet. If  goes to infinity, we get the two-
dimensional results, that is, CL = 2πα and CD = 0.

2.3 Air resistance component

The air resistance with no wind present may be
expressed as

RAA = 0.5ρaCD AU2, (2.99)

where ρa is the mass density of the air and A is the
area of the above-water hull form projected onto
a transverse plane of the vessel. We note the dif-
ferent form between eqs. (2.3) and (2.99); we used
a surface area S in eq. (2.3) and a projected area
A in eq. (2.99). It is logical to use S when frictional
forces dominate, whereas it is logical to use A when
pressure forces dominate. Efforts are made to
design streamlined superstructures for high-speed
vessels in order to minimize CD. Wind tunnel
tests are commonly used to determine CD. Typical
values of CD are between 0.5 and 0.7. Because
ρa is only 1.25 kgm−3 for dry air at 10◦C whereas
ρ for salt water at 10◦C is 1026.9 kgm−3

, the air
resistance makes a small contribution; however, it
should not be neglected a priori. For instance, an
SES on cushion has a small water resistance rela-
tive to a similarly sized catamaran. The air resis-
tance will then be more significant for the SES than
for the catamaran. The airflow can also influence
trim and sinkage, which again affect the resistance.
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Figure 2.21. Exhaust gas tracing on a
cruise ship by means of computational fluid
dynamics (CFD). (The figure is reprinted
with the permission of CFD Norway AS.)

If a model is made with complete superstructure
and is mounted below the main part of the towing
tank carriage in a model tank, the towing carriage
will affect the airflow and cause false effects, which
can be avoided by mounting the model in front of
the main part of the towing carriage.

Wind-tunnel tests and computional fluid dyna-
mics (CFD) are commonly used to estimate the air
resistance. Figure 2.21 illustrates the use of CFD
to trace exhaust gas on a cruise ship by drawing
streamlines. Calculations of the pressure distribu-
tion and drag coefficient are an integrated part of
the analysis.

2.4 Spray and spray rail resistance components

When the Froude number is larger than approx-
imately 0.5, the occurrence of spray increases
strongly with speed. Figure 2.22 shows an example
of large spray formation due to a round-bilge hull.
Müller-Graf (1991) divides the spray resistance Rs

into two components, that is,

RS = RSP(Fn) + RSF (Rn, Wn), (2.100)

where the spray pressure resistance RSP is a func-
tion of the Froude number and the spray frictional

Figure 2.22. Development of spray at
a semi-displacement round-bilge hull
(Müller-Graf 1991).

resistance RSF is a function of the Reynolds num-
ber Rn and the Weber number

Wn = ρV 2
SR dSR

TS
. (2.101)

Here VSR is the spray velocity, dSR is the spray
thickness, and TS is the surface tension at the
water-air interface. A representative value of TS

is 0.073 Nm−1.
Müller-Graf (private communication, 2004)

gives the following explanation of RSP: “Due to
the high stagnation pressure and large pressure
gradients at the hull of the forebody near below
the free surface, the spray root, a sheet of green
water breaks violently out of the water surface,
causing hereby a fully turbulent flow in the spray
root. The rear part part of the spray root climbs the
hull sides up and aft. Because of the development
of Helmholtz-Taylor instabilities at the surface of
the spray root (Birkhoff and Zarantonello 1957),
which are initiated by the turbulence condition,
the outward thrown part of the spray root bursts
into a white mixture of water droplets and air. This
phenomenon starts at the top and on the front side
of the spray root. RSP is caused by the generation
of the spray root.” When calculations or experi-
ments are done, one cannot clearly separate this
effect from the total pressure distribution on the
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Width bSR of the spray rails for

LWL/BWL > 5.4

bSR1 = (0.0055 – 0.008)LWL
bSR2 = (0.0048 – 0.0055)LWL
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Figure 2.23. (a) Optimal dimensions and arrangement of the Advanced Spray Rail System for round-
bilge monohulls and round-bilge and hard-chine catamaran hulls. (b) Optimal dimensions and arrange-
ment of spray deflectors at round-bilge and hard-chine monohulls (Müller-Graf 1994).

hull. The spray frictional resistance is caused by
the friction of the spray on the above-water hull
form. Because the velocity of the coherent water
sheet of the spray at the hull is difficult to estimate
and by this the frictional resistance coefficients are
unknown, the spray frictional resistance is hard to
calculate. The main direction of flow in the spray
sheet and the direction of the resulting component
of the frictional spray resistance are also unde-
fined. These quantities can be determined reliably
only by full-scale tests.

In order to vary the spray pressure resistance,
one must change the hull form in the bow part.
The spray frictional resistance can be reduced by
using spray rails separating the spray sheet from
the hull and reducing the spray wetted area. How-
ever, introducing spray rails causes spray rail resis-
tance RSR. Müller-Graf (1991) divides RSR into two
components, that is,

RSR = RSRP + RSRF , (2.102)

where the spray rail pressure resistance RSRP is
caused by generation of hydrodynamic lift due to
deflection of the spray sheet in the longitudinal
and transversal directions at the bottom of the rail.
The spray rail frictional resistance RSRF is caused
by frictional force on the rail. This resistance com-
ponent is negligible relative to the spray frictional
resistance RSF . We cannot calculate RSR in a sim-
ple way. The hydrodynamic lift on the spray rails
will affect the trim of the vessel and thereby the
hull resistance.

Müller-Graf (1991, 1997) describes the results
of systematic model tests with semi-displacement
round-bilge hulls that are equipped with spray
rails. The Froude number range is between 0.3 and
1.0. Number, position, length, and cross-sectional
shape of the rails are varied, and optimum con-
figurations are derived (Figure 2.23a and b). The
optimal set of spray rails, which consists of the
two staggered external spray rails with triangu-
lar cross sections was introduced under the name
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Advanced Spray Rail System (ASRS). In order
to combine reduced wetted area and best possible
running trim, both transom wedge and spray rails
have to be installed at the same time. The effect
of the spray rails is Froude number dependent.
They can reduce the full-scale hull resistance of the
naked hull by up to about 12% for Froude numbers
larger than 0.5. However, at Fn = 0.3, the resis-
tance can increase by up to about 20% because of
the spray rails and the transom wedge. In a sea-
way, rails will reduce deck wetness. If long enough
and extended down to the waterline, or even
below, spray rails will increase dynamic transverse
stability and dampen roll motions. As Müller-
Graf (1999a, 1999b) demonstrated, the Advanced
Spray Rail System has been proven to function
very well, not only for round-bilge monohulls but
also for round-bilge catamarans and trimarans as
well as for hard-chine catamaran hulls.

Müller-Graf (private communication, 2004)
states, “At very small length-to-beam ratios,
L/B < 5.0, which are common for the daughter
boats of rescue-, police-, and custom craft, the
blunt forebody lines generate a very thick spray
which climbs straight upwards to the deck. To sep-
arate the spray from the hull and to throw it side-
wards away from the hull, the optimum bottom
width of the spray deflectors had to be approxi-
mately three times the spray rail width of hulls hav-
ing length-to-beam ratios L/B > 5.4. It was found,
that only one spray deflector at each hullside is
necessary. The dimensions and arrangement of the
spray deflectors as well as their heights above the
waterline depending on their longitudinal position
at the hull are given in Figure 2.23.”

2.5 Wave resistance component

The wave resistance RW is caused by the waves the
vessel generates following a straight course with
constant speed U in calm water conditions. This
means there are no incident waves. By waves we
mean both the local wave elevation along the hull
and the far-field waves. In Chapter 4, we discuss
this in more detail and show that the wave resis-
tance is influenced by the wetted hull form and
the Froude number. Further, the air cushion of
an SES generates waves which causes wave resis-
tance. If the ship is in shallow water, RW can be
strongly influenced by the water depth h. A depth
Froude number Fnh = U/ (hg)0.5 is used to char-

acterize this effect. Large changes in wave resis-
tance occur around the critical Froude number
Fnh = 1 when h/L is small. There is no simple for-
mula for wave resistance, like the one we have for
viscous resistance.

An important part of wave resistance is associ-
ated with the energy in the far-field waves caused
by the ship. The wave elevation can be measured
along longitudinal cuts parallel to the ship’s track,
and the associated wave resistance can be cal-
culated by assuming small wave slopes. This is
called wave pattern resistance RWP, but it does not
account for the fact that the wave slopes can be
large or that the waves break near the ship. The
wave breaking resistance RWB due to breaking bow
waves of the blunt forms of tankers has been exten-
sively studied by Baba (1969). RWB can make an
important contribution. However, the bow waves
of high-speed vessels, particularly with flare, may
also overturn and impact on the underlying free
surface. Further, the overturning bow waves are
associated with spray and it is common to talk
specifically about spray resistance for high-speed
vessels (see the previous discussion). The behavior
of the pressure at the spray root causing the spray
is an integrated part of the pressure causing wave
resistance. Strong flow interaction effects due to
the demihulls of a catamaran may cause steep and
breaking waves between the two hulls in the aft
part of the catamaran. Further, the waves may
break aft of the transom stern of monohull and
multihull vessels.

2.6 Other resistance components

Drag forces on appendages have to be considered.
Examples of appendages for a hydrofoil vessel are
inclined propeller shafts, rudders not included in
the foil system, propeller nacelles, and waterjet
intakes (pods). Similar appendages may also be
used for other high-speed vessels. Empirical for-
mulas may be found in van Walree (1999) and
Hoerner (1965).

The skirt of an SES will cause a resistance com-
ponent. The skirt may be considered a high-aspect
ratio planing surface. The forward jet flow that is
generated will cause a drag force, as described in
section 9.2.4 for a 2D rigid planing surface. How-
ever, a skirt is in reality flexible and vibrating, even
in calm water conditions. The percentage of addi-
tional resistance related to the flexible vibrations
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is hard to estimate. The viscous resistance on the
skirt can be approximated by considering it as a
flat plate.

A planing vessel will have an important resis-
tance component associated with the hydrody-
namic pressure causing lift force and trim moment
on the vessel. This is considered in more detail in
section 9.2.

All the previous resistance components refer to
a ship with constant speed on a straight course
in calm water. Added resistance that is caused
by waves, wind and ship maneuvering should also
be considered. Added resistance in waves is often
misunderstood and believed to be wave resistance.
The added resistance RAW in waves is a conse-
quence of interaction between incident waves and
the ship. It is particularly large when the relative
vertical motion between the bow of the vessel and
the waves is large. The physical reasons for added
resistance are different for a semi-displacement
vessel and an SES. For a semi-displacement vessel,
it is caused by diffraction of the incident waves by
the ship and by radiation of waves due to wave-
induced ship motions. A dominant effect for an
SES is associated with the leakage from the air
cushion caused by the relative vertical motions
between the SES and the waves. If the lifting
power of the fans for the cushion is unchanged,
the air cushion pressure drops and the SES sinks
to a lower position with a larger wetted surface.
The calm water resistance in this lower position
explains the major part of added resistance for an
SES in a seaway.

When the wind resistance is calculated, the wind
velocity is time averaged over one hour and the
average wind velocity u10 at 10 m over free surface
is used as a reference value. The incident horizon-
tal wind velocity ū will vary with height z above
the mean free surface, as illustrated in Figure 2.24.
The logarithmic horizontal velocity profile in the
overlap layer of a fully rough boundary layer flow
is often used. One version is to set the constant
in eq. (2.78) equal to zero. This means ū/v∗ =
(1/κ) · ln(z/k) and u10/v

∗ = (1/κ) · ln(10/k).
Dividing those two equations gives

ū
u10

= ln(z/k)
ln(10/k)

. (2.103)

In order to find a measure of the roughness height
k, we can relate eq. (2.103) to another formula
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Figure 2.24. Incident flow velocity as a function of
height above mean free surface when air and wind resis-
tances are considered (Walderhaug 1972).

often used for ū, that is,

ū
u10

=
( z

10

)1/7
. (2.104)

Using k = 0.006 m gives almost the same velocity
distribution as in eq. (2.103), from around z > k
to about 100 or 200 m. In fully developed seas, u10

can be related to the sea state, as we shall see in
Table 3.5.

Figure 2.24 illustrates that the incident flow
velocity will not vary with height when air resis-
tance is considered. We can in principle use a drag
formula such as eq. (2.99) to obtain the influence
of wind resistance. If head winds are considered,
we should add U and an average wind velocity over
the superstructure. In this context, a challenge in
the CD prediction is that this is influenced by the
incident flow variation with height above mean
free surface.

2.7 Model testing of ship resistance

Model testing is the standard procedure to predict
the resistance of a ship. A model that is geomet-
rically similar to the ship is manufactured. How-
ever, it is normally not equipped with appendages
such as a rudder and propulsion system. The rea-
son is scaling problems. The scaling of resistance
from model scale to full scale is by means of
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nondimensional resistance coefficients and knowl-
edge about what flow parameters (Reynolds and
Froude numbers) matter. Let us illustrate what
we mean by nondimensional resistance using
eq. (2.3). We can write

RV

0.5ρSU2
= CF ,

which is a nondimensional quantity. Let us see the
consequence of requiring that

RVM

0.5ρMSMU 2
M

= RVS

0.5ρSSSU 2
S

. (2.105)

Here the subscripts M and S refer to model and
full-scale ships, respectively. Let us assume that the
hull surface is smooth and the flow at the hull sur-
face is turbulent in both the model and full scales.
We will use eq. (2.4), which states that if eq. (2.105)
is true, then

UMLM

νM
= US LS

νS
,

that is, we must have the same Reynolds num-
ber in model and full scales. Let us say that LS =
100 m, LM = 5 m, US = 20 ms−1, and the kine-
matic viscosity coefficient νM = νS. This leads to
UM = 400 ms−1. It is not difficult to understand
that this is not the right procedure. It is impos-
sible in practice to have a towing carriage with
a speed like that. Because the nondimensional
wave resistance is a function of Froude number
and UM = 400 ms−1 would lead to very differ-
ent Froude numbers in model and full scales, we
have in practice no way to scale wave resistance.
Further, new physical phenomena associated with
cavitation will occur with a model speed like this.

The procedure that is followed in practice is
based on Froude’s hypothesis. The total water
resistance coefficient CT is divided into two parts,
that is,

CT = RT

0.5ρSU2
= CF + CR, (2.106)

where CF is defined as in eq. (2.3) and assumed to
be only a function of Reynolds number for geo-
metrically similar models. Further,

CR = RR

0.5ρSU2
, (2.107)

where RR is the residual resistance. A main com-
ponent of RR is the wave resistance. CR is assumed
to be only a function of Froude number for geo-
metrically similar models. This procedure assumes

that the air resistance is either negligible or is cor-
rected for when the total resistance is measured. If
the flow around the superstructure separates from
sharp corners, the Reynolds number dependence
of the drag coefficient associated with the airflow
will be small. This means the air resistance will
Froude scale in cases like that.

The model speed is obtained by Froude scaling.
That means we require

UM√
LMg

= US√
LSg

or

UM = US

√
LM

LS
. (2.108)

Repeating the previous example with LS =
100 m, LM = 5 m, and US = 20 ms−1 gives UM =
4.47 ms−1. This leads to a very different Reynolds
numbers in model and full scales. We must then
know how CF depends on Rn. For instance, if the
ITTC 1957 model-ship correlation line expressed
by eq. (2.4) is used, then we know how to extrapo-
late CF from model to full scale. Because this for-
mula is based on turbulent flow, we must ensure
that the flow along the ship model is turbulent. We
will use the results for two-dimensional flow along
a smooth flat plate as a basis. Transition to turbu-
lence depends on the turbulence intensity of the
inflow. If we neglect the effect of turbulence in the
inflow, the transition to turbulence occurs when
Ux/ν = 3 · 106. Here x is the longitudinal distance
from the leading edge. Using U = 4.47 ms−1 and
ν = 10−6 m2s−1 gives that turbulence is ensured for
longitudinal distances from the bow larger than
0.67 m. To avoid errors in our extrapolation, we
want transition to turbulence to happen closer
to the bow. This is achieved by using turbulence
stimulators at the bow of the model. For instance,
Molland et al. (1996) used trip studs of 3.2 mm
diameter and 2.5 mm height at a spacing of 25 mm.
The studs were situated 37.5 mm aft of the stem
on 1.6 m–long models. White (1974) gives

Uk/ν = 826 (2.109)

as the criterion for a wire of diameter k to be
fully effective in causing turbulence. We see from
eq. (2.109) that it is the lowest tested speed
that determines k. Let us say that this corre-
sponds to Fn = 0.15. If a 5 m–long model is
used, this means U = 1.05 ms−1 and k = 0.0008 m
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Figure 2.25. Drag coefficient CD at zero angle of attack
for NACA 16012 section as a function of Reynolds num-
ber Rn (van Walree and Yamaguchi 1993).

with ν = 10−6 m2s−1. If the diameter is too large,
it will affect the global flow. This is of concern, for
instance, in testing the foils and struts of a hydro-
foil vessel.

van Walree and Yamaguchi (1993) carried out
a series of experiments with a NACA 16012 foil in
order to investigate possible scale effects on the
lift and drag. The tests were performed with a ver-
tical surface-piercing strut at two different immer-
sions (1.0 m and 0.5 m), with the intention of elim-
inating free-surface effects. With a chord length of
250 mm, the foil was tested in the Reynolds num-
ber range 0.2 ≤ Rn · 10−6 ≤ 1.5, with and without
turbulence stimulation. The results for zero lift
angle are presented in Figure 2.25. They clearly
reveal the effect of turbulence stimulation, partic-
ularly at low Reynolds numbers. However, neither
the Carborundum size (60 µm, coverage about
40% over 5% of the chord length from the leading
edge) nor the Hama strip thickness (0.18 mm, 5%
from the leading edge extending over 8% of the
chord length) seems sufficient to trigger fully tur-
bulent boundary-layer flow at low Reynolds num-
bers. Carborundum is a trade name. It consists of
silicone carbide. The basis of a Hama strip is a
tape (Hama et al. 1956, Hama 1957). A sawtooth
shape is made on the upstream edge by means of
a scissors.

An advantage of the Hama strip seems to be
the almost constant drag coefficients that can be
obtained for relatively low Reynolds numbers in
the transition from laminar to turbulent boundary-
layer flow. This makes extrapolation procedures
more simple to apply. The results for untripped

foils and foils with Carborundum are less well
defined in this region and therefore result in unde-
fined scale effects.

If CF is known, as in eq. (2.4), Figure 2.26 illus-
trates how the calm water resistance of a ship in full
scale can be obtained by scaling model test results
to full scale. Because the model tests are based
on a smooth model without appendages, we have
to add a resistance coefficient CA that accounts
for hull roughness, air resistance, and appendage
resistance.

Another method that was commonly used to
establish viscous resistance for a smooth hull sur-
face is the Hughes (1954) method. This expresses
the viscous resistance as

CF = CF0 (1 + k) , (2.110)

where

CF0 = 0.066

(log10 Rn − 2.03)2 . (2.111)

The form factor k must be experimentally deter-
mined and is assumed to be independent of
Reynolds number. Estimation of k requires that
model tests be done for small Froude numbers
where wave resistance is negligible, let us say
Fn < ≈0.15.

A difficulty with the Hughes method is that it
requires measurements at small speeds. The flow
at the hull surface may then be laminar at the bow
part of the ship model. Further, because the resis-
tance decreases with decreasing speed, measure-
ment accuracy becomes important. Typical values
of (1 + k) for displacement ships are between 1.2
and 1.4. If the flow separates, (1 + k) can be as high
as 1.8.

We can speculate what (1 + k) represents.
Because Hughes assumes that CF0 is the friction
coefficient for a flat plate, it is logical to say that
(1 + k) accounts for the three-dimensionality in

MODEL

SHIP

M S

C

CRM

CRS

CFS

Rn

CFM

CA

Figure 2.26. Scaling of ship resistance from model (M)
to full scale (S) (Walderhaug 1972).
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the flow along the hull surface and for the effect
of pressure drag. The latter effect is particularly
important when flow separation occurs. However,
we must be sure that CF0 as given by Hughes is
a correct value for 2D turbulent flow along a flat
plate. The results in Table 2.1 do not indicate that.
Actually, CF given by eq. (2.4) is closer to the 2D
flow formula. If we calculate CF/CF0, where CF is
given by eq. (2.4), and interprete this in terms of
(1 + k), it gives (1 + k)-values between 1.12 and
1.13 for Rn between 106 and 1010. Molland et al.
(1996) instead use CF given by eq. (2.4) as a basis
and multiply this by (1 + k) to predict viscous resis-
tance. They obtain experimentally (1 + k)-values
for high-speed monohulls between 1.22 and 1.45.
The (1 + k)-values for high-speed catamarans are
higher when compared with the demihull in isola-
tion. The highest (1 + k)-value found was 1.65.

One possible reason why the (1 + k)-values for
high-speed mono- and multihull vessels are high
is flow separation at the transom stern. When the
form factor is determined, the Froude number is
small and the transom stern is wet. The sharp
edge of the transom stern ensures flow separation,
which causes a pressure drag force. This is called
base drag, where the word base now refers to the
transom stern. What happens is that the vortex
shedding due to flow separation alters the pressure
distribution on the transom stern. Hoerner (1965)
has presented base drag coefficients for longitudi-
nal ambient flow along axisymmetric bodies with
a large length-to-beam ratio in infinite fluid. We
can express the base drag as 0.5ρCD AU2, where A
is the base area.

Because the same form factor is applied to vis-
cous resistance for all Froude numbers, a contra-
diction occurs when the flow separation causes a
dry transom stern for F n > 0.3–0.4. The base drag
coefficient should be influenced by this.

2.7.1 Other scaling parameters

In the previous discussion, we assumed that only
Froude and Reynolds numbers are the parame-
ters to consider when scaling from model to full
scale. However, cavitation number may matter for
hydrofoils. Cavitation may lead to ventilation. The
cavitation number is defined as

σ = p0 − pV

0.5ρU2
, (2.112)

where p0 is the ambient pressure at the position
of the foil, pV is the vapor pressure, and U is the
foil velocity. We can write p0 as pa + ρgh, where
pa is atmospheric pressure and h is the submer-
gence of the foil. How the vapor pressure depends
on temperature is presented in Table A.3 in the
Appendix. Because U in practice will be Froude
scaled and the major contribution to p0 − pV is
pa , we see that σ is not the same in model and full
scales. Because cavitation may be a problem for
hydrofoils and planing vessels, we should be con-
cerned about this. The only possibility is then to
use a depressurized model tank. However, this is
not possible in most ship model basins.

If we want to get a correct spray picture of a
model, we must scale surface tension correctly.
The Weber number Wn expresses the influence
of surface tension. It can be written as

Wn = ρU2 L
TS

, (2.113)

where TS is the surface tension, which is nearly
the same in model and full scales. A representa-
tive value is 0.073 Nm−1. Because the ship speed
is Froude scaled, that is,

UM =
√

LM

LS
US,

we find by assuming the same value of TS/ρ in
model and full scale that

(Wn)M =
LM

LS
U2

S

LM

LS
LS

TS

ρ

.

=
(

LM

LS

)2

(Wn)S

This means we will not obtain the same Weber
number in model and full scales. However, the dif-
ference in the spray picture will have a small effect
on the pressure and frictional forces on the hull. It
means that the Weber number is not important in
scaling model test results of resistance to full scale.

2.8 Resistance components for semi-displacement
monohulls and catamarans

Molland et al. (1996) presented systematic results
for calm water resistance, trim, and sinkage of
monohulls and catamarans. The monohulls corre-
spond to demihulls of the catamarans. The length
L of the still waterline is 1.6 m, block coefficient
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is CB = 0.397, longitudinal prismatic coefficient
is CP = 0.693, and midship section coefficient is
CM = 0.565. Here

CB = ∇
LPP · B · D

CP = ∇
AMLPP

CM = AM

B · D
,

where LPP is the length between perpendiculars.
The forward perpendicular (FP) is a vertical line
through the intersection of the designer’s load
waterline (DLWL) and the fore side of the stem.
The after perpendicular (AP) is a vertical line pass-
ing through the DLWL and the rudder post or the
transom profile. This implies that there is an ambi-
guity in the definition of AP. When the vessel has
a transom stern and no rudder, AP is at the tran-
som according to the previous description. This
means LPP is the same as the length of DLWL. Fur-
ther, ∇ = displaced volume of water, AM = area
of midship section, and B and D are the beam
and draft, respectively. LCB = −6.4% was the
same for all models. Here LCB = −6.4% means
that the position of the center of buoyancy is
6.4% of the length between perpendiculars aft
of midships for all models. The length-to-beam
ratio L/B of the demihulls varied between 7
and 15.1, and the beam-to-draft ratio B/D of
the demihulls varied between 1.5 and 2.5. The
ratio 2p/L varied between 0.2 and 0.5. Here 2p
is the distance between two demihull centerlines.

Figure 2.28. Residual resistance: model
4b (see Figure 2.27). Effect of hull interac-
tion. 2p = separation between catamaran
demihull centerlines (Molland et al. 1996).

Model: 4b

Figure 2.27. Monohull or demihull of a catamaran in
experiments by Molland et al. (1996). Length L =
1.6 m. Length-to-beam ratio L/B = 9. Beam-to-draft
ratio B/D = 2. L/∇1/3 = 7.41. CB = 0.397. CP = 0.693.

CM = 0.565. Wetted hull surface area at zero speed
S = 0.338 m2. LCB = −6.4% .

The Molland group found that the length to dis-
placement ratio L/∇1/3 was the most significant
hull parameter causing decreasing resistance with
increasing L/∇1/3. The effect of B/D on resistance
was not large.

We will present their results for models of a
type denoted 4b. Main characteristics and the body
plan are shown in Figure 2.27. Figure 2.28 gives
the residual resistance coefficient CR as a function
of Froude number for the monohulls and catama-
rans with 2p/L = 0.2, 0.3, 0.4, 0.5. CR is obtained
by subtracting CF given by the ITTC 1957 model-
ship correlation line (see eq. (2.4)) from the total
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Figure 2.29. Resistance components:
model 4b (see Figure 2.27). 2p/L = 0.4.

2p = separation between catamaran
demihull centerlines (Molland et al. 1996).

resistance coefficient CT . The static wetted sur-
face area is used in calculating CT , CR, and CF .
The results show that the catamarans have resis-
tance higher than twice the resistance of a mono-
hull. There is a tendency for the CR for the cata-
marans to approach the CR for the monohull when
2p/L increases. However, there is still a clear dif-
ference when 2p/L = 0.5, showing that hull inter-
action still matters. We note that CR is not zero
for a small Froude number, which means that CF

obtained by the ITTC 1957 line is not sufficient
to explain the viscous resistance. This is further
clarified in Figure 2.29, in which CT , CT − CWP,
and CF are presented for F n between 0.15 and
1.05. Here CWP means the wave pattern resistance
coefficient, that is, the contribution to the wave
resistance from the far-field waves, as described
earlier in the text. CWP is also nondimensional-
ized by the static wetted surface area. There is

Figure 2.30. Running trim: model 4b (see
Figure 2.27; Molland et al. 1996).

also a curve 1.45CF in Figure 2.29 that fits the total
resistance for the lowest Froude number when the
wave resistance is believed negligible. This means
the form factor (1 + k), with ITTC 1957 line as a
basis, is 1.45. If Hughes’s CF0 had been used as a
basis, (1 + k) would be 1.45 · 1.12 = 1.62. The fig-
ure shows that the wave pattern resistance cannot
explain the total wave resistance if we now inter-
pret CWP to be CT − 1.45 CF . The results show
that, generally speaking, viscous resistance and
wave resistance are of equal importance. How-
ever, viscous resistance dominates for the smallest
and highest Froude numbers.

Figures 2.30 and 2.31 present the trim angle
and sinkage for the catamarans and the monohull,
respectively. Positive trim angle means bow up and
sinkage is positive downward. The trim angle and
sinkage have a clear influence of Froude number
when F n is larger than 0.3 to 0.4. The catamarans
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Figure 2.31. Running sinkage: model 4b
(see Figure 2.27; Molland et al. 1996).

display significantly higher running trim angles
than the monohull, but generally approach the
monohull angle as 2p/L increases. The increased
trim with speed will in practice be counteracted by
trim tabs and/or interceptors (see section 7.1.3) in
order to minimize the resistance.

2.9 Wake flow

A wake flow, for instance, is important in the anal-
ysis of the inflow to a propeller behind a ship. It is
affected by both potential and viscous flow effects.
In Chapter 6, we show that the wake generated
by an upstream foil provides an important inflow
condition to an aft foil of a hydrofoil vessel with
a fully submerged foil system. Our analysis in this
section is idealized and concentrates on viscous
flow effects.

We consider a vertical strut with forward speed
U and analyze 2D flow in a horizontal cross-
sectional plane. The effect of the free surface is
neglected, and the incident flow has zero angle of
attack. The flow is described in a coordinate sys-
tem following the strut (see Figure 2.32). There is
then an incident flow with velocity U along the pos-
itive x-axis. A wake is generated behind the strut.
Even if the flow is laminar in the boundary layer
of the strut, the flow in the wake will be turbu-
lent at a small distance behind the foil. The reason
is that a laminar wake profile becomes unstable
more easily than does a laminar boundary-layer
profile (Schlichting 1979). Figure 2.32 illustrates
the time-averaged longitudinal velocity profile ū

in the wake at some distance behind the foil. We
express ū as

ū = U − u1, (2.114)

where u1 is positive in the wake and zero out-
side the wake. The wake will be analyzed far away
from the strut. This means u1/U � 1. The wake
flow can be described by the boundary-layer equa-
tions given by eqs. (2.30) and (2.31). However, the
boundary conditions differ. It is meaningless, of
course, to require a nonslip condition as we would
on the strut surface. Further, the turbulent stress
τt expressed by eq. (2.33) dominates over laminar
stress τl given by eq. (2.32). This is a consequence
of measurements and is documented later in the
text. In order to solve the boundary-layer equa-
tions, we need to relate τt to the mean velocity.
This will be done by expressing τt as

τt = µt
∂ū
∂y

. (2.115)

The form of this expression is the same as the one
for laminar stress given by eq. (2.32). We assume
µt is a constant. The actual value of µt has to be
experimentally determined and is dealt with later.

U

U

U

y

x

C

u

Figure 2.32. 2D mean wake flow with velocity ū behind
a strut with incident flow velocity U.
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The pressure can be assumed to be constant
and equal to the ambient pressure far away from
the strut. This is the same as saying that the
velocity outside the wake is equal to the incident
flow velocity U far away from the strut. Because
u1/U � 1, eq. (2.30) can be linearized. This gives

U
∂u1

∂x
= νt

∂2u1

∂y2
, (2.116)

where νt = µt/ρ. The solution of eq. (2.116) for
our wake problem can be found in Schlichting
(1979), that is,

u1 = A1Ux−1/2 exp(−0.25η2), (2.117)

where

η = y
(

U
νt x

)1/2

. (2.118)

Eq. (2.117) shows that the wake goes exponen-
tially to zero when |y| → ∞. The constant A 1

is determined below. The x-dependence of u1 at
y = 0 according to eqs. (2.117) and (2.118) is x−1/2.
Other x-dependency may also satisfy eq. (2.116),
but it is only the x-dependence in eqs. (2.117) and
(2.118) that is consistent with the conservation of
fluid momentum. We will show this and choose a
control volume as in Figure 2.33. The strut surface
and the surfaces B, C, D, and E in the fluid far away
from the strut are enclosing the considered fluid
volume. The flow velocity at B, C, and E is equal to
the incident flow velocity, whereas the flow veloc-
ity at D is given by eqs. (2.117) and (2.118). We
can then write the momentum flux into the con-
trol volume as

− ρ

∫
B

U 2 dy + ρ

∫
D

ū 2 dy. (2.119)

This must balance the longitudinal force acting on
the control volume. The pressures at B, C, D, and

U
B D

C

E Stream line

Stream line

A

Figure 2.33. Surfaces A, B, C, D, and E enclosing the
fluid volume used in application of the conservation of
fluid momentum to express the drag force on the strut.

E are equal to the ambient pressure. Because this
is a constant, it gives zero total pressure force on
the sum of the surfaces B, C, D, and E. There is
a Reynolds (turbulent) stress −ρu′2 that in prin-
ciple gives a force on surface D. However, this is
negligible. This means the force acting on the con-
trol volume is minus the drag force R acting on the
strut, that is,

R = ρ

∫
B

U 2 dy−ρ

∫
D

ū 2 dy. (2.120)

We can rewrite the expression for R by using con-
tinuity of fluid mass, that is,

ρ

∫
B

U dy =ρ

∫
D

ū dy. (2.121)

This gives

R = ρ

∫
D

ū (U − ū) dy. (2.122)

We now introduce u1 defined by eq. (2.114), let C
and E tend to infinity, and use the fact that u1/U �
1 to linearize the expression for R. The result is

R = ρU

∞∫
−∞

u1 dy. (2.123)

Using eqs. (2.117) and (2.118) gives then

R = ρU 2 A1 x−1/2

√
νt x
U

∞∫
−∞

exp
(

−1
4
η2

)
dη.

(2.124)
= ρU 2 A1 2

√
π

√
νt/U

This means R is independent of x as it should be.
We can also express R as

R = 0.5ρCDU 2c, (2.125)

where CD is known as in eq. (2.90) and c is
the chord length, as shown in Figure 2.32. Using
eqs. (2.124) and (2.125) gives

A1 = CDc
4
√

π

√
U
νt

. (2.126)

Further, according to experiments,

νt = 0.0222UCD c. (2.127)

This means

A1 = 0.95
√

CD c. (2.128)
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Using eqs. (2.127) and (2.128) in eqs. (2.117) and
(2.118), we find that

ū
U

= 1 − 0.95
(

x
CD c

)−1/2

e−0.25η2
, (2.129)

where

η = y (0.0222CD cx)−1/2
. (2.130)

Let us evaluate the relative importance between
turbulent and laminar stresses in the far-field
wake. This can be expressed by νt/ν. Using
eq. (2.127) gives

νt

ν
= 0.0222CDRn. (2.131)

As an example, let us consider a strut with zero
thickness, that is, a flat plate. We see from eq. (2.90)
that CD = 2CF , where CF is given by eq. (2.4).
This means νt/ν is equal to 208 and 1332 for
Rn = 106 and 107, respectively. So we confirm that
Reynolds stresses dominate over laminar stresses
in the wake.

We can use the factor exp(−0.25η2) in
eq. (2.129) to define a measure of the thick-
ness of the wake. The y-value corresponding
to exp(−0.25η2) = 0.5 is called b1/2 (Schlichting
1979). From eq. (2.130), it follows that

b1/2 = 0.25
√

CD cx. (2.132)

This means b1/2 is proportional to
√

x. Because the
wake velocity decays exponentially with y, we can-
not define geometrically the thickness of the wake.
However, instead of using 2b1/2 as a measure of the
wake thickness, we could introduce, for instance,
the y-value corresponding to exp(−0.25η2) = 0.01
and call it b1/100. The value 2b1/100 is obviously a
better measure of the wake thickness than 2b1/2.
Whatever value of exp(−0.25η2) we use as a basis
to define the wake thickness, we will find that the
wake thickness is proportional to

√
x.

There is nothing in the previous derivation of
the far-field wake that requires the body to be a
strut. It could just as well be a circular cylinder or
any other 2D body that is symmetric about the x-
axis and in which the incident steady flow is along
the x-axis. However, an important feature of the
flow around a bluff body is flow separation and
resulting vortex shedding. This causes additional
time-dependent flow velocities and forces that are
not accounted for in the previous application of
conservation of fluid momentum.

As long as the body is streamlined and no flow
separation occurs, we could in principle use the
boundary-layer equations given by eqs. (2.30) and
(2.31) from the leading edge to the far-field wake
for a body that is symmetric about the x-axis and
in which the incident steady flow is along the x-
axis. However, this requires knowledge about the
Reynolds stresses, which cannot be expressed as
simply as we did in the far-field wake.

Our derivation is based on u1/U � 1. How
close to the body one can apply the wake solu-
tion requires comparisons with model tests. How-
ever, one can get a qualitative understanding by
using eq. (2.129) for y = 0, and calculating u1/U
as a function of x. Blevins (1990) was able to use
the far-field mean wake solution very close to a
circular cylinder by redefining the origin of the
coordinate system.

The wake solution may be used to define the
inflow velocity to a 2D body in the wake of another
2D body. As long as the downstream body is not
too close to the upstream body, there is little influ-
ence from the downstream body on the upstream
body. However, the upstream body may have an
important effect on the downstream body.

In the following section, we see, for instance,
that the wake behind a ship hull provides an impor-
tant inflow to the propeller. However, this highly
3D flow phenomenon cannot be described by a
simplified procedure. It requires either model tests
or CFD (computational fluid dynamics) simula-
tions with proper turbulence modeling.

2.10 Propellers

Hydrodynamics of ship propellers is a special-
ity by itself and there are textbooks and lecture
notes dealing comprehensively with the topic (e.g.,
Breslin and Andersen 1994, Carlton 1994, Kerwin
1991). Our presentation is of an introductory
nature. We first discuss open-water propeller char-
acteristics, meaning how the propeller performs
when the ship does not influence the propeller
flow. This is the converse of what we assumed to
analyze resistance. In that case, we assumed the
propeller was not present. Finally, we discuss how
to correct for hull-propeller interaction.

Figure 2.34 shows a typical propeller draw-
ing and definitions of commonly used parame-
ters. Most propellers are fixed-pitch propellers.
However, some have adjustable blades and are
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Figure 2.34. Typical propeller drawing (van Manen and van Oossanen 1988).

called controllable-pitch propellers. If the pro-
peller viewed from aft of the propeller turns
clockwise, it is called right-handed. A left-handed
propeller rotates counterclockwise. If a ship is
equipped with two propellers (see Figure 2.2), the
starboard and port propellers are normally right-
handed and left-handed, respectively. The face of
the propeller is the propeller surface seen from
aft of the propeller. The other side is called the
back.

Different areas are used to characterize the
propeller. The propeller disc area A0 is equal to
π D2/4, where D is the propeller diameter. The
expanded area AE of the propeller is obtained by
considering different circular cylinders with axis
coinciding with the propeller shaft axis and with
different radius r between rh and the propeller
radius R. Here rh is the radius of the root section,
that is, the hub. The intersection between the
cylinder surfaces and a propeller blade defines
propeller blade sections. These are indicated by
lines in Figure 2.35. We then unfold the cylinder
surface with the propeller blade section so that the
section becomes planar. The chord length c (r) of
this section is the length of the “nose-tail line” as

Figure 2.35. Right-handed screw propeller and its shaft
in uniform inflow velocity U corresponding to the ship
speed. n = shaft revolutions per second, Q = shaft
torque, T = propeller thrust. There are lines drawn on
the propeller with constant radial distance from the shaft
axis. Each line defines a propeller blade section. (Photo
by K. A. Hegstad)
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2π nr
β

θnt

α

Pressure surface

Suction surface Q
r F

T

RESULTANT
INFLOW

U

Figure 2.36. Two-dimensional view of a propeller blade
section, moving to the right with velocity U and in
the peripheral direction with velocity 2πnr . Here r
is the radial distance from the shaft axis. The local
angle of attack α is shown here as the difference
between the pitch angle of the blade and the inflow
angle tan−1(U/2πnr). The resultant force F contains an
axial component (thrust), and a peripheral component
(torque/radius). (Newman, J. N., 1977, Marine Hydro-
dynamics, Cambridge: The MIT Press. The figure is
reprinted with the permission of The MIT Press.)

shown in Figure 2.16. The expanded area is defined
as

AE = Z

R∫
rh

c(r) dr ,

where Z is the number of propeller blades.
A developed area AD can also be defined (van

Manen and van Oossanen 1988). This is more elab-
orate to evaluate. However, in practice, AD and
AE are close (Carlton 1994). The blade area ratio
(BAR) is either AE/AO or AD/AO.

We use Figures 2.35 and 2.36 to give a simplified
picture of how a propeller works. Infinite fluid is
assumed. There is a shaft torque Q delivered by
the engine and a constant number n of shaft rev-
olutions per second. Assuming a steady inflow to
the propeller, Q must balance a steady hydrody-
namic torque on the propeller blades and the hub.
Actually, the hub torque is negligible. Seen from a
propeller blade section as in Figure 2.36, there is an
axial inflow velocity U equal to the ship’s speed.

This is a consequence of temporarily neglecting
hull-propeller interaction. The propeller revolu-
tion causes an inflow velocity 2πnr in the periph-
eral direction. Here r is the radial distance from
the propeller shaft axis to the propeller blade sec-
tion. The resultant inflow velocity vector causes an
angle of attack α relative to the blade section. This
angle of attack is equal to the difference between
the pitch angle θ nt of the blade section and the
inflow angle β = tan−1 (U/2πnr), that is,

α = θnt − tan−1(U/2πnr). (2.133)

The pitch angle θnt is the angle between the plane
of rotation and the chord line, that is, the nose-
tail line shown in Figure 2.16. The word pitch is
related to a helical curve with angle θnt , as shown
in Figure 2.37.

Let us consider a point A on a cylinder surface
of radius r. The point rotates around the cylin-
der axis and moves axially with constant velocity.
The starting and ending positions after one com-
plete revolution are denoted A0 and A1 in the fig-
ure. The axial motion during this time period is the
pitch P. If the cylindrical surface between A0 and
A1 is cut open along A0 and A1 and unfolded into
a plane, we get the right picture in the figure. We
see from this picture, that the relationship between
the pitch and the pitch angle is P = 2πr tan θnt .
The propeller pitch is defined in the literature in
different ways. Instead of using the nose-tail line to
define the pitch angle, a face-pitch line is also used
(Carlton 1994). Further, the propeller pitch may
be defined as the local pitch at r equal to either
0.7R or 0.75R, where R is the propeller radius.

The flow situation in Figure 2.36 is similar to
that in Figure 2.16. In both cases, there is a flow
with an angle of attack past a 2D foil. When the
foil is symmetric about the nose-tail line, that is,
uncambered, and the angle of attack is zero, there
is zero lift according to potential flow theory for 2D
steady flow past a foil in infinite fluid (see Chap-
ter 6). According to the same theoretical assump-
tions, there is also zero drag. However, drag occurs,
for instance, as a result of 3D flow and viscous
effects. There are in general both a lift force and a
drag force acting on the propeller blade section.
Figure 2.16 shows that the lift force dominates.
This is normally the case. Because a sharp trailing
edge is essential in developing a large lift force, the
way the propeller rotates matters. It implies that
the propeller is less efficient when going astern.
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Figure 2.37. Left figure: helical curve described by point A on a cylinder surface with radius r. Point A
rotates with constant velocity around the cylinder axis and moves axially with constant velocity. Right
picture: the cylinder surface is unfolded into a plane. P = pitch, θ nt = pitch angle.

Let us try to give a simplified description of the
flow around a foil. We then disregard the details of
the boundary layer. The lift is closely related to the
circulation � around the foil, where � = ∮

C u · ds,
u is the fluid velocity, C is a closed curve enclosing
the foil. The circulation implies higher velocities
on the suction side than on the pressure side of
the foil and is a consequence of the flow leaving
tangentially from the trailing edge of the foil (Fig-
ure 2.38). Figure 2.38 also illustrates that the flow
velocity is higher on the top side (suction side) of
the foil than on the lower side. We can see this by
using the conservation of fluid mass, noting that
there is no flow through streamlines and that the
distance between streamlines is shorter on the top
side than on the lower side.

The fact that the flow leaves tangentially from
the trailing edge is referred to as the Kutta con-
dition in mathematical foil theory. The Kutta con-
dition is a restriction imposed on the flow based
on physical flow observations. If a Kutta con-
dition was not imposed and there was no cir-
culation around the foil, it would lead to zero

Figure 2.38. Assumed flow past a foil in which the flow leaves tangentially from the trailing edge
(Kutta condition). The lines represent streamlines. (Newman, J. N., 1977, Marine Hydrodynamics,
Cambridge: The MIT Press. The figure is reprinted with the permission of The MIT Press.)

force on a foil in steady potential flow in infinite
fluid (D’Alembert’s paradox). The corresponding
unphysical theoretical flow would imply cross-flow
with infinite velocity at the trailing edge of the foil
(see Figure 2.39). This suggests that a vortex will
be shed in reality from the trailing edge. It is the
reason for the development of circulation around
the foil. The flow adjusts itself so that it leaves tan-
gentially from the trailing edge. The reader should
refer to Chapter 6 for details about foil theory.

The resultant force vector F in Figure 2.36 is
decomposed into an axial force component T that
contributes to the propeller thrust and a peripheral
component Q/r that contributes to the propeller
torque.

We said that this explanation was simplified.
So what are the simplifications used? Well we
have basically used a strip theory approach, which
implies that the flow is two-dimensional at the
blade section. If the aspect ratio of the propeller
blade is large, the strip theory represents a good
approximation. However, by using a definition of
aspect ratio like eq. (2.87) for a propeller blade,
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Figure 2.39. Flow past a foil without circulation.
(Newman, J. N., 1977, Marine Hydrodynamics,
Cambridge: The MIT Press. The figure is reprinted with
the permission of The MIT Press.)

we find that some propellers can have an aspect
ratio of an order of one. This means that the 3D
flow effects cannot be ignored. One consequence
of the 3D flow is the tip vortices from the propeller
blades (Figure 2.40). As a first approximation,
they form helical paths that can be determined
by noting that vorticity is convected with the fluid
velocity. We then use a propeller-fixed coordinate
system. As first approximation, the longitudinal
(axial) and peripheral velocities at the propeller
tip are, respectively, U and πnD. We can construct
a helical curve for a tip vortex as in Figure 2.37. The
radius R is 0.5D. The angle θ nt is replaced with the
inflow angle tan−1(U/πnD).

The tip vortices will influence the inflow to the
propeller blade section in Figure 2.36. However,
there are also influences from other parts of the
trailing vortex sheet and other sections of the
blade, as well as other blades. If the aspect ratio
of a propeller blade is high, the influence is only
caused by the trailing vortex sheets of the dif-
ferent blades. The inflow velocity to a propeller
blade can then be represented as in Figure 2.41,
which shows axial (Ua) and tangential (Ut ) correc-

Ut(r)

Ua(r)

D

L

U

U*

2πnr

F

Q/r

T

β1
b

Figure 2.41. Incident flow velocity components Ut(r) and Ua(r) due to trailing vortex sheet from the
propeller blades modify the incident flow velocity to a propeller blade section relative to the two-
dimensional flow pictured in Figure 2.36. There is a lift force L and a drag force D perpendicular and
parallel, respectively, to the incident flow velocity with magnitude U*. The resultant force F contains
an axial component (thrust T ) and a peripheral component (torque/radius Q/r).

Figure 2.40. Tip vortex sheet cavitation of a four-bladed
propeller used for a high-speed vessel. The tests have
been done in the cavitation tunnel at the Marine Tech-
nology Centre, Trondheim. P/D = 1.2, AE/A0 = 0.71.

No shaft inclination. (Photo by F. Bolstad.)

tions to the inflow velocity due to 3D flow effects.
Similar 3D flow effects are discussed in con-
nection with high-aspect ratio lifting surfaces in
section 6.7.

Propeller slip stream
The propeller slip stream can as a first approxima-
tion be estimated by considering the propeller as
an actuator disc in infinite fluid. This means that
we let the number of propeller blades go to infin-
ity and the cross-dimensions of each blade go to
zero in such a way that there is flow through the
propeller disc. We will limit our discussion to an
axially symmetric flow (see e.g., Lewis 1996). The
inflow velocity far upstream is assumed equal to
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Figure 2.42. Modeling of the propeller slip stream in
infinite fluid by means of an actuator disc model. U = the
inflow flow velocity far upstream, Up0 = through-flow
velocity at the actuator disc, US = the slip stream velo-
city far downstream. AB and DC are parts of streamlines.

the ship velocity U. The flow picture is illustrated
in Figure 2.42 with a stream surface consisting of
streamlines AB and DC that touch the propeller
blade tips. The flow velocity is everywhere in the
axial direction, that is, the swirling flow associ-
ated with the trailing vortex sheets behind the pro-
peller is neglected. The velocity outside the stream
surface shown in Figure 2.42 is equal to the ship
velocity U. The flow velocity inside the stream sur-
face varies only in the longitudinal direction and
is equal to Up0 and US at the propeller plane and
far downstream, respectively.

An incompressible and inviscid fluid is assumed.
The propeller thrust force T may be expressed
by conservation of fluid momentum and is equal
to the difference in momentum flux through the
cross-plane at BC and AD in Figure 2.42, that is,

T = ρπr 2
SU2

S − ρπr 2
inU 2. (2.134)

Here rin and rs are the radial distances from the
propeller axis to the stream surface at AD and
BC, respectively. Continuity of fluid mass gives

ρπr 2
inU = ρπR2Up0 = ρπr 2

SUS. (2.135)

Here R is the propeller radius. Using eq. (2.135)
in eq. (2.134) gives

T = ρπR2Up0 (US − U) . (2.136)

The propeller thrust may also be expressed by
direct pressure integration. This gives consistent

with our simplified model that

T = (p2 − p1) πR2, (2.137)

where (p2 − p1) is the pressure rise across the actu-
ator disc representing the propeller. The pressure
can be related to the flow velocity by means of
Bernoulli’s equation (see eq. (2.94)). Neglecting
gravity and applying Bernoulli’s equation sepa-
rately on the upstream and downstream side of
the actuator disc gives

p1 + ρ

2
U2

p0 = pamb + ρ

2
U 2 (2.138)

p2 + ρ

2
U2

p0 = pamb + ρ

2
U2

S . (2.139)

Here pamb means the ambient pressure. This means
that eq. (2.137) can be expressed as

T = ρ

2

(
U2

S − U 2) πR2. (2.140)

Comparing eqs. (2.136) and (2.140) gives Up0

(US − U) = 0.5(U2
S − U 2), that is,

Up0 = 1
2

(US + U) . (2.141)

This expresses that the through-flow velocity
Up0 at the actuator disc is the average of the inflow
velocity U and the slip stream velocity US far dow-
stream of the propeller.

Eq. (2.140) can be rewritten as

US = U
√

1 + CT, (2.142)

where

CT = T
0.5ρU 2πR2

. (2.143)

This determines the slip stream velocity US in
terms of the propeller thrust-loading coeffi-
cient CT. The radius rS associated with the far
downstream slip velocity can be determined by
eqs. (2.135) and (2.141), giving

rS = R

√
0.5

(
1 + U

US

)
. (2.144)

Eqs. (2.142) and (2.144) are commonly used in
expressing the inflow velocity to a rudder behind
a propeller (see Figure 10.30 and associated text).
Even though US and rS are asymptotic values far
downstream of the actuator disc, they represent
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good approximations when the longitudinal dis-
tance between the rudder and the propeller is
the order of the propeller radius (Söding 1982).
If we want to evaluate the propeller slip stream
at a much larger downstream distance, turbulent
stresses must be considered. This can be analyzed
by considering the slip stream as a turbulent axis-
symmetric jet flow. Details are given by Schlichting
(1979). A more sophisticated approach must obvi-
ously account for the presence of viscous propeller
forces, swirling flow, the free surface, and the ves-
sel. However, we must still keep in mind that rep-
resenting the propeller as an actuator disc is an
approximation.

2.10.1 Open-water propeller characteristics

Even if three-dimensionality matters in the flow
around the propeller, it does not change the fact
that the inflow angle tan−1(U/2πnr) is an impor-
tant parameter. A global measure of the inflow
angle is the advance ratio

J = U
nD

, (2.145)

where D is the propeller diameter. If Reynolds
number and cavitation effects are disregarded,
then the nondimensional thrust and torque,
expressed by

KT = T
ρn2 D4

(2.146)

and

KQ = Q
ρn2 D5

, (2.147)

respectively, will depend only on the advance ratio
J for geometrically similar propellers. However,
we should recall that we have assumed infinite
fluid, that is, no free surface effects. Figure 2.43
gives examples from Gawn (1953) on the thrust
coefficient KT and the torque coefficient KQ as
a function of J for three-bladed propellers with
different pitch-to-diameter ratios. The blade area
ratio in this case is 0.65, whereas Gawn (1953)
also presented results for other blade area ratios
from 0.2 to 1.1. The propeller efficiency ηp is also
plotted. This is the ratio of the propulsive power
UT done by the propeller in developing a thrust
force, divided by the shaft power 2πnQ required
to overcome the shaft torque. The latter is also

the power delivered by the vessel machinery. This
means

ηp = UT
2πnQ

= J
2π

KT

KQ
. (2.148)

It is obviously an advantage to have high effi-
ciency, and Figure 2.43 shows that a maximum effi-
ciency of up to 0.8 can be achieved with the studied
propellers. Maximum values of KT and KQ occur
for J = 0. However, ηp is then zero. This follows
from eq. (2.148). We note that KT and KQ tend
to zero for approximately the same J-value for a
given pitch-to-diameter ratio. We will explain this
by the simplified picture in Figure 2.36, that is, we
assume first a 2D flow condition. We will neglect
viscous forces. There is then only a lift force L per-
pendicular to the inflow velocity vector. This can
be expressed as

L = ρ

2
(U 2 + 4π 2n2r 2)c

dCL

dα
(α − α0) , (2.149)

where c is the chord length of the blade section.
dCL/dα is a constant and depends on the foil pro-
file. It is 2π according to linear theory for a 2D
foil in an infinite and incompressible fluid when
the angle of attack α (see Figure 2.16) is given
in radians. When α = 0, there still will be a lift
for a cambered section. This is expressed by α0 in
eq. (2.149). α0 will be negative relative to the flow
situation in Figure 2.16. Actually most of the lift
on the propeller blade at design speed is the result
of the foil camber.

The decomposition of eq. (2.149) in axial and
peripheral directions gives contributions to the
thrust and torque equal to Lcos β and r Lsin β, re-
spectively. Here cos β = 2πnr/(U 2 + 4π 2n2r 2)1/2

and sin β = U/(U 2 + 4π 2n2r 2)1/2. We then have
to add contributions from all blade sections and
blades to find propeller thrust and torque. If a rep-
resentative blade section with r equal to 0.7 times
the propeller radius R is chosen, this gives

α = θnt − tan−1

(
J

0.7π

)
. (2.150)

We must require that α − α0 is positive. This gives
the thrust and torque directions as in Figure 2.36.
If α − α0 were negative, then the hydrodynamic
torque on the propeller would act in the same
direction as the propeller shaft torque delivered
by the engine. This means we cannot balance the
torque and the inflow will drive the propeller.
Another matter is that it would lead to negative
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Figure 2.43. Thrust, torque, and efficiency coefficients for a series of three-bladed propellers with
pitch-to-diameter ratios 0.4 to 2.0. Blade area ratio (BAR) = 0.65 (Gawn 1953).

thrust. Three-dimensional flow effects will reduce
the angle of attack (see Figure 2.41), how much
is a matter of detailed investigation. Let us now
roughly say that CL = 2πα, that is, the effect of α0

is offset by 3D flow effects. Because the thrust
and torque are proportional to α in this simpli-
fied analysis, by means of eq. (2.150) we see that
KT and KQ become zero for the same J-value
for a given pitch-to-diameter ratio. Eq. (2.150)
shows that the J-value that corresponds to zero
KT and KQ values increases with increases in the
pitch angle θnt , that is, pitch-to-diameter ratio. This
agrees with Figure 2.43. We can estimate what this

J-value is from eq. (2.150). We then use Figure 2.37
showing that tan θnt = P/ (2πr) and use the fact
that the propeller pitch corresponds to r = 0.7R.

This shows that zero α corresponds to a pro-
peller pitch-to-diameter ratio equal to the advance
ratio J. That is in reasonable agreement with
Figure 2.43.

If the propeller is approximated as an actua-
tor disc and an axially symmetric flow is assumed,
the propeller thrust, torque, and efficiency can be
expressed in a simple way. The propeller thrust can
be written as either eq. (2.136) or eq. (2.140). The
shaft power is equal to the difference in kinetic
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energy flux through the cross-planes at BC and
AD in Figure 2.42 (see part B of exercise 2.12.4),
that is,

2πnQ = 1
2
ρπr 2

SU3
S − 1

2
ρπr 2

inU3. (2.151)

Using eq. (2.138) gives

2πnQ = 1
2
ρπR2Up0

(
U2

S − U 2) . (2.152)

Eqs. (2.148), (2.136), and (2.152) imply that the
propeller efficiency can be expressed as

ηP = 2
1 + US/U

. (2.153)

This can be rewritten as

ηP = 2

1 + √
1 + CT

(2.154)

by means of eq. (2.142). The propeller thrust-
loading coefficient CT in eq. (2.154) can be
expressed as

CT = 8
π

KT

J 2
(2.155)

by using the definitions of CT, J, and KT given
by eqs. (2.143), (2.145), and (2.146), respectively.
Eq. (2.154) is called the ideal efficiency. The effi-
ciency of various propulsion devices will for a
given thrust-loading coefficient always be lower
than the ideal efficiency. One reason is that our
simplified actuator disc model for the propeller
does not account for viscous drag forces on the
propeller and the kinetic energy associated with
the swirling flow behind the propeller. However,
the ideal efficiency represents a measure in judging
the qualities of different propulsion devices (see
examples in Breslin and Andersen 1994).

2.10.2 Propellers for high-speed vessels

The previous discussion does not account for the
possibility of propeller cavitation, which is of con-
cern for high-speed vessels. A broad and in-depth
coverage of cavitation is given by Brennen (1995).
Kato (1996) reviewed the modeling, analysis, and
computational methods of cavitation for hydro-
foils and marine propellers. Generally speaking,
cavitation occurs when the total pressure becomes
equal to vapor pressure pv somewhere on the pro-
peller surface. pv is only 0.012 times the atmo-
spheric pressure at 10◦C (see Table A.3 in the
Appendix). This means practically zero pressure.
The pressure can, by the way, never be negative in a

fluid. The total pressure is the sum of atmospheric
pressure pa and hydrostatic pressure at a given
instantaneous position on the propeller and the
hydrodynamic pressure on the propeller. The lat-
ter is the cause of the lift expressed by eq. (2.149)
and therefore of the propeller thrust and torque. If
we continue using the flow picture in Figure 2.38,
there will be a suction pressure on the curved
“upper” side of the blade section. So except for
some details around the nose of the blade section,
it is the difference between the higher pressure on
the nearly flat “lower” (face) side and the lower
pressure on the “upper” (back) side that causes
lift. It is the suction pressure that is of concern
from a cavitation point of view. Because the lift
increases with the square of the inflow velocity,
the hydrodynamic pressure will do the same. It
implies that by increasing the ship’s speed, the load
on the propeller must increase, thus the possibility
of cavitation will increase. Further, the hydrostatic
pressure also matters. This implies that the closer
a propeller blade section comes to the free surface,
the larger is the possibility of cavitation on the low-
pressure areas of the section. The scenario may
then be a varying cavitation volume on the outer
part, that is, near the tip, of the propeller blade
as the propeller blade passes near the free sur-
face. When the cavitation disappears and bubbles
implode, it may lead to propeller erosion. Face cav-
itation is of most concern in this context. Further,
the varying cavity volume on a propeller blade as
it passes near the free surface acts similarly to a
fluid source generating pulsating pressures on the
hull (Huse 1972). These pressure pulses may excite
undesirable hull vibrations.

If partial cavitation is unavoidable by the pro-
peller design, a supercavitating propeller design
may be concidered. If the propeller is to be used
on a high-speed vessel with a speed above the
order of 50 knots, cavitation will occur. A super-
cavitating propeller means that the entire suction
side of the foil is contained within a cavity. The
blade section of a supercavitating propeller typ-
ically has a sharp leading edge. The flow around
this sharp edge causes high velocities, which means
low pressure. This facilitates cavitation inception.
A supercavitating blade section has a much lower
lift coefficient CL and lift-to-drag ratio than does a
noncavitating blade section. A pioneering analysis
was made by Tulin (1953). Two-dimensional lin-
ear steady supercavitating flow around a flat plate
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Figure 2.44. Propeller cavitation number
σ0 (see eq. (2.157)) as a function of vessel
speed U. Ambient pressure is based on 1 m
submergence of the propeller shaft.

in infinite fluid at small angles of attack α was
studied as a function of the cavitation number.
Geurst (1960) extended this theory to cambered
foils. If we consider a flat plate at zero cavitation
number, then CL is 0.5πα for supercavitating flow
compared with 2πα for a noncavitating flat plate.
This has obvious consequences for propeller thrust
and torque.

The cavitation number is an important param-
eter. For a blade section, this can be expressed as

σ = pa + ρgh − pv

0.5ρ[U 2 + (2πnr)2]
, (2.156)

where h is the minimum instantaneous submer-
gence of the blade section during the propeller
rotation. The higher the cavitation number, the
smaller the probability of cavitation.

The propeller cavitation number σ0 follows by
inserting r = 0 in eq. (2.156), that is,

σ0 = pa + ρgh − pv

0.5ρU 2
. (2.157)

Figure 2.44 illustrates how σ0 decreases with
increasing speed when the propeller shaft is 1 m
submerged. Newton and Rader (1961) have pre-
sented extensive model test results showing how
the thrust coefficient KT , the torque coefficient
KQ, and the propeller efficiency ηP depend on
σ0 and the advance ratio J for uniform axial
inflow. The Newton-Rader series consists of three

bladed propellers and covers a wide range of pitch-
diameter and blade area ratios (1.0 ≤ P/D ≤
2.0, 0.5 ≤ AE/AO ≤ 1.0). Here AE means the
expanded blade area and AO is the propeller
disc area. The parent propeller (P/D = 1.25,

AE/AO = 0.71) is illustrated in Figure 2.45. Fig-
ure 2.46 presents KT, KQ, and ηP as a function of
σ0 and J for the parent propeller.

A radial distance r corresponding to 0.7 times
propeller radius (R) is typically used in eq. (2.156)

Leading edgeTrailing edge

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x = 0.95

Figure 2.45. Blade elements of the Newton–Rader
series parent propeller. x means radial distance from
propeller shaft divided by propeller radius. Presented
by Kruppa (1990) based on Newton and Rader (1961).
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Figure 2.46. Hydrodynamic characteristics of the Newton-Rader series parent propeller. J = advance
ratio. KT = thrust coefficient, KQ = torque coefficient, ηP = propeller efficiency, σ0 = propeller
cavitation number defined in eq. (2.157), AE = expanded blade area, A0 = propeller disc area, P =
propeller pitch, D = propeller diameter.

to characterize the occurrence of cavitation for the
propeller. This gives a cavitation number σ0.7 that
can be expressed as

σ0.7 = pa + ρgh − pv

0.5ρU 2
· 1

1 + (
π ·0.7

J

)2 . (2.158)

It is possible to design a propeller in uniform axial
inflow so that cavitation is avoided when σ0.7 >

0.12 (Kruppa 1990). This criterion is illustrated
in Figure 2.47 by presenting J as a function of U
when minimum submergence of the blade section
at r = 0.7R is 1 m. The results show that increas-
ing speed requires increasing minimum advance
ratio to avoid cavitation.

Uniform axial inflow can be achieved in calm
water conditions when the combination of a trac-
tor propeller and a right-angle drive (Z-drive) is
used. A Z-drive is illustrated in Figure 2.1b. A trac-
tor propeller is rotated 180◦ about a vertical axis
relative to the propeller in Figure 2.1b and faces an
incident flow very close to the forward speed of the

2.5

2

1.5

1

0.5

0
20 25 30 35 40 45 50 55 60

Supercavitation

No cavitation
is possible

σ0.7 = 0.05

σ0.7 = 0.12

J

U (knots)

Figure 2.47. Cavitation domains as a function of ves-
sel speed U and advance ratio J. σ0.7 = local cavitation
number at radial distance 0.7 times the propeller radius.
Ambient pressure is based on 1 m submergence. Criteria
are according to Kruppa (1990).
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Figure 2.48. Model testing of a tractor propeller that is
integrated in the aft foil-strut system of a foil catamaran
(see Figure 6.4). Only the strut part is seen in the figure
(Minsaas, unpublished).

vessel (see also Figures 2.48 and 2.49), similar
to a propeller on an airplane. Propellers with
negligible cavitation can then operate beyond
40 knots. A propeller such as this was designed
by MARINTEK and reported by Halstensen
and Leivdal (1990). This SpeedZ propulsion sys-
tem uses controllable pitch propellers with four
blades. Pitch-to-diameter ratios of P/D = 1.80
and advance coefficient J = 1.50 ensure that no
thrust breakdown occurs at a vessel speed of
45 knots.

Propellers fitted to inclining shafts are some-
times used for planing vessels (see Figures 2.1a
and 2.2) and hydrofoil vessels. The inflow to the
propeller blade sections is then nonuniform. Local
wake peaks occur because of struts and shafting.

Figure 2.49. Azimuth thrusters by Rolls-Royce that can operate up to 24 knots. The figure on the left
illustrates the Z-drive. The right picture shows the two thrusters working as tractor propellers.

The criterion σ0.7 > 0.12 is no longer valid, and
cavitation is of concern.

Fully cavitating conditions can be achieved
when σ0.7 < 0.05. The cavity starts then at the lead-
ing edge and extends beyond the trailing edge. The
pressure at the suction side of the propeller is then
equal to the vapor pressure. Even if fully cavitat-
ing conditions can be achieved for smaller ship
speeds (see Figure 2.47), the allowable J-values
will give unacceptable efficiencies. Kruppa (1990)
states, “It is felt that the proper field of application
of fully cavitating propellers is beyond 40 knots.”
Supercavitating propellers are also discussed by
Venning and Haberman (1962) and Todd (1967).

In model testing propellers, it is important that
the cavitation number σ is the same as in full scale.
If tests are done in a cavitation tunnel without a
free surface, we do not have to worry about the
Froude number. One tries to obtain as high an
axial inflow velocity U as possible, say 15 ms−1, to
maximize the Reynolds number to obtain turbu-
lent boundary-layer conditions. The correct cavi-
tation number is obtained by lowering the ambi-
ent pressure. This can be lowered to about 0.1 bar
(10 kNm−2) in MARINTEK’s facilities. If model
tests are done with a ship model equipped with a
propeller and with free-surface effects, we can use
a depressurized towing tank, such as the one at
MARIN in Wageningen, to properly model cavi-
tation. There are, however, few facilities like that.
Another possibility is to use a cavitation tunnel
with a free surface.
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If the propeller tip gets too close to the free sur-
face, there is danger of ventilation. That means
that air is drawn into the suction side of the pro-
peller blade. The higher the propeller loading,
that is, the lower the suction pressure on the pro-
peller blade, the larger the possibility of ventila-
tion. A rough guide is that ventilation should be
considered when h/R ≤ 1.5. Here R is the pro-
peller radius and h is the vertical distance between
the free surface and the propeller shaft. Relative
vertical motions between the ship and the waves
in a seaway increase the possibility of ventilation
(Minsaas et al. 1986).

Free surface–piercing propellers are also used
for high-speed vessels operating at maximum
speeds higher than 40 knots. When the propeller
blade exits and enters the free surface, unsteady
lifting effects occur. Because the propeller extends
from the transom, there is no appendage drag.
Some systems may be used for steering and trim
adjustments. Rose and Kruppa (1991) presented
model test results from a methodical series of
four-bladed surface-piercing propellers. Optimum
propeller dimensions derived from these tests
were published earlier by Kruppa (1990). The
paper addresses aspects of testing techniques for
surface-piercing propellers. It demonstrates that
cavitation number affects propeller performance
adversely unless fully ventilated propeller flow
exists. Complete suction-side ventilation, how-
ever, is usually neither achieved nor desirable if
one aims at maximum possible efficiency from a
design point. Design charts for surface-piercing
propellers should therefore contain the cavita-
tion number as a parameter. The same is neces-
sary for data on vertical and transverse propeller
forces. Further requirements for design and test-
ing of partially submerged propellers are formu-
lated by Kruppa (1991, 1992). Rose et al. (1993)
have presented secondary force coefficients for
the Rolla Propeller series of four-bladed surface-
piercing propellers studied by Rose and Kruppa
(1991). The data can be used to estimate verti-
cal and side forces and to understand the influ-
ence of propeller dimensions and position. The
data also provide a basis for calculating shaft
stresses.

Example: Determination of propeller
characteristics
A planing vessel is considered. In sections 9.2 and
9.3, it is shown how to predict the resistance of

a planing vessel. We assume that a resistance of
110 kN has been estimated. A right-angle drive
with a tractor propeller is assumed. The inflow
velocity to the propeller can then be approximated
as the ship speed. Further, the effect of the pro-
peller on the flow around the ship hull will be
neglected. The propeller shaft is 1 m submerged.
The maximum operating vessel speed U is set
equal to 20.7 ms−1. This gives a propeller cavi-
tation number σ0 equal to 0.5. A Newton-Rader
propeller with P/D = 1.25 and AE/A0 = 0.71 is
selected as a first try. We must assume a propeller
diameter in order to find the advance ratio J. Let
us say D = 1.42 m.

KT can be rewritten as

KT = T
ρn2 D4

= T
ρU 2 D2

· U 2

n2 D2

(2.159)
= T

ρU 2 D2
J 2.

In eq. (2.159), KT is known as a function of J.
This follows from the propeller diagram. Further,
T/(ρU 2 D2) is known from the values T = 110 kN,
ρ = 1025 kgm−3

, U = 20.7 ms−1 and D = 1.42 m.

The solution for J can, for instance, be found
graphically by plotting KT and T/(ρU 2 D2)J 2

as a function of J (Figure 2.50). The intersec-
tion point between the two curves corresponds
to J = U/ (nD) = 1.1. This gives n = 13.2 pro-
peller revolutions per second. The KQ-value at
J = 1.1 is equal to 0.0376 according to the
propeller diagram. The corresponding propeller

KT

T/(ρD2U2)J2

0.25

0.2

0.15

0.1

0.05

0
0.6 0.7 0.8 0.9

J

1 1.1 1.2 1.3 1.4

Figure 2.50. Determination of the advance ratio J as
the intersection between KT and T/(ρU 2 D2)J 2. U =
20.7 ms−1, D = 1.42 m, T = 110 kN, ρ = 1025 kgm−3.
The data for KT are from the Newton–Rader propeller
series with P/D = 1.25, AE/A0 = 0.71, and σ0 = 0.5.
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efficiency ηP is 0.699. The delivered power by the
propeller is

PD = 2πnQ = 2πnρn2 D5 KQ = 3235 kW.

We note that this differs from the needed effect
TU = 2273 kW. The previous procedure must
now be repeated for several propeller diameters
and with consideration of other propeller dia-
grams in order to also find balance between PD

and TU.
The resistance of a high-speed vessel may not

be the largest at maximum operating speed. A
hump in the resistance may occur at a lower speed.
This happens, for instance, in planing vessels and
monohull hydrofoil vessels before takeoff to the
foilborne condition (see Figure 6.15), and SES
with a small length-beam ratio. One then has to
ensure sufficient propulsion power and thrust for
the hump speed.

Figure 2.47 shows that partial cavitation will
occur for J = 1.1 at U = 20.7 ms−1 (40.2 knots).
However, no face cavitation was present in the
experiments by Newton and Rader (1961) for the
selected propeller at J = 1.1 and σ0 = 0.5. This
suggests that cavitation will not be destructive for
the propeller blades.

2.10.3 Hull-propeller interaction

If a propeller operates in the wake behind the ship,
the inflow velocity to the propeller is affected.
Figure 2.51 shows an example of the longitudi-
nal wake fraction w(r, θ) at the position of a
propeller located aft of the stern of a displace-
ment vessel. Here (r, θ, x) are polar coordinates
with x in the longitudinal direction of the ship.
Zero radial distance r corresponds with the pro-
peller shaft axis. The axial velocity, which the pro-
peller sees, is U(1 − w). If we consider a blade
section as in Figure 2.36, the θ -dependence of
w means that the blade section sees a time-
dependent axial inflow velocity. This causes time-
dependent hydrodynamic loads on the propeller
that can, for instance, cause propeller shaft vibra-
tions. However, this is not our concern in the
present context of propulsion. This means we
should average w over θ . In practice, one also aver-
ages w over r and uses an averaged wake fraction
w̄ that may vary between 0 and 0.4 for a displace-
ment vessel, depending on the hull form. However,
the averaged wake fraction may be negative for a
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Figure 2.51. Curves of constant wake fraction w for a
125-m cargo ship model. The axial velocity that the pro-
peller sees is U(1 − w) (Breslin and Andersen 1994).

semi-displacement vessel. This is Froude number
dependent and caused by the waves generated by
the ship.

We can determine w in model tests. Because
there is also a Reynolds number effect, there are
problems in how to scale w to full scale. We have
already discussed this in the context of boundary-
layer flow along the ship hull. For instance, the
ratio between boundary-layer thickness and ship
length will not be the same in model tests and full
scale. The wake is just a continuation of the viscous
boundary-layer flow.

We can account for the wake by redefining
the advance ratio J in the open-water propeller
characteristics as J = U(1 − w̄)/(nD). However,
because w̄ is an average wake effect over the whole
propeller area, we should not expect that this could
be correct both for KT and KQ. So in addition, KQ

is corrected as follows

(KQ)SP = (KQ)OW /ηR. (2.160)

Here the subscripts SP and OW refer to a self-
propelled model and open-water propeller condi-
tions, respectively. Further, ηR is called the relative
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rotative efficiency. Typical values ofηR are between
1.0 and 1.1. A self-propelled test uses a model
fitted with and propelled by a scale-model pro-
peller. Because the total resistance coefficient CT

is larger in the model test than in full scale (see
Figure 2.26), additional thrust is provided by the
towing carriage.

The propeller will affect the flow around the
ship. This means the resistance on the hull is not
the same with and without the propeller. The suc-
tion due to the propeller will reduce the pressure
at the stern and therefore increase the resistance.
This can be expressed as

RT = (1 − t) T, (2.161)

where RT is the resistance without the propeller
and t is called the thrust-deduction coefficient. Typ-
ical values of t are lower than 0.2.

The relative rotative efficiency, the thrust
deduction coefficient, and the wake fraction can
be determined by combining self-propelled tests,
open-water propeller characteristics, and towing
tests without the propeller (Newman 1977). If the
wake fraction is obtained in this way, it is called
Taylor wake wT.

We can now define an overall propulsive effi-
ciency

η = RTU
2πnQSP

= (1 − t)
(

U
2πnD

)
TSP D
QOW

ηR.

(2.162)

We can express this in terms of (KT)OW and
(KQ)OW, which now must be considered a func-
tion of the modified advance ratio U(1 − w̄)/(nD).
Then, we will have similarity between the open-
water and self-propelled thrust coefficients, that
is, (KT)OW = (KT)SP. The propeller efficiency ηP

given by eq. (2.148) is then

ηP = U (1 − w̄)
2πnD

KT

(KQ)OW

. (2.163)

This means eq. (2.162) becomes

η = (1 − t)
(1 − w̄)

ηPηR. (2.164)

Here

ηH = 1 − t
1 − w̄

(2.165)

is called the hull efficiency. Because ηH is typi-
cally between 1 and 1.2, the propulsive efficiency
of a propeller behind a hull will be larger than the

open-water efficiency. We can determine the ship’s
speed when we know the hull interaction coeffi-
cients, the resistance, and the machinery and pro-
peller characteristics. This follows by the fact that
the delivered torque from the machinery should
balance the hydrodynamic torque on the propeller
and by equalizing the ship’s resistance with the
propeller thrust. The analysis will implicitly deter-
mine the number of shaft revolutions n. Eventu-
ally we can, for instance, determine the overall
propulsive efficiency given by eq. (2.164).

2.11 Waterjet propulsion

Waterjet propulsion is the most common propul-
sion system for high-speed vessels of nonplan-
ing type. A comprehensive and practically ori-
ented article on waterjet propulsion is presented
by Allison (1993). Cavitation is easier to avoid for
a waterjet than for a propeller at high speed.

If the engine power and the resistance curve of
the vessel are known, we can easily make a prelimi-
nary selection of a waterjet propulsion system with
diagrams provided by the manufacturer. There are
different series with different outlet nozzle diam-
eters and blade pitch angles. Let us illustrate this
with an example. Figure 2.52 shows, for one par-
ticular waterjet system, different lines of constant
brake power in kW (BKW) as a function of ves-
sel speed. The brake power is the power delivered
by the propulsion machinery. The vertical axis is
the net thrust accounting for mechanical losses. In
Figure 2.52, we have also plotted the resistance
of the vessel together with the waterjet propul-
sion data. The intersection between the resistance
and BKW-curves determines the needed power
for a given vessel speed. The vessel should oper-
ate less than 10% of the time in zone 2, according
to the diagram. This is associated with pump cav-
itation. Figure 2.52 also shows a zone 3, where a
vessel must be only less than 1% of the operating
time. However, Figure 2.52 shows that the studied
vessel will never be in zone 3 with this particu-
lar waterjet propulsion system. Different loading
conditions, that is, resistance curves, of the vessel
must be investigated.

The power and shaft speed must be consistent
with the engine and the gear. Figure 2.53 shows
the connection between BKW and shaft speed for
the same waterjet propulsion system as the one
studied in Figure 2.52. The manufacturer makes
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2
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Figure 2.54. Waterjet propulsion system. The numbers in the figure correspond to:

Station
no. Location

0 In undisturbed flow far ahead of the vessel
1 Far enough in front of the intake ramp tangency point, before inlet

losses occur
2 Normal to the internal flow at the aft lip of the intake
3 Just ahead of the pump
4 Between pump and stator
5 Behind stator
6 At the nozzle outlet plane
7 Behind the nozzle outlet plane where the pressure in the jet is equal

to atmospheric pressure (vena contracta)

the final choice regarding the outlet nozzle diam-
eter and the blade pitch angle in order to optimize
performance and minimize fuel consumption.

Figure 2.54 presents an overview of all parts of
a waterjet system with flush inlet. Details between
stations 3 and 5 in Figure 2.54 are illustrated in
Figure 2.55. The pump with the impeller (pro-
peller) and the stator are on the right and left
sides of the figure, respectively. Figure 2.56 demon-
strates how the waterjet direction can be changed
in order to stop, reverse, and steer the vessel.

Figure 2.55. Details of the pump with the impeller on
the right-hand side and the stator on the left-hand side of
a Kamewa waterjet propulsion system by Rolls-Royce.

A procedure using Figures 2.52 and 2.53 does
not, from a physical point of view, provide insight
into how a waterjet works. The following presen-
tation emphasizes this.

We start by describing how the thrust and effi-
ciency of a waterjet propulsion system can be
determined by model tests. The theoretical basis
for doing this is the use of conservation of fluid
mass, momentum, and energy. We will show how
the thrust can be expressed by conservation of
fluid momentum and how the effect delivered by
the impeller can be expressed by conservation of
kinetic energy for a viscous flow.

Finally, we discuss how the details of the inlet
area and inflow velocity affect the possibility of
cavitation.

2.11.1 Experimental determination of thrust and
efficiency by model tests

The measurement of thrust and power for a
waterjet system is more complex than for a ship
equipped with a propeller. As outlined in the pre-
vious section, it is possible to separate the effect
of a conventional propeller and the ship’s hull.
This is difficult for a waterjet system, as shown
in Figure 2.54. By model testing, we cannot iden-
tify which part of the thrust is produced by the
pump and what is the force due to the flow in the
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Forward propulsion

No speed Reversing Steering starboard

Steering port

Figure 2.56. Illustration of how the waterjet direction of a Kamewa waterjet propulsion system by
Rolls-Royce can be changed in order to stop, reverse, and steer the vessel.

internal ducting. Further, the flow into the waterjet
affects the flow at the outer hull and causes trim
and sinkage of the vessel. Specialist committees
of the ITTC are still working on how to measure
thrust and power from a waterjet system.

Let us consider a ship model equipped with a
waterjet system at forward speed U. The first ques-
tion is, What is the amount of water captured into
the waterjet system?

We can answer this by considering the continu-
ity of fluid mass and by measuring at station ©7 in
Figure 2.54 the amount of water going out of the
waterjet system. The volume flux at station ©7 can
be expressed as

Q7 =
∫
S7

u1 dA. (2.166)

Here S7 is the cross-sectional surface of the jet
flow at station ©7 . Further, we define a Cartesian
coordinate system (x, y, z) fixed relative to the
ship (Figure 2.57). u1 in eq. (2.166) is then the
x-component of the fluid velocity at station ©7 ,
where the pressure is atmospheric. u1 can be mea-
sured.

In the description of station ©7 in Figure 2.54,
the term vena contracta is used. This means that
the jet flow has a smaller cross-sectional area at
section ©7 than at the nozzle outlet. The effect is
small for a waterjet outlet. However, this is not the
case for a jet flow escaping from a small opening
in a container.

We then have to define a capture area of the
fluid going into the waterjet system. We imagine
a stream tube through the waterjet system as in
Figure 2.57, in which stations ©1 and ©7 are also
shown. We select a new station ©1a that is not
affected by the local flow at the inlet. In practice,
the distance between stations ©1 and ©1a can be
chosen as one inlet width, as recommended by the
23rd ITTC.

We now have to define the shape of the capture
area at station ©1a . The 21st ITTC proposed the
use of a rectangular capture area with width b1

that is 30% wider than the inlet width. The height
of the capture area can then be determined by
using the continuity of fluid mass. This requires
that fluid velocities are measured at capture area

7

1 1a
x

z n

C
B

S7

S1a

Figure 2.57. The control volume used in the calculation
of the forward-acting force (thrust) on the ship due to
the waterjet propulsion system and the effect that the
impeller has on the flow. Conservation of fluid momen-
tum and kinetic fluid energy are used. The bounding sur-
face of the control volume is divided into a number of
surfaces (see eq. (2.168)). The bounding surfaces at sta-
tion ©1a and ©7 are perpendicular to the x-axis.
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S1a . Let us, for simplicity, assume that this area is
perpendicular to the x-axis and u1 varies only with
z. This means that the height h 1a of the capture
area is determined by

b1

−d∫
−d−h1a

u1(z) dz = Q7. (2.167)

Here d is the draft of the vessel at station ©1a . There
is no specific physical reason why the capture area
should be rectangular. The important point is that
the thrust and power given by the subsequent anal-
ysis are not sensitive to the detailed shape of the
capture area.

Because the boundary layer at the inlet has a
thickness of the order of the inlet duct diameter,
u1 in eq. (2.167) is affected by viscosity. We can esti-
mate the boundary-layer thickness δ by eq. (2.68).
This is valid for turbulent flow along a smooth
flat plate. The use of eq. (2.68) illustrates a scaling
problem. Let us call L the length from the ship’s
bow to the waterjet inlet and use subscripts M and
S to indicate model and full scale. We then get

δs = 0.16Ls(Us Ls
ν

)1/7 .

By now, using Froude scaling for the velocity, that
is,

UM = US

(
LM

LS

) 1
2

,

and assuming the same value of the kinematic vis-
cosity coefficient ν in model and full scales, we get

δM

δS
=

(
LM

LS

)11/14

.

According to Froude scaling, δM/δS should be
LM/LS. This means we have scaling problems.
Practical procedures for how to deal with this are
presented by the ITTC. In addition, roughness will
influence the full-scale boundary layer. We will not
pursue this here, but rather continue with the esti-
mation of the thrust by model tests. We assume
that the vessel has only one waterjet. However,
the procedure can easily be generalized to several
waterjets on one vessel.

Thrust by conservation of fluid momentum
The control volume illustrated in Figure 2.57 is
now considered. The bounding surface S is divided

into several parts, that is,

S = S1a + S7 + SH + SI M + SST

+ SSH + SWAT + SAIR. (2.168)

Here S1a and S7 mean the surface at stations ©1a

and ©7 , respectively, having areas A1a and A7.

SI M,SST , and SSH are, respectively, the surfaces of
the impeller, the stator, and the shaft. SH means
the part of the remaining enclosing surface S that
is connected to the vessel. It consists of the sur-
faces of the inlet, ducts, and outlet. SWAT and SAI R

are the remaining part of the enclosing surface S.
SWAT is in the water, that is, like BC in Figure 2.57,
and SAIR is bounded by air, that is, aft of station ©6

in Figure 2.54.
Conservation of fluid momentum expresses:
Sum of forces acting on the control volume

=
Rate of change of fluid momentum

in the control volume
We will consider the longitudinal forces in the x-

direction. The rate of change of fluid momentum in
the x-direction can be expressed by the difference
in the momentum flux at stations ©7 and ©1a , that
is,

�M = ρ

∫
S7

∫
u 2

1 dS − ρ

∫
S1a

∫
u 2

1 dS. (2.169)

The longitudinal forces acting on SAI R and S7 are
the result of the atmospheric pressure pa . Because
a constant pressure acting on the complete bound-
ing surface S will not cause a net force on the con-
trol volume, we can just as well neglect the force
due to pa on SAI R and S7 and operate with forces
due to the difference in total pressure and atmo-
spheric pressure on the other parts of S.

The sum of the longitudinal forces acting on the
control volume at SI M, SST, SSH, and SH causes an
opposite force on the vessel. This is the law of actio
and reactio. Because positive x-direction is oppo-
site the forward motion of the ship and positive
thrust is in the direction of the forward motion of
the ship, the thrust T is the sum of longitudinal
forces acting on SI M, SST, SSH, and SH. Because
the flow inside the waterjet system is turbulent,
these forces are caused not only by pressures.

There are also longitudinal forces acting on S1a

and SWAT. However, Masilge (1991) states that this
contribution to the thrust is small.
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Neglecting the contribution from longitudinal
forces on S1a and SWAT leads to the following com-
monly used expression for the thrust:

T = ρQf (Uj − Uθ ) . (2.170)

Here Qf is the same as the volume flux Q7 defined
by eq. (2.166), that is, the flow rate ingested by
the waterjet. The subscript j denotes jet and the
subscript θ is used because of the resemblance to
how the momentum thickness of a boundary layer
is defined (see eq. (2.54)). Further,

ρQf Uθ = ρ

∫
s1a

∫
u 2

1 dS (2.171)

ρQf Uj = ρ

∫
s7

∫
u 2

1 dS. (2.172)

Eq. (2.170) can also be expressed as

T = ρQf (Uj − U (1 − w̄ f )) , (2.173)

where

w̄ f = 1 − Uθ

U
. (2.174)

Here w̄ f is a mean wake fraction that accounts for
both approach flow losses in the boundary layer
and potential flow effects outside the boundary
layer. The longitudinal flow velocity U1 outside
the boundary layer at S1a differs from the forward
speed U. For instance, it will be influenced by the
waves generated by the vessel.

Impeller effect by conservation of kinetic
fluid energy
The effect that the impeller has on the flow is
needed in expressing the efficiency of the water-
jet system. This can be done by using conserva-
tion of kinetic fluid energy in the control volume
illustrated in Figure 2.57. A derivation is part of
exercise 2.12.4.

The effect PD given by the impeller to the flow
can be expressed as

PD =
∫
s7

∫
u1

[ρ

2
u · u + p + ρgz

]
dS

−
∫
s1a

∫
u1

[ρ

2
u · u + p + ρgz

]
dS (2.175)

+ losses due to turbulent and viscous stresses

Here u = (u1, u2, u3) is the fluid velocity vector. It
means that 0.5ρ

∫
s7

∫
u1u · u dS and −0.5

∫
s1a

∫
u1u ·

u dS in eq. (2.175) represent kinetic energy flux
out of and into the control volume, respectively.
Further, the z-coordinate in eq. (2.175) is defined
in Figure 2.57, with z = 0 corresponding to the
mean free surface. Because there are mechani-
cal losses, the power delivered by the propulsion
machinery (brake power) is not the same as the
power PD delivered by the impeller.

If we are outside the boundary layer at S1a, the
Bernoulli equation given by eq. (2.94) can be used
to express the pressure p. Our problem is steady
and the constant in eq. (2.94) can be expressed
by considering a point on the free surface far
upstream of the ship. Here the fluid velocity is
equal to the ship’s speed in our reference frame.
This gives

p = −ρgz + ρ

2

(
U 2 − u2

1 − u2
2 − u2

3

) + pa

(2.176)

everywhere in the water where potential flow the-
ory applies. Here pa is the atmospheric pressure.
We also use the approximation that the pres-
sure does not vary across a thin boundary layer
when gravity is neglected. By assuming that the
hydrostatic pressure part −ρgz is valid through
the boundary layer, the pressure on S1a can be
expressed as:

p = −ρgz + ρ

2

[
U 2 − U2

1 − U2
2 − U2

3

] + pa .

(2.177)

Here (U1, U2, U3) is the fluid velocity just outside
the boundary layer.

Assuming U2 and U3 are small relative to U1 at
S1a gives

p = −ρ

2
U2

1 − ρgz + pa + ρ

2
U 2. (2.178)

The pressure at S7 is pa . Because∫
S7

∫
u1 dS =

∫
S1a

u1 dS, (2.179)

the atmospheric pressure will not contribute to
the sum of the integrals over S1a and S7 in eq.
(2.175). Let us also approximate u as u1i at S1a

and S7 and assume u1 is a constant jet velocity Uj

at S7. Approximating u as u1i at S7 means that we
neglect the rotatory flow caused by the impeller,
that is, as we see in terms of tip vortices in Fig-
ure 2.40. We could argue that the stator coun-
teracts the rotatory flow caused by the impeller.
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Further,
∫

S7

∫
u1z dS is approximated as Qf h j ,

where h j is the height of the center of the jet at
S7 above the mean free surface. This gives

PD = ρQf
(
0.5U2

j + gh j
)

− ρ

2

∫
S1a

∫
u1

[
u 2

1 − U 2
1 + U 2] dS. (2.180)

+ losses due to turbulent and viscous stresses

Eq. (2.175) expresses that the effect delivered by
the impeller to the flow is used to

� Accelerate the water from station ©1a to sta-
tion ©7

� Lift the water to a vertical distance h j above the
mean free surface

� Overcome the losses due to Reynolds and vis-
cous stresses in the waterjet system

It is common to study separately the effect of
the pump or what is happening between stations
©3 and ©5 in Figure 2.54. The pump efficiency ηP,

when the pump is not installed in the waterjet sys-
tem and there is a homogenous inflow to the pump
(see position 3 in Figure 2.54), is introduced. We
can then write

PD = ρgQf H
ηPηR

, (2.181)

where ηR is a relative rotative efficiency that
accounts for the irregular inflow to the pump.
Eqs. (2.175) and (2.181) give an expression for the
head H:

H = 0.5
U2

j

g
(1 + ζex) + h j

− 0.5
U 2

g

(
1 − ˜̃w2

f − ζin
)
, (2.182)

where

ζex = nozzle loss coefficient in terms of 0.5ρU2
j .

This accounts for losses after station ©5 in
Figure 2.54.

ζin = inlet and internal flow loss coefficient in
terms of 0.5ρU 2. This accounts for losses
between stations ©1 and ©3 in Figure 2.54.

These loss coefficients can be experimentally
determined. Further, ˜̃w2

f in eq. (2.182) is defined
as

˜̃w2
f = 1

U2 Qf

∫
S1a

∫
u1

(
U 2

1 − u 2
1

)
dS. (2.183)

Efficiency
The thrust power efficiency is

ηT = TU
PD

= ηPηR
[Uj − U (1 − w̄ f )] U

gH
. (2.184)

Further, an overall propulsive efficiency is defined
as

η = RBHU
PD

. (2.185)

Here RBH is the bare hull resistance of the vessel.
It is related to a condition when the waterjet inlet is
closed and the vessel has the same trim and sinkage
that it would have had with a working waterjet
system. We can write

T = RBH

1 − t
, (2.186)

where t is a thrust deduction coefficient. Introduc-
ing eq. (2.186) gives

η = (1 − t)ηT. (2.187)

A jet efficiency is introduced as

ηJ = [Uj − U (1 − w̄ f )] U
gH

. (2.188)

Eq. (2.185) can then be written as

ηT = ηPηRηJ . (2.189)

Using eq. (2.182) gives

ηJ =
2

[(
Uj
U

)
− (1 − w̄ f )

]
(

Uj
U

)2
(1 + ζex) + 2gh j

U 2 − (
1 − ˜̃w2

f − ζin
) .

(2.190)

Realistic values for the parameters in eq. (2.190)
are w̄ f = 0.02, ˜̃w2

f = 0.04, ζex = 0.04. Further, ζin

may vary from 0.1 to 0.25. Higher values may,
for instance, occur as the result of marine growth.
We have exemplified ηJ as a function of Uj/U in
Figure 2.58 by using these values together with
U = 25 ms−1 and h j = 0.5 m. Maximum jet effi-
ciency occurs at about Uj = 1.3U for ζin = 0.1 and
at about Uj = 1.5U for ζin = 0.25. Figure 2.59 illus-
trates how maximum jet efficiency ηJ max decreases
and the corresponding value of jet velocity–ship
velocity ratio (Uj/U)max increases with increas-
ing ζ = ζin + 2gh j/U 2 + ˜̃w2

f when ζex = 0.04 and
w̄ f = 0.
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Figure 2.58. Jet efficiency ηJ as a function of the ratio
between jet velocity Uj and ship velocity U for a
waterjet system with w̄f = 0.02, ˜̃w2

f = 0.04, ζex = 0.04,

U = 25 ms−1, h j = 0.5 m.

Additional parameters for the pump have to
be introduced in order to find the pump effi-
ciency. Figure 2.60 presents an example of a pump
diagram showing pump efficiency ηP and head
coefficient CH = gH/(nD)2 as a function of the
capacity coefficient CQ = Qf /(nD3). Here D
means the impeller diameter and n is the num-
ber of shaft revolutions per second. Typical values
of n are between 5 and 10 revolutions per second.
As long as the cavitation and Reynolds number
effects do not matter, CH and ηP as a function
of CQ are sufficient to characterize a given pump.

2

1.6

1.8
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1.2

1

0.8

0.6

0.4
0

ζ

(Uj/U)max

ηJmax

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.59. Maximum jet efficiency ηJ max and cor-
responding value of jet velocity–ship velocity ratio
(Uj /U)max as a function of ζ = ζin + 2gh j /U 2 + ˜̃w2

f ,

ζex = 0.04, w̄f = 0.

The analogue parameters for a propeller will be
the propeller efficiency ηP and either the thrust
coefficient KT or the torque coefficient KQ as a
function of the advance ratio J.

Various pump types exist, such as centrifugal
pumps, mixed-flow pumps, axial-flow pumps, and
inducers. Mixed-flow pumps are typically used
for waterjet systems. The nondimensional specific
speed

nS = nQ1/2
f

(gH)3/4 (2.191)

characterizes what pump type should be used
(Carlton 1994).

An important consideration for a pump is
cavitation. The nondimensional specific suction
velocity

S = n
√

Qf / (gHSV)0.75 (2.192)

plays a role for a pump similar to the one the cav-
itation number plays for a propeller. Here HSV

is called the net positive suction head. It can be
expressed as

HSV = pSV

ρg
, (2.193)

where pSV is the difference between the pressure
(including atmospheric pressure) at station ©3 in
Figure 2.54 and the vapor pressure. Cavitation may
occur when S is larger than 0.6 to 0.9.

Let us illustrate how both a high pump efficiency
and jet efficiency can be obtained. We do not con-
sider the possibility of cavitation of the pump in
this context. The procedure is divided into differ-
ent steps. Only one waterjet system is assumed.

Step 1
We consider maximum operating speed of the ves-
sel and assume the bare hull resistance RBH of the
vessel is known. The needed thrust can then be
estimated by eq. (2.186). A typical thrust deduc-
tion coefficient is 0.02.

Step 2
We determine the ratio between the jet veloc-
ity Uj and the vessel speed U by considering
the jet efficiency ηJ as a function of Uj/U (see
Figure 2.58 as an example). This is done by using
eq. (2.190). It requires that loss coefficients ζex

and ζin as well as wake factors w̄f and ˜̃w2
f are

known from experiments. There exists a value
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Figure 2.60. Example of pump diagram showing pump efficiency ηP and head coefficient CH =
gH/(nD)2 as a function of the capacity coefficient CQ = Qf /

(
nD 3

)
. n = shaft revolutions per second,

D = impeller diameter (Minsaas, unpublished).

(Uj/U) = (Uj/U)max where maximum ηJ occurs
(see Figure 2.58). Because ηJ decays rapidly
for Uj/U less than (Uj/U)max , one may choose
Uj/U = 1.1 (Uj/U)max to ensure large values of
ηJ and small sensitivity between ηJ and (Uj/U) .

Step 3
Because all variables except Qf are now known in
eq. (2.173), we can use this equation to determine
Qf. Because Qf = 0.25π D2

j Uj , where Dj is close
to the nozzle exit diameter, Dj is also determined.
Dj must of course represent a realistic value. A
typical value of Dj is of the order of 0.5 m. A large
value of Dj implies a large added weight of the
vessel due to the water in the waterjet system. This
is not desirable. One can change Qf and Dj by
changing Uj . However, it should be kept in mind
that we want a large ηJ as described in Step 2.

Step 4
We must now consider a pump diagram as illus-
trated in Figure 2.60. We then vary Qf /nD3

by considering realistic combinations of n and
impeller diameter D. The value of CH =
gH/ (nD)2 must be consistent with CQ = Qf /nD3.

H can be calculated by eq. (2.182). Different pump
diagrams in which, for instance, the pitch of the
impeller is varied, may have to be considered.
Obviously we want Qf /nD3 to correspond to a
large pump efficiency ηP. Figure 2.60 illustrates

that ηP can be as high as 0.9. However, values up
to 0.93 have been achieved.

Step 5
We can now evaluate the thrust power efficiency
ηT by eq. (2.189). A typical value of the relative
rotative efficiency is 0.98. The overall propulsive
efficiency is obtained by eq. (2.187).

The procedure outlined above is meant to illus-
trate how a waterjet system can be selected. It is
not necessarily the way chosen by a waterjet man-
ufacturer. Further, pump diagrams are not always
presented as in Figure 2.60.

The previously described procedure to deter-
mine thrust and efficiency relies strongly on model
tests. An important issue is how to scale the model
test results. There are Reynolds-number effects
associated with the inflow to the waterjet inlet as
we have already mentioned. Further, part of the
thrust is the result of viscous effects, but our pro-
cedure of using conservation of fluid momentum
does not tell us to what extent forces due to vis-
cous and Reynolds stresses in the waterjet system
affect the thrust. Also, the losses in the waterjet
system are Reynolds-number dependent. Scaling
procedures are an important issue to solve by the
ITTC. van Terwisga (1991, 1992) has described in
detail the model test procedures used at MARIN.

An alternative or supplement to model tests is,
of course, the use of CFD. Taylor et al. (1998)
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Ua waterjet inlet

UI

Diffusor

Figure 2.61. Carstensen’s (1983) local 2D
steady flow analysis of inlet area. The
details of the flow within the circle is exam-
ined. Ua = ambient flow velocity, UI = inlet
velocity defined as the mean velocity at the
most narrow cross section of the inlet.

have presented a waterjet pump design procedure.
This includes analysis with a technique that cou-
ples a lifting surface program for blade-row calcu-
lations with an axi-symmetric Reynolds-averaged
Navier–Stokes (RANS) viscous flow solver for
computation of the pump through-flow. An exam-
ple of application of CFD to the analysis of water-
jet inlets is given by Førde et al. (1991).

2.11.2 Cavitation in the inlet area

The inlet area requires special attention in design
to avoid engine load fluctuations, which may occur
because of:

1. Exposure of the waterjet inlet to the free air
2. Flow separation in front of and inside the

inlet
3. Cavitation inside the inlet
4. Ventilation and penetration of air from

the free surface (see Figure 1.9) or from
entrained air in the boundary layer

The phenomena mentioned above are often cou-
pled in a complicated way. As an example, separa-
tion may be one of the requirements for onset of
ventilation. Cavitation occurs in connection with
separation. Under given conditions, a cavity will
be penetrated and filled with air. Separation and
cavitation are, first of all, dependent on the pres-
sure distribution in and near the entrance. For a
given shape, this distribution depends mainly on
the speed and thrust (resistance) of the ship.

In a seaway, the power is often of the same order
of magnitude as in calm water, but the speed will
be reduced, which generally decreases the pres-
sure near the inlet. With an inlet shape optimized
for the maximum speed, this may lead to cavita-
tion and separation. Further, the relative vertical
motions between the vessel and the water in a sea-
way may lead to exposure of the waterjet inlet to
the free air. The consequence in terms of engine

load fluctuations is illustrated in Figure 1.13. In
the design, one should therefore pay attention to
off-design conditions.

Carstensen (1983) has studied theoretically the
possibility of cavitation in the inlet area by using a
two-dimensional steady-potential flow model. The
possibility of flow separation was not examined.
Only the details of the inlet area are included in
the numerical model. The focus was on the local
flow within the circle shown in Figure 2.61. The
impeller, stator, and outlet appear far away on the
scale of the local flow, and the effect on the local
flow is in terms of a water mass-flux ρQf . This is
used to define an inlet velocity

UI = Qf

AI
, (2.194)

where AI is the most narrow cross section of the
inlet. The ambient longitudinal flow velocity is
denoted Ua . This flow velocity is unaffected by the
local hull and the waterjet system. It represents an
upstream inflow velocity to the local flow at the
inlet. Ua can be set equal to U1, that is, the lon-
gitudinal flow just outside the boundary layer at
station ©1a .

Faltinsen et al. (1991a) also presented a numer-
ical method to calculate the pressure distribu-
tion in a flush-type waterjet inlet. This method
is also based on a local steady two-dimensional
potential flow model in a longitudinal cross sec-
tion. In principle, it is straightforward to general-
ize the method to three dimensions. However, vis-
cous effects ought to be considered. We know the
water mass-flux through the waterjet system from
the previously outlined power-prediction method.
This condition and zero normal velocity through
the hull are imposed. The far-field of the local
flow is composed of two parts, that is, the x-
component of the velocity at the waterjet inlet as
if the waterjet were not there and a sink flow with
a strength determined from the water mass-flux
through the waterjet. The first far-field component
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Forward ramp
Rear lip

Ua = 20.33 ms−1

1.0

Dout = 1.00 m
Vout = 8.08 ms−1

PUMP

1 − (    )2V
Ua

+

+

+

Figure 2.62. Longitudinal cross section of a waterjet inlet. The figure shows predicted nondimensional
hydrodynamic pressure distribution: 1 − (V/Ua)2. V = local velocity relative to the vessel, Ua = ship
speed.

can be determined from a global steady-flow
analysis. A boundary element method based on
Green’s second identity (see section 6.4) is used to
find the velocity potential in the local flow at the
waterjet inlet. Bernoulli’s equation determines the
pressure distribution. From this, we can investi-
gate the possibility of cavitation and separation
(see items 2 and 3 above).

We will illustrate this by the example shown
in Figure 2.62. A longitudinal cross section of an
inlet ahead of the pump with diameter Dout = 1 m
is shown together with predicted velocity distri-
bution V on the hull surface. The total steady
pressure is the sum of atmospheric pressure,
hydrostatic pressure, and hydrodynamic pressure
0.5ρU2

a (1 − (V/Ua)2), where Ua = 20.33 ms−1 in
this case. If the total pressure is equal to vapor
pressure, cavitation occurs. The lower the hydro-
dynamic pressure, the larger the possibility of cav-
itation. This does not occur in this example. How-
ever, the results show the lowest hydrodynamic
pressure on the forward ramp and the lower sur-
face of the lip. There is a stagnation pressure on
the front of the lip and high pressures ahead of the
pump.

In this context, an important parameter is the
inlet velocity ratio (IVR), defined as

IVR = UI

U
. (2.195)

Typical values of IVR are between 0.7 and 1.2. The
inlet velocity defined by eq. (2.194) is in the case
presented in Figure 2.62:

UI = 8.08 · 1
0.5

= 16.16 ms−1.

Here the area AI per unit length at the most nar-
row cross section of the inlet is 0.5 m. This gives
IVR = 0.79 if we set Ua = U. A restriction on IVR

follows from eq. (2.173) for the thrust. In order to
have positive thrust it is necessary that

Uj − U (1 − w̄f ) > 0.

The continuity equation gives Uj A7 = UI AI , that
is,

IVRAI > A7 (1 − w̄f ) . (2.196)

Using the thrust and continuity equations gives the
following relationship between thrust and IVR:

T
ρU 2 AI

= IVR
(

IVR
AI

A7
− (1 − w̄f )

)
. (2.197)

Carstensen (1983) presented systematic results
of the pressure coefficient Cp along the inlet sur-
face as a function of IVR based on Ua = U. The
pressure coefficient is defined as

Cp = p − pa

0.5ρU 2
, (2.198)

where p is the total pressure and pa is the ambient
pressure. Because p = pa + 0.5ρU 2 − 0.5ρV2, Cp

can be expressed as 1 − (V/U)2
, similar to the

formula in Figure 2.62. The pressure coefficient
at the forward ramp is always negative upstream.
The IVR value determines when Cp becomes pos-
itive and continues to increase within the diffuser
on the forward ramp. A suction peak is generally
present near the tip of the rear lip. The general
tendency is for the suction peak to occur on the
outside of the rear lip when IVR is small. When
IVR is sufficiently high, the suction peak on the
rear lip occurs inside the inlet.

The minimum pressure coefficient Cp min can be
used to assess the occurrence of cavitation. −Cp min

as a function of IVR is presented in Figure 2.63
based on Carstensen’s calculations for an inlet
with a 10◦ diffuser angle and a 25◦ diffuser axis.
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Figure 2.63. Bucket curves for flush and protruding inlets, Cp min = minimum pressure coefficient on
the forward ramp and rear lip. IVR = UI/U with U = Ua (see Figure 2.61). Presented by Kruppa
(1990) based on Carstensen (1983).

The effect of rear lip protrusion is also shown.
The presented curves are called bucket curves.
The upper and lower branches of the bucket cor-
respond to minimum pressure conditions of the
inner and outer surfaces of the rear lip, respec-
tively. These curves may be used as follows to
assess the occurrence of cavitation. We set as a cri-
terion for onset of cavitation that p = pv, where pv

is the vapor pressure. We may then express Cp min

as (pv − pa)/(0.5ρU 2). This is the same as minus
the cavitation number σ. This means the curves in

Figure 2.63 tell us at what cavitation number onset
of cavitation will occur as a function of IVR.

As an example, let us assume that the outer sur-
face of the rear lip has a draft d = 1 m. We set the
ambient pressure equal to the sum of the atmo-
spheric pressure and the hydrostatic pressure ρgd.

If U ≈ 40 knots, this gives σ = 0.5. Let us then con-
sider the bucket curve for zero rear lip protrusion
in Figure 2.63. Onset of cavitation will occur out-
side the bucket, that is, onset of cavitation will not
occur for IVR between approximately 0.55 and
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Station 0 Station i (inlet)

3450

12
50

φ4
50

U

Station 3 (Pump inlet)

Measurement of pressure

Pitot tubes for measurement
of velocity and pressure
distribution in the inlet to the
pump

6-Comp. Balance

Figure 2.64. Model test setup of a ram
(scoop) inlet tested in a cavitation tunnel
with free surface (Minsaas 1996).

0.93 for the examined condition. If σ < 0.3, cav-
itation will occur for all IVR-values for the cases
presented in Figure 2.63. These results are based
on 2D calculations, but nowadays similar calcula-
tions can easily be done in three dimensions. Fur-
ther, model tests with pressure measurements in
the inlet are commonly done.

There are other types of waterjet inlets than the
one described above. Waterjets with ram (scoop,
pilot) inlets are used, for instance, on hydrofoil
vessels with a fully submerged foil system. Fig-
ure 2.64 illustrates the model test setup of a ram
inlet tested in a cavitation tunnel with free sur-
face. Part of the study was to investigate the cavi-
tation pattern at the inlet corresponding to a full-
scale speed of 50 knots at different IVR-values.
Bubble cavitation was detected outside the inlet,
as illustrated in Figure 2.65. This can cause both
noise problems and erosion of the material. Sheet
cavitation was detected at the inside of the inlet
at certain IVR-values shown in Figure 2.65. This
will cause blockage of the flow to the waterjet sys-
tem and reduce the efficiency. The sheet cavitation
detected at the entrance may also lead to cavita-
tion at other places in the waterjet system.

2.12 Exercises

2.12.1 Scaling

a) Use the Pi-theorem to show that nondimen-
sional water resistance

R
0.5ρU 2 L2

is a function of Reynolds number and Froude
number for geometrically similar submerged hull
forms. Start by assuming that R is a function

of ρ, g, µ, U, L, and other submerged hull dimen-
sions.

How would you generalize this to account also
for Weber number?

b) Use the Pi-theorem to express the fact that
the nondimensional thrust and torque coefficients
KT and KQ in open-water conditions without free-
surface effects are functions of the advance ratio
and Reynolds number for geometrically similar
propellers.

IVR = 0.705

IVR = 0.800 IVR = 0.900

IVR = 1.000

IVR = 0.750

IVR = 0.900 IVR = 1.000

INSIDE

sheet
cavitation

sheet
cavitation

Figure 2.65. Model tests of a ram inlet corresponding to
50 knots in full scale. Influence of the inlet-velocity ratio
(IVR) on cavitation pattern. The ram inlet is shown in
Figure 2.64 (Minsaas 1996).



P1: GDZ
0521845688c02 CB921-Faltinsen 0 521 84568 7 October 21, 2005 11:18

74 • Resistance and Propulsion
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Figure 2.66. Control surfaces in applying conservation of fluid momentum to estimate ship resistance.

c) Start with the Navier-Stokes equations expr-
essed by eqs. (2.8), (2.9), and (2.10), and assume
steady mean flow along a smooth flat plate of
length L. Make the equations and boundary con-
ditions nondimensional by introducing

u∗ = u
U

, v∗ = v
U

, x∗ = x
L

, y∗ = y
L

.

Explain the fact that the nondimensional resis-
tance of the plate is a function only of Reynolds
number.

2.12.2 Resistance by conservation of fluid
momentum

The following exercise is partly based on Ogilvie
(1969a).

a) We are going to express water resistance R of
a ship by means of steady RANS equations and
conservation of fluid momentum. We choose a
body of fluid bounded by the following surfaces
(Figure 2.66).

A: x = xA, far ahead of the ship
B: x = xB, behind the ship
C: z = zC , far below the ship
D: y = yD, far to starboard of the

ship (yD > 0)
E: y = yE, far to port of the ship (yE < 0)
F: z = ζ (x, y), the free surface
H: the hull surface

The normal n to the surface enclosing the fluid
volume is positive outward of the fluid volume.
The fluid velocity at A is U i, where U is the ship’s
speed and i is the unit vector along the x-axis.

Neglect viscous and Reynolds stresses on F and
show by means of continuity of fluid momentum
and fluid mass that

R =
∫
B

∫
dS

[
2µ

∂ū
∂x

− ρu′2 − ( p̄ − pa)
]

(2.199)

+
∫
A

∫
dS( p̄ − pa) −

∫
B

∫
dSρū (U + ū)

Here

U + ū = time-averaged longitudinal fluid
velocity

−ρu′2 = Reynolds stress component, with u′

being the turbulent part of longitudinal
velocity

p̄ = time-averaged pressure
pa = atmospheric pressure

b) Express p̄ at A and discuss why the contribu-
tion from integration of p̄ over A is cancelled by
a similar contribution from the pressure integral
over B.

c) We consider the wave resistance problem and
neglect viscosity. We can now use Bernoulli’s
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equation. By using eq. (2.199) and Bernoulli’s
equation, show that the wave resistance RW can
be expressed as

Rw = −0.5ρ

∫
B

∫
(u 2 − v2 − w2) dS

+ 0.5ρg
∫
B

ζ 2 (x, y) dy. (2.200)

Here the fluid velocity has the components U +
u, v, and w along, respectively, the x-, y-, and z-
axes, and z = ζ is the free-surface elevation.

2.12.3 Viscous flow around a strut

We consider a vertical strut with forward speed
U = 15 ms−1 and analyze 2D flow in a horizontal
cross-sectional plane. The effect of the free sur-
face is neglected. The chord length is 5 m, and
the thickness-chord length ratio is 0.10. Assume
ν = 1.35 · 10−6 m2s−1 and that the flow is turbu-
lent from the leading edge.

a) What is the drag force in Nm−1 if the strut sur-
face is smooth?

b) What is the drag force in Nm−1 if the strut sur-
face has a roughness height of 150 µm?

c) Estimate the boundary-layer thickness at the
trailing edge by using a formula for a smooth flat
plate.

d) Assume that the strut surface is smooth, and
plot the velocity distribution in the wake at a lon-
gitudinal distance 50 m from the center of the strut.

e) Consider two smooth struts in a tandem
arrangement. The strut dimensions and the speed
are as above. The longitudinal distance between
the centers of the two struts is 50 m. Assume the
upstream strut is not influenced by the flow around
the downstream strut. However, the downstream
strut is influenced by the wake of the upstream
strut.

Estimate the drag force on the downstream
strut.

(Hint: Use wake solution at the center of the
downstream strut to define a modified inflow
velocity to the downstream strut.)

f) Generalize the arrangement in question e) to a
staggered arrangement, and discuss the behavior
of the drag force on the downstream strut.

2.12.4 Thrust and efficiency of a waterjet system

A. Thrust by conservation of fluid momentum
In this part of the exercise, we study an expression
for the thrust of a waterjet that is more detailed
mathematically and physically than the one in sec-
tion 2.11.1. We start by expressing the equation for
conservation of momentum M (t) = (M1, M2, M3)
in the fluid in a general way. Let S be a closed sur-
face that encloses a fluid volume �. The momen-
tum inside S can be written as

M (t) =
∫∫

�

∫
ρu d�, (2.201)

where u = (u1, u2, u3) is the fluid velocity. The
enclosing surface S does not need to follow the
fluid motion.

By using the definition of a derivative and noting
that both the volume and the velocity may change
with time (Figure 2.67), show that

dM
dt

= ρ

∫∫∫
�

∂u
∂t

d� + ρ

∫
S

∫
uUSn ds.

(2.202)

Here USn is the normal component of the velocity
of the surface S. Note that here we have defined the
positive normal direction out of the fluid. The last
integral is the effect of integrating over the shaded
area in Figure 2.67 and letting �t be small (i.e., go
to zero). The volume integral in eq. (2.202) may

S(t + ∆t)

Usn ∆t

S(t)

ds

FLUID
VOLUME

(Ω(t))

Figure 2.67. Illustration of how the control volume � (t)
changes in a time increment �t. USn = normal compo-
nent of the velocity of the surface S.
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be rewritten by expressing ∂u/∂t by the Navier–
Stokes equation. This, for an incompressible fluid,
can be written as

∂u
∂t

+ u · ∇u = −∇
(

p
ρ

+ gz
)

+ ν∇2u, (2.203)

where z is a vertical coordinate and the z-axis
is positive upward, with z = 0 in the mean free
surface.

Using vector algebra, show that

∇ · (uu) = u · ∇u (2.204)

for an incompressible fluid.
The volume integral can be reduced to a surface

integral by using a generalized Gauss theorem that
states that∫∫∫

�

∇ ◦ X d� =
∫
S

∫
n ◦ X ds. (2.205)

Here X may be a scalar, vector, or tensor, and ◦
denotes a dot, a cross, an ordinary multiplication,
or nothing. It is assumed that X has continuous
derivatives in �.

Show that

dM
dt

= −
∫
S

∫
pn dS − ρg

∫
S

∫
zn dS

(2.206)

− ρ

∫
S

∫
u (un − USn) dS + µ

∫
S

∫
n · ∇u dS

Here un is the normal component of the fluid
velocity at the surface S.

The second term on the right-hand side of
eq. (2.206) can be rewritten by eq. (2.205). Show
that this gives

− ρg
∫
S

∫
zn dS = −ρg�k, (2.207)

where k is the unit vector along the z-axis.
The control volume illustrated in Figure 2.57

is now considered. The bounding surface S is
divided into several parts, as described by eq.
(2.168).

On which surfaces are USn and un zero?
What is the relationship between USn and un on

the impeller surface SI M?
Eq. (2.206) is also valid for turbulent flow,

which is the real case for our application. Aver-
age eq. (2.206) over the time scale of turbulence

in a way similar to the one in which the Reynolds-
averaged Navier-Stokes equations were derived.
Illustrate that this will lead to terms similar to
those of the Reynolds stress terms.

If there is steady homogenous inflow to the
impeller, the time average of dM/dt over the scale
of turbulence is zero. However, a steady nonho-
mogenous inflow in the rotational direction of the
impeller will cause unsteady flow effects. We will
disregard these effects and set the time average of
dM/dt equal to zero.

When using the time average of eq. (2.206)
to find expression for the thrust provided by the
impeller, the longitudinal force in the x-direction
due to pressure, Reynolds, and viscous stresses act-
ing on SI M, SST, SSH, and SH must be considered,
as we discussed in section 2.11.1.

Show that we can formally express the thrust T
by the waterjet system as

T = ρ

∫
S7

∫
u2

1 dS − ρ

∫
S1a

∫
u2

1 dS

+
∫ ∫

S7+S1a+SWAT+SAI R

pn1 dS (2.208)

− Longitudinal force due to Reynolds
and viscous stresses.

Here the fluid velocity and pressure are time aver-
aged over the scale of turbulence.

The pressure forces on the right-hand side of
eq. (2.208) acting on S1a and SWAT will now be
considered. Express the pressure by eq. (2.177).

Show that the contribution from the pressure
part −ρgz to the longitudinal force on S1a + SWAT

can be neglected.
(Hint: Express the longitudinal force part as

ρg
∫

S1a+SWAT

zn1dS. (2.209)

We introduce the closed surface S1a + SWAT + SHI ,
where SHI is close to horizontal and consists of
the waterjet inlet area and part of the hull sur-
face between S1a and the inlet area. Because n1

is approximately zero on SHI , eq. (2.209) can be
approximated as

ρg
∫

S1a+SWAT+SHI

zn1 dS. (2.210)



P1: GDZ
0521845688c02 CB921-Faltinsen 0 521 84568 7 October 21, 2005 11:18

2.12 Exercises • 77

Show by using the generalized Gauss theo-
rem given by eq. (2.205) that the expression in
eq. (2.210) is zero.)

The contribution to the thrust from the pressure
term −0.5ρ(U 2 − U2

1 − U2
2 − U2

3 ) on S1a + SWAT is
more difficult to ignore. Discuss this by noting that
the pressure varies strongly at the inlet.

B. Impeller effect by conservation of kinetic
fluid energy
We will now consider in more detail the expres-
sion for the effect that the impeller gives to the
flow. This will be done by using conservation of
kinetic fluid energy. We start by expressing this in
a general way as we did for conservation of fluid
momentum.

The kinetic fluid energy inside the closed surface
in Figure 2.67 can be expressed as

Ek (t) =
∫∫∫

�

ρ

2

(
u2

1 + u2
2 + u2

3

)
d�

=
∫∫∫

�

ρ

2
u · u d�. (2.211)

Show in a way similar to that used in deriving
eq. (2.206) that

dEk (t)
dt

= ρ

∫∫∫
�

u · ∂u
∂t

d� + ρ

2

∫
S

∫
u · u USn dS.

(2.212)

We then rewrite ∂u/∂t by means of Navier–
Stokes equations for an incompressible fluid. This
can be expressed in component form as

∂ui

∂t
= −u j

∂ui

∂xj
− 1

ρ

∂

∂xi
(p + ρgx3) + 1

ρ

∂τi j

∂xj
,

(2.213)

where the viscous stress components τi j are given
by eq. (2.16) and x1 = x, x2 = y and x3 = z. Fur-
ther, a conventional summation convention is
used. This means

∂τi j

∂xj
= ∂τi1

∂x1
+ ∂τi2

∂x2
+ ∂τi3

∂x3
. (2.214)

Based on Landau and Lifschitz (1959) we can write

ρu · ∂u
∂t

= − ρu · (u · ∇) u − u · ∇ (p + ρgz)

+ ui
∂τi j

∂xj
. = −ρ (u · ∇)

(
1
2

u · u+ p
ρ

+gz
)

+ ∇ · (u · τ ) − τi j
∂ui

∂xj
(2.215)

Here u · τ is a vector with components u1τ1 j ,

u2τ2 j , u3τ3 j . Show eq. (2.215) and express the term
τi j∂ui/∂xj without using the summation conven-
tion. Explain why we can express eq. (2.215) as

ρu · ∂u
∂t

= −∇ ·
[
ρu

(
1
2

u · u + p
ρ

+ gz
)

− u · τ

]

− τi j
∂ui

∂xj
. (2.216)

Show by using eq. (2.212), eq. (2.216) and the
generalized Gauss theorem (see eq. (2.205)) that

dEk

dt
= −

∫
S

∫ [
(un − USn)

1
2
ρu · u

]
dS

−
∫
S

∫
ρun

(
p
ρ

+ gz
)

dS (2.217)

+
∫
S

∫
n · (u · τ )dS −

∫∫∫
�

τi j
∂ui

∂xj
d�

Eq. (2.217) will now be averaged over the time
scale of turbulence. The time average of dEk/dt is
assumed to be zero. The argument is similar to the
one for the fluid momentum.

The fluid volume in Figure 2.67 is considered,
and S is divided into surfaces as in eq. (2.168).
Which terms in eq. (2.217) express the effect PD

given by the impeller to the flow?
Show that eq. (2.217) leads to eq. (2.175).

2.12.5 Steering by means of waterjet

Figure 2.56 illustrates how the waterjet can be used
to steer the vessel. Express longitudinal and trans-
verse thrust on the vessel by means of conservation
of fluid momentum and fluid mass in a way similar
to that used in the main text for the thrust.
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3 Waves

3.1 Introduction

Before we can describe wave resistance in detail,
we need to introduce wave theory. This theory is
also needed in the description of wave-induced
motions and loads on a high-speed vessel. We
first present linear wave theory in regular har-
monic waves in deep and finite water depths. This
includes analysis of wave refraction. An irregular
sea state can be represented as a sum of regular
waves of different frequencies and wave propaga-
tion directions. Recommended wave spectra that
describe the frequency content in irregular waves
are then given.

Linear wave theory assumes that the wave slope
is asymptotically small. Not all waves occurring
in reality can be described by linear wave theory;
an extreme example is breaking waves. Figure 3.1
illustrates plunging, breaking waves generated in
a wave flume. We see breaking waves on a beach,
but they can also occur in the open sea in deep
water. A strong current in the opposite direction
of the wave propagation steepens the waves. This
is a phenomenon known in connection with the
Agulhas current off the east coast of Africa. A
typical feature of a nonlinear wave is that the ver-
tical distance between the wave crest and the mean
water level is larger than the distance between the
mean water level and the wave trough.

Scatter diagrams of significant wave heights and
mean wave periods are needed in operational and
design studies. These diagrams describe the prob-
ability of occurrence of different sea states for
a given operational area. An example on scatter
diagram recommended for high-speed vessels is
presented.

3.2 Harmonic waves in finite and infinite depth

Our assumptions are irrotational motions so that
∇ × u = 0, where u is the fluid velocity. It follows

then that the fluid velocity can be expressed by the
velocity potential � as

u = ∇� = i
∂�

∂x
+ j

∂�

∂y
+ k

∂�

∂z
, (3.1)

where if the fluid is incompressible, that is, ∇ · u =
0, then � satisfies the Laplace equation

∂2�

∂x2
+ ∂2�

∂y2
+ ∂2�

∂z2
= 0. (3.2)

We will choose the Cartesian coordinate system
(x, y, z) so that z is a vertical coordinate with posi-
tive coordinate upward. Further, z = 0 represents
the mean free surface (Figure 3.2).

3.2.1 Free-surface conditions

For the time being, we neglect surface tension and
derive free-surface conditions based on potential
flow. Surface tension matters only for linear prop-
agating waves when the wavelength is less than
5 cm. There are two free-surface conditions. One
requires that the fluid pressure be equal to the
pressure in the air on the free surface. This is the
dynamic free-surface condition. The other one is
the kinematic free-surface condition and requires
that fluid particles remain on the free surface.

We shall now derive a linear expression for the
dynamic free-surface condition. We start with an
expression for the fluid pressure p which follows
from Bernoulli’s equation

p + ρ
∂�

∂t
+ ρ

2
|∇�|2 + ρgz = C. (3.3)

Here � is the velocity potential for the flow, t is the
time variable, andρ is the mass density of the fluid.
The constant C is derived by expressing eq. (3.3)
on the free surface where the air pressure is atmo-
spheric and there is no ambient wave motion or
fluid velocity due to the ship. Before doing that
we reformulate eq. (3.3) and express

� = Ux + ϕ. (3.4)

This is, for instance, a description of the flow
when we consider a ship with constant speed U
on a straight course and observe the flow from a
reference frame following the ship velocity U. The
ship’s velocity then appears as an incident flow to
the ship with velocity U along an x-axis in the mean
free surface with increasing x-values from the bow
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Figure 3.1. Plunging breaker generated in a narrow wave flume with a water depth of 100 cm. The ruler
at the top and top right of the figure shows the physical dimensions in centimeters. The bottom picture
gives a detailed view of the plunging breaker after impact on the underlying water. The impact causes
reflection of the water, resulting in spray formation. (Photos by Pål Lader and Olav Rognebakke.)
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z = −h

z

x
ζa

λ
Figure 3.2. Coordinate system for linear
harmonic long-crested waves.

toward the stern (Figure 3.3), or it could represent
the flow of a river with a small slope past a fixed
object.

We now determine C for the ship problem.
We then go far away from the ship, where the
ship causes zero disturbance. However, there is
an inflow velocity U. Then we express eq. (3.3) at
z = 0. This gives pa + 0.5ρU2 = C, where pa is the
atmospheric pressure. Substituting eq. (3.4) into
eq. (3.3) leads to

p = − ρ
∂ϕ

∂t
− ρ

2

[(
U + ∂ϕ

∂x

)2

+
(

∂ϕ

∂y

)2

+
(

∂ϕ

∂z

)2
]

(3.5)

− ρgz + pa + ρ

2
U2.

We now linearize eq. (3.5) by assuming |∇ϕ| � U
and keep linear terms in ϕ. This gives

p = −ρ
∂ϕ

∂t
− ρU

∂ϕ

∂x
− ρgz + pa . (3.6)

Then we impose the dynamic free-surface con-
dition by once more doing a linearization. This
means that ∂ϕ/∂t and ∂ϕ/∂x in eq. (3.6) are Taylor
series expanded about z = 0 and only linear terms
are kept. Another way of saying this is that ϕ is

U

Figure 3.3. Coordinate system fixed to the mean oscillatory position of a ship with forward speed U.
The forward speed appears from this coordinate system as a flow with velocity U in the x-direction.
(Based on Figure 5.1. Copyright holder: Royal Norwegian Navy).

assumed constant from z = 0 to the instantaneous
free-surface elevation. The dynamic free-surface
condition p = pa + p0 on z = ζ (x, y, t) can now
be expressed as

p0 = −ρ
∂ϕ

∂t
− ρU

∂ϕ

∂x
− ρgζ on z = 0. (3.7)

Here it is possible to deal with an SES that has an
excess pressure p0 in the air cushion.

Next we consider the kinematic free-surface
condition, which can be expressed as

D
Dt

(z − ζ (x, y, t)) = 0 on z = ζ (x, y, t). (3.8)

Here D/Dt ≡ ∂/∂t + ∇� · ∇ is the substantive
or material derivative, which expresses the time
rate of change when we follow a fluid particle
as it moves in the space. Eq. (3.8) states that a
fluid particle on the free surface always has the
property z − ζ (x, y, t) = 0, that is, it stays on the
free surface. We now linearize eq. (3.8) as we
did in deriving eq. (3.7) and note that Dz/Dt =
∇� · ∇z = ∂ϕ/∂z. After a Taylor expansion about
z = 0 and linearization we find

∂ζ

∂t
+ U

∂ζ

∂x
= ∂ϕ

∂z
on z = 0. (3.9)

We can now combine eqs. (3.7) and (3.9) by
first performing the operation ∂/∂t + U∂/∂x on
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Table 3.1. Velocity potential, dispersion relationship, wave profile, velocity, and acceleration for regular
sinusoidal propagating waves in finite and infinite water depth according to linear theory (Faltinsen
1990)

Finite water depth Infinite water depth

Velocity potential ϕ = gζa
ω

cosh k(z + h)
cosh kh cos(ωt − kx) ϕ = gζa

ω ekz cos(ωt − kx)

Connection between wave
number k and circular
frequency ω (dispersion
relationship)

ω2

g = k tanh kh ω2

g = k

Connection between wavelength
λ and wave period T

λ = g
2π

T2 tanh
2π

λ
h λ = g

2π
T2

Wave profile ζ = ζa sin(ωt − kx) ζ = ζa sin(ωt − kx)

Hydrodynamic pressure pD = ρgζa
cosh k(z + h)

cosh kh
sin(ωt − kx) pD = ρgζaekz sin(ωt − kx)

x-component of velocity u = ωζa
cosh k(z + h)

sinh kh
sin(ωt − kx) u = ωζaekz sin(ωt − kx)

z-component of velocity w = ωζa
sinh k(z + h)

sinh kh
cos(ωt − kx) w = ωζaekz cos(ωt − kx)

x-component of acceleration a1 = ω2ζa
cosh k(z + h)

sinh kh
cos(ωt − kx) a1 = ω2ζaekz cos(ωt − kx)

z-component of acceleration a3 = −ω2ζa
sinh k(z + h)

sinh kh
sin(ωt − kx) a3 = −ω2ζaekz sin(ωt − kx)

ω = 2π/T, k = 2π/λ, T = wave period, λ = wavelength, ζa = wave amplitude, g = acceleration of gravity, t = time
variable, x = direction of wave propagation, z positive upward, z = 0 mean water level, h = average water depth,
ρ = mass density of the fluid. Total pressure in the fluid: pD − ρgz + pa (pa= atmospheric pressure).

eq. (3.7) and then using eq. (3.9). This gives

∂2ϕ

∂t2
+ 2U

∂2ϕ

∂x∂t
+ U2 ∂2ϕ

∂x2
+ g

∂ϕ

∂z (3.10)
= − 1

ρ

(
∂p0

∂t
+ U

∂p0

∂x

)
on z = 0.

3.2.2 Linear long-crested propagating waves

We consider linear long-crested waves propagat-
ing in the x-direction in a fluid with infinite hori-
zontal extent and no obstacles present. The mass
density and temperature are assumed constant in
the fluid domain, that is, there is no stratifica-
tion. Assuming harmonic oscillations with circu-
lar frequency ω (rad/s), no mean flow (U = 0),
atmospheric pressure on the free surface (p0 = 0),
and linearity in terms of a small wave slope
leads by using eq. (3.10) to the following
combined dynamic and kinematic free-surface
condition

− ω2ϕ + g
∂ϕ

∂z
= 0 on z = 0. (3.11)

The boundary condition on the sea floor z = −h
expresses no flow through the sea bottom, that is,

∂ϕ

∂z
= 0 on z = −h. (3.12)

Further, ϕ satisfies the two-dimensional Laplace
equation in x and z. The solution to this boundary-
value problem can be found in many textbooks
dealing with water waves and will not be derived
here. We use the results by Faltinsen (1990), which
are presented in Table 3.1. We note that the wave
profile, the dynamic pressure pD = −ρ∂ϕ/∂t , the
fluid velocity, and acceleration are linearly depen-
dent on the wave amplitude ζa .

A practical fact that will be used several times
later is that the fluid motion for deep-water waves
is negligible from half a wavelength λ down in
the fluid. This results from the exponential factor
exp(kz) = exp(2πz/λ) in the deep-water results in
Table 3.1. For instance, if z = −0.5λ, exp(kz) =
0.043 or if z = −λ, exp(kz) = 0.002.

According to linear theory, a fluid particle
moves in a circle for deep water and in an ellipse
for finite water depth (see exercise 3.5.1). The
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z

x

Horizontal velocity
distribution under
a wave crest

Horizontal velocity
distribution under

a wave through

Wave propagation direction

Figure 3.4. Horizontal velocity distribution under a
wave crest and a wave trough according to linear wave
theory. (The x- and z-axes have different scales.)

circle radius is equal to the wave amplitude for
a fluid particle on the free surface. The two semi-
axes of the elliptical motion for finite depth are
horizontal and vertical with the horizontal semi-
axis being the larger. The vertical semi-axis is equal
to the wave amplitude for a fluid particle on the
free surface. When the fluid depth is very shal-
low, the horizontal fluid velocity is much larger
than the vertical fluid velocity. This can be seen
by Taylor expanding the finite-depth expressions
of fluid velocity at z = −h and assuming kh to be
small. Further, we can show that the total pres-
sure is hydrostatic relative to the instantaneous
free-surface elevation when kh → 0.

It should be noted that the linear theory
assumes the velocity potential and fluid veloc-
ity to be constant from the mean free surface to
the actual free-surface level. This was assumed
when the free-surface conditions were formulated.
The horizontal velocity distribution shown in
Figure 3.4 for the flow under a wave crest is consis-

Linear dynamic
pressure

−ρ∂ϕ/∂t
ρgζa

“Hydrostatic” pressure
ρgζa

z
ζa

−ρ∂ϕ/∂t
ρgζa

Total pressure
ρgζa Total pressure

ρgζa

“Hydrostatic” pressure
ρgζa

Linear
dynamic
pressure

Figure 3.5. Pressure variation under a wave crest and a wave trough according to linear wave theory.

tent with linear theory. Figure 3.4 also shows the
velocity under a wave trough, where we have used
the analytical velocity distribution up to the free-
surface level. It is then implicitly assumed that the
difference between the horizontal velocity at the
wave trough and the velocity at z = 0 is small com-
pared with the velocity itself.

Figure 3.5 shows how the pressure varies with
depth both under a wave crest and a wave trough.
The “hydrostatic” pressure “−ρgz” cancels the
dynamic pressure−ρ∂ϕ/∂t |z=0 at the free surface.
This is the linear dynamic free-surface condition,
which is exactly satisfied at the wave crest in
Figure 3.5, whereas there is a higher-order error
under the wave trough. By “higher-order error”
we mean that the error is approximately pro-
portional to (ζa/λ)n, where n ≥ 2. This means
that linear theory is correct to O(ζa/λ), where
O( ) means order of magnitude. We should note
that the dynamic pressure −ρ∂ϕ/∂t half a wave-
length down in the fluid is only 4% of its value
at z = 0.

Linear theory represents a first-order approx-
imation in satisfying the free-surface conditions.
It can be improved by introducing higher-order
terms in a consistent manner – a Stokes expansion.
The next approximation would solve the prob-
lem to second order in the parameter ζa/λ char-
acterizing the wave amplitude/wavelength ratio
of the linear (first-order) solution. Second-order
theory means that we keep in a consistent way
all terms proportional to O((ζa/λ)2) and O(ζa/λ).
For sinusoidal unidirectional progressive deep-
water waves for which the solution in Table 3.1
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Second-order Stokes’  wave

H/λ = 0.03
0.049
0.073
0.100

−0.5
−0.06

−0.04

0.04

0.06

−0.02

0.02

0

−0.4 −0.3 −0.2 −0.1 0
x 
λ

ζI 
λ

0.031

0.049

0.073
H/λ = 0.10

“Infinite”-order Stokes’  wave

Figure 3.6. Second-order and “infinite”-
order wave profiles for deep-water Stokes
waves for a given time instant. ζI = wave
elevation, H = wave height, λ = wave-
length. (Greco, unpublished.)

represents the first-order (linear) solution, it is
possible to show that the second-order velocity
potential is zero, and that the second-order wave
elevation ζ2 is

ζ2 = −1
2
ζ 2

a kcos[2(ωt − kx)]. (3.13)

By combining this with the first-order solution
ζa sin(ωt − kx), we see that the second-order
solution sharpens the wave crests and makes the
trough more shallow. We leave it as a part of exer-
cise 3.5.3 to show eq. (3.13).

In Figure 3.6, second-order wave profiles are
compared to “infinite”-order wave profiles for
four different wave steepnesses H/λ, where H
is the wave height. The infinite-order wave pro-
file for H/λ = 0.10 is given by Schwartz (1974),
whereas the theory presented by Bryant (1983)
is used to determine the wave profile for the
other H/λ-values. The wave elevation is sym-
metric about x = 0 in Figure 3.6 and can-
not describe plunging breakers as illustrated in
Figure 3.1

The wave profiles computed by second-order
theory and infinite-order theory compare very
well for H/λ = 0.031 and H/λ = 0.049. For H/λ =
0.073, the deviation is larger, but still the relative
error for the maximum wave elevation is less than
0.8%. When the wave steepness is increased to
0.1, the relative difference between the two differ-
ent wave profiles becomes more significant. The
exact wave profile is more peaked at the crest and
flatter at the troughs than the second-order pro-
file. This indicates that linear- and second-order
wave theory is not sufficient to describe the wave
properly for steep waves. However, in the fol-
lowing chapters, linear theory is to a large extent

used to describe the incident wave elevation and
kinematics.

When the ratio between the water depth and the
wavelength becomes small, Boussinesq equations
(Mei 1983) are commonly used to describe the
effects of nonlinearity and dispersion. One exam-
ple of application is ship waves in shallow water,
which is discussed in section 4.5.

The expressions in Table 3.1 can be general-
ized to any wave propagation direction. We can
show that by using the two coordinate systems
(X, Y, Z) and (x, y, z) shown in Figure 3.7 The
X-axis is the wave propagation direction and has
an angle β relative to the x-axis. This means that
by following the notation in Table 3.1, the wave
elevation is ζ = ζa sin(ωt − kX ). Then we make a
coordinate transformation to the (x, y, z) system,
that is,

x = Xcos β − Y sin β X = x cos β + y sin β

y = Xsin β + Y cos β Y = −x sin β + y cos β.

This gives

ζ = ζa sin(ωt − kx cos β − ky sin β). (3.14)

X

x

β

y
Y

Figure 3.7. Coordinate systems used to derive expres-
sions for waves propagating along the X-axis with an
angle β relative to the x-axis.
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3.2.3 Wave energy propagation velocity

The wave energy propagation velocity is impor-
tant, for instance, in explaining ship waves and
how waves are modified near a beach. We start
out with general formulas presented, for instance,
by Newman (1977, pp. 260–6). The total energy E
in a fluid volume � consists of kinetic and potential
energy. It can be written as

E(t) = ρ

∫∫
�

∫ (
1
2

V2 + gz
)

d�, (3.15)

where d� is used as a symbol for volume inte-
gration. V is the fluid velocity, and ρ is the mass
density of the fluid. Using the divergence theorem,
the time derivative of the energy can be written as

dE(t)
dt

=−ρ

∫∫
s

(
∂ϕ

∂t
∂ϕ

∂n
−

(
p − pa

ρ
+ ∂ϕ

∂t

)
Un

)
ds,

(3.16)

where S is the boundary surface to � and ∂/∂n is
the derivative along the normal vector n to S. The
positive direction is into the fluid domain. (Note
that Newman uses the opposite positive direction
of n.) Un means the normal velocity of S, and pa is
the atmospheric pressure.

Let us assume two-dimensional flow. The vol-
ume of fluid � has two fixed vertical sides SA and
SB at x = A and x = B, bounded above by the
free surface SF and below by the bottom surface
S0 at z = −h. The boundary surface S in eq. (3.16)
consists then of SA, SB, SF , and S0. We can write

Un = ∂ϕ/∂n on SF

Un = ∂ϕ/∂n = 0 on S0

Un = 0 on SA and SB

p = pa on SF .

Using eq. (3.16) gives that the time rate of change
of E per unit length in y-direction of the energy in
� is

dE(t)
dt

= −ρ

ζA∫
−h

∂ϕ

∂t
∂ϕ

∂x

∣∣∣∣∣∣
x=A

dz

(3.17)

+ ρ

ζB∫
−h

∂ϕ

∂t
∂ϕ

∂x

∣∣∣∣∣∣
x=B

dz,

where ζA and ζB are the wave elevations at, respec-
tively, x = Aand x = B. We can interpret the two
terms in eq. (3.17) as energy flux through A and
B, respectively. This means if we describe ϕ by lin-
ear theory as in Table 3.1, then the time-averaged
energy flux per unit transverse length through a
vertical plane perpendicular to the wave propaga-
tion direction is

dE
dt

= −ρ

0∫
−h

∂ϕ

∂t
∂ϕ

∂x
dz

= ρgζ 2
a ω

sinh kh cosh kh
sin2(ωt − kx)

(3.18)

×
0∫

−h

cosh2 k(z + h) dz.

= 1
2
ρgζ 2

a

ω

k

[
1
2

+ kh
sinh 2kh

]

The overbar in eq. (3.18) expresses time average
over the period T. We note:

sin2(ωt − kx) = 1
T

T∫
0

sin2(ωt − kx)dt = 1
2
.

We also note that the integration in eq. (3.18) is
only to z = 0 and not to the instantaneous free-
surface elevation as in eq. (3.17). This is con-
sistent with using linear theory to describe ϕ.
We can then only express dE/dt correctly to
O((ζa/λ)2). The integration from z = 0 to the
instantaneous free surface gives terms of higher
order than O((ζa/λ)2). We need now to find the
time-averaged wave energy E(t) per unit of hori-
zontal area. So we consider a vertical column with
unit cross-sectional area extending from the sea
bottom to the free surface. The wave energy den-
sity E follows by using eq. (??) and excluding the
potential energy −(1/2)ρgh2 of the fluid without
any waves. This means

E = ρ

2

0∫
−h

V2 dz + 1
2
ρgζ 2. (3.19)

Here ζ is the free-surface elevation given in
Table 3.1. The kinetic energy is integrated only to
z = 0. The argument is similar as for dE/dt , that
is, we use linear theory to describe the flow and
can describe E correctly only to O((ζa/λ)2). We
note that V2 = u2 + w2, where the horizontal and
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vertical fluid velocities u and w follow from
Table 3.1. The first step is to time average the
kinetic energy Ek. We then use

sin2(ωt − kx) = cos2(ωt − kx) = 1
2
. (3.20)

The next step is to integrate the expression with
respect to z. This involves the integral

0∫
−h

(cosh2 k(z + h) + sinh2 k(z + h)) dz

= cosh kh sinh kh
k

,

which gives

Ēk = ρ

4
ω2ζ 2

a /(k tanh kh) = ρg
4

ζ 2
a

by using the dispersion relationship between ω and
k in Table 3.1. This is the same as the time average
of the potential energy part of eq. (3.19). It then
follows that

Ē = ρg
2

ζ 2
a , (3.21)

which is independent of water depth. Using
eq. (3.21) in combination with eq. (3.18) means
we can interpret

Vg =
(

1
2

+ kh
sinh 2kh

)
ω

k
(3.22)

as the wave energy propagation velocity. Actually,
Vg is also the group velocity (Newman 1977). This
is defined as

Vg = dω

dk
(3.23)

and can be evaluated by using the dispersion rela-
tionship between ω and k. So actually there are
several different velocities describing the waves.
These give

� Fluid velocity (see Table 3.1)
� Wave energy propagation velocity, also denoted

as group velocity (see eq. (3.22))
� Phase velocity (wave-shape velocity or celerity)

Vp = ω

k
. (3.24)

The wave-shape velocity follows simply by look-
ing at the expression for the wave elevation ζ

in Table 3.1 and finding combinations of x and t
that make sin(ωt − kx) equal to any constant. This

gives the phase (ωt − kx) equal to, say, a constant
A, that is,

x = ω

k
t − A

k
,

which means that the wave elevation remains
unchanged when we move with velocity ω/k. This
results in eq. (3.24). The consequence of the fluid
velocity and the phase velocity being different is
that a fluid particle that at some instant is at a wave
crest will not continue being at the wave crest. The
fluid particle will stay at the free surface, however,
and according to linear theory, move in a circular
or elliptic path for infinite or finite water depth,
respectively.

The fact that waves of different frequencies
travel with different phase velocities is called dis-
persion. The relationship between frequency and
wave number is called dispersion relationship. It is
only in the limit of kh → 0, that is, shallow water,
that gravity waves are nondispersive. Let us show
this by starting out with the dispersion relation-
ship in Table 3.1 for finite water depth. It follows
by expansion of tanh kh for small kh that

ω2

g
= k2h when kh → 0.

This means

Vp = ω

k
=

√
gh when kh → 0,

which is independent of frequency.
Actually, we should note from eq. (3.22) that

the wave energy propagation velocity is also equal
to

√
gh when kh → 0. This means if we observe

shallow-water waves, such as those outside the
wave-breaking zone on a beach, we do not see
that wave crests disappear, as they do at the front
of a transient group of waves generated in a deep-
water model basin. In the latter case, Vg = 0.5Vp

(see eq. (3.22)), so individual wave crests, traveling
forward with Vp, outstrip the energy of the group
that travels with half that velocity.

The fluid velocities will in general differ from
both Vg and Vp. They depend on the wave ampli-
tude, whereas Vp and Vg do not for linear waves.
Because Vp = g/ω and Vg = 0.5g/ω for deep-
water waves and small ω means long periods and
wavelengths, this implies that longer waves travel
faster than shorter waves in deep water. This can
be used to concentrate wave energy or very steep
waves at a given position in a ship model tank by
gradually decreasing the forcing frequency of the
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wave maker. The first generated waves are then
overtaken by the later generated waves. Some
adjustments due to nonlinear effects are necessary.

3.2.4 Wave propagation from deep to shallow water

Our assumptions are

� Linear harmonic propagating waves based on
potential flow for an incompressible fluid

� No surface tension
� No mean fluid velocity
� Fluid depth changes slowly on the length scale

of the wavelength
� No wave reflection due to changing water depth
� Frequency of oscillation is constant
� No refraction, which means we consider a 2D

problem in which the wave direction is normal
to the bottom contours

We now use the previous theoretical results,
exchange ζa with A, and use the subscript 0 for
deep water. It follows from conservation of energy,
see eq. (3.18), that[

1
2

+ kh
sinh 2kh

]
ω

k
A2 = 1

2
ω

k0
A2

0. (3.25)

This means that

A
A0

=
[

k
k0

(
1

1 + 2kh
sinh 2kh

)]1/2

, (3.26)

where k0 = ω2

g = k tanh kh or

k0h = kh tanh kh (3.27)

Further, by definition k = 2π/λ, k0 = 2π/λ0. We
assume λ0/h is given and solve eq. (3.27) for kh.
We can calculate

λ

λ0
= k0h

kh
as a function of

h
λ0

. (3.28)

This is shown in Figure 3.8. We note that λ/λ0

decreases with decreasing depth.
In Figure 3.9, we have plotted A/A0 as a func-

tion of h/λ0 We note that for h/λ0 > 0.05, A/A0

is less than one. However, A/A0 will have a mini-
mum for larger values of h/λ0 than those shown in
Figure 3.9. A/A0 will then approach one when h/λ0

goes to infinity. The value of A/A0 increases very
strongly for very small h/λ0 and it is for instance
two for h/λ0 = 0.0025.

0.8

0.6

0.4

0.2

0
0 0.04 0.08 0.12 0.16 0.2 0.24

h/λ0

λ/λ0

1

Figure 3.8. Wavelengthλat a water depth h as a function
of wavelength λ0 in deep water.

The steepness A/λ matters in evaluating qual-
itatively the importance of nonlinearities and the
occurrence of breaking waves. Breaking waves
imply both horizontal and vertical asymmetry of
the wave profile. In deep water, it is common to
set the wave-breaking limit as H0/λ0 = 1/7, where
H0 is the wave height. This is not appropriate
for shallow water. Sorensen (1993) states that the
wave-breaking limit depends on the relative depth
h/λ and the beach slope. The ratio of the wave
height to the water depth at breaking for common
beach slopes and wave periods is between 0.8 and
1.2. It follows from Figure 3.8 and Figure 3.9 that
(A/λ)/(A0/λ0) increases with decreasing h/λ0.

2.6
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2.4

2.2

2

1.8

1.6

1.4

1.2
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h/λ0

0.06 0.07 0.08 0.09 0.1

Figure 3.9. Wave amplitude ratio A/A0 at a water depth
h as a function of h/λ0. A0 and λ0 are wave amplitude
and wavelength in deep water.
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Figure 3.10. Group velocity Vg at a given water depth h
divided by the deep-water phase velocity Vp0 as a func-
tion of h/λ0.

The group velocity Vg expresses the velocity
of the wave front. This is presented nondimen-
sionalized with respect to the phase velocity in infi-
nite fluid depth in Figure 3.10. For small h/λ0, we
note that Vg decreases with depth.

Shallow water approximation
The previous expressions can be considerably sim-
plified for shallow water, that is, kh → 0. This fol-
lows by using a series expansion of the hyperbolic
functions for small kh. Eq. (3.27) gives

k0h = (kh)2 when kh → 0. (3.29)

Eq. (3.26) gives then

A
A0

=
(

0.5

(k0h)1/2

)1/2

when kh → 0. (3.30)

Table 3.2. The validity of shallow-water approximation at different ratios
between water depth h and wavelength λ0 in deep water

λ

λ0

A
A0

h
λ0

Approximation Exact Approximation Exact

0.1 0.79 0.71 0.79 0.93
0.05 0.56 0.53 0.94 1.02
0.025 0.40 0.39 1.12 1.17
0.01 0.25 0.25 1.41 1.43
0.005 0.18 0.18 1.68 1.69

A = wave amplitude. A0 = wave amplitude in deep water. λ = wavelength.

Eq. (3.28) gives
λ

λ0
= (k0h)1/2 when kh → 0. (3.31)

Then what error do we make with these approxi-
mations? This is exemplified in Table 3.2. Roughly
speaking, we may apply the shallow-water approx-
imation for h/λ0 < 0.05, that is, h < λ0/20.

3.2.5 Wave refraction

Linear sinusoidal waves with a frequency ω in
deep water are considered. There is no current.
However, current will also have an influence (Mei
1983). When the waves approach a beach with a
straight shoreline, the crests are nearly parallel
to the shoreline even though the wave crests on
deep water moving toward the beach may have a
large angle relative to the coastline. This is called
wave refraction. If we approximate the approach-
ing waves as locally long crested and assume no
wave reflection, we can explain the refraction
by the phase speed Vp of two-dimensional (long-
crested) linear harmonic waves. Because the num-
ber of crests reaching the beach per unit of time
tends to be equal to the number approaching the
coastline, we can assume the frequency ω to be a
constant in the analysis. Using eq. (3.24) and that
k = 2π/λ, gives then

Vp

Vp0
= λ

λ0
. (3.32)

Here the subscript 0 indicates deep water. Assum-
ing as in section 3.2.4 that the fluid depth changes
slowly on the length scale of the wavelength
and there is no wave reflection, we can use eq.
(3.32) along a ray orthogonal to the wave crest
(Figure 3.11). Figure 3.8 shows by using eq. (3.32)
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Figure 3.11. Wave refraction analysis. The depth con-
tour is assumed to vary only with x in the figure, but the
general analysis is not based on that. The distance b is
measured along a wave crest between two nearby wave
orthogonals (rays).

that Vp decreases as the water depth decreases.
This means that those parts of a wave crest enter-
ing shallow water first are slowed down relative
to those parts in deeper water. If we imagine the
wave crest as a string, the deeper-water part of the
string rotates relative to the shallow-water part
and toward the beach.

Let us consider a wave refraction analysis in
more detail. We express the wave elevation as in
eq. (3.14), that is,

ζ = A(x, y) sin [ωt − k(x, y) (x cos β (x, y)
(3.33)

+ y sin β (x, y))] ,

where A, k, and β are slowly varying with x and y.
A wave crest is defined by

ψ = ωt − kx cos β − ky sin β (3.34)

being equal to (0.5 + 2n)π , where n is an inte-
ger. If a line is described by ψ(x, y) = c where
c is a constant, we can show by vector analysis
that ∇ψ is normal to the line. The proof is as fol-
lows. Let r = xi + yj be a position vector to any
point on the line. We can write for x and y on the

line that ψ does not vary, that is,

dψ = ∂ψ

∂x
dx + ∂ψ

∂y
dy = 0. (3.35)

This can also be expressed as ∇ψ · dr = 0. Because
dr in the limit dr → 0 is a vector tangentially to
the line, this proves that ∇ψ is normal to the line.
We can therefore define a normal vector N to a
wave crest by

N = ∇ψ. (3.36)

Assuming that ∂k/∂x, ∂k/∂y, ∂β/∂x, and ∂β/∂y are
small, we can write approximately

N = −k(x, y)(cos β(x, y)i + sin β(x, y)j).

(3.37)

Then we use from vector analysis that ∇ × ∇ψ =
0 for any function ψ and approximate ∇ψ by
eq. (3.37), that is,

∇ × (−kcos βi − ksin βj) = 0

or

∂

∂x
(k(x, y) sin β(x, y))

(3.38)
= ∂

∂y
(k(x, y) cos β (x, y)) .

In addition, it follows from the dispersion relation-
ship (see Table 3.1) that

ω2

g
= k(x, y) tanh(k(x, y)h(x, y)). (3.39)

Eq. (3.39) determines k(x, y) for a given ω and
h (x, y). If we use the deep-water conditions as
boundary (start) conditions, eq. (3.38) numerically
determines β (x, y).

The wave amplitude A(x, y) follows from con-
servation of wave energy. Orthogonals (rays) are
then constructed normal to the wave crests (Fig-
ure 3.11). The distance b measured along the wave
crest between two nearby rays is assumed small.
Because there is no energy flux through vertical
planes coinciding with the rays, we can generalize
the results in section 3.2.3 and write

ĒVgb = Ē0Vg0b0, (3.40)

where, once more, the subscript 0 indicates deep
water and Ē and Vg are given by eqs. (3.21) and
(3.22), respectively.

Let us as a special case assume that the water
depth is only a function of x. The wave propagation
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Figure 3.12. Sketch of two neighbor rays when the water
depth varies only with x.

direction β will then also depend only on x. It fol-
lows from eq. (3.38) that

k(x) sin β(x) = constant. (3.41)

Because Vp is equal to ω/k and ω is a constant, this
gives

sin β

Vp
= constant. (3.42)

This is similar to Snell’s law in optics. In order to
find the wave amplitude, we can use eq. (3.40).
We consider two neighbor rays as in Figure 3.12
and introduce the small distance �y between the
rays at the shore. Because there is no influence
of y along a depth contour, �y will also be the
distance between the rays along a depth contour.

D1

D1

D2

D2
D3

Depth contours

Wave front

Energy
propagation ray

CBA

CUT :

PLANE :

D3D1

D2

D3

Figure 3.13. Three examples of depth refraction. (A) Focusing of rays and wave energy. (B) Spreading
of rays and wave energy. (C) Focusing of rays and wave energy (Myrhaug 2004).

Figure 3.12 illustrates that b = �y cos β. Using
eq. (3.40) and eq. (3.21) with ζa equal to A gives

A2Vg cos β = A2
0Vg0 cos β0. (3.43)

Here Vg is given by eq. (3.22). Eq. (3.43) then
determines A. If β0 = 0, it has already been illus-
trated in Figure 3.9 how A depends on the water
depth.

Figure 3.13 gives examples of wave refraction
for more general depth contours where the shore-
line is not a straight line. Cases A and C result
in local concentration of wave energy density,
whereas case B results in a decrease in the wave
amplitude near the coastline.

A procedure such as this may be used to evalu-
ate the effect of wash (waves) generated by a high-
speed vessel (see Chapter 4). This implies that the
dominant ship waves can be approximated as long-
crested regular waves. Before starting the refrac-
tion analysis, we must transform the predicted
wash from the body-fixed coordinate system to an
Earth-fixed coordinate system. This transforma-
tion is discussed in Chapter 4. There is nothing in
the previous procedure for harmonic waves that
prohibits us from starting from a known condition
in finite constant water depth instead of infinite
water depth.

Because the previous analysis assumes linear
waves, we can also consider an approaching sea
composed of many frequency components. A first
step then is to identify each frequency component
and its wave propagation direction and then make
a separate refraction analysis for each wave com-
ponent. If we consider a stochastic sea described
by a wave spectrum (see section 3.3), the wave
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Figure 3.14. Vertical force component of the surface tension TS acting on a free-surface element of
length �x and infinitesimal small thickness. A small wave slope ∂ζ/∂x and 2D flow are assumed.
pF = fluid pressure. pa = atmospheric pressure.

amplitude of each frequency component is deter-
mined by the wave spectrum. The phase of each
regular wave component is random. The wave
amplitude A for a given position (x, y) is found
by

A2 =
N∑

n=1

A2
n. (3.44)

Here N is the number of wave components and An

is the wave amplitude predicted at position (x, y)
for each wave component.

The linearity assumption obviously fails for
breaking waves on a beach or when the wave rays
focus and cause high waves outside the shore-
line (see Figure 3.13c). A more accurate result
for weakly nonlinear waves at small and moder-
ate water depth–to-wavelength ratios h/λ can be
obtained by directly solving the Boussinesq equa-
tions (Mei 1983 and Nwogu 1993). How large the
h/λ we can apply to the Boussinesq equations
depends on which version of these equations we
use. For instance, the procedure by Nwogu (1993)
may be applicable for h/λ up to approximately 0.3.

3.2.6 Surface tension

We shall assume a 2D flow situation in the x-z
plane and study the effect of surface tension Ts

per unit length when U = 0 and p0 = 0. The wave
slope ∂ζ/∂x is assumed small. Figure 3.14 illus-
trates the vertical force due to the surface tension
acting on a free-surface element of length �x and
infinitesimal thickness. The resultant vertical sur-
face tension force is

Ts
∂ζ

∂x

∣∣∣∣
x+�x

− Ts
∂ζ

∂x

∣∣∣∣
x

= Ts
∂2ζ

∂x2
�x + O((�x)2).

The result must balance the sum of the pressure
force −pa�x due to atmospheric pressure pa on
the top of the free-surface element and the pres-
sure force pF�x due to hydrodynamic pressure pF

on the lower side of the free-surface element. This
means

Ts
∂2ζ

∂x2
+ pF = pa .

We express pF by eq. (3.6) with U = 0 and lin-
earize the free-surface condition as we did earlier.
This leads to the dynamic free-surface condition

∂ϕ

∂t
+ gζ − Ts

ρ

∂2ζ

∂x2
= 0 on z = 0. (3.45)

The kinematic free-surface condition is similar to
the one before and follows from eq. (3.9) with
U = 0. We now combine the dynamic and kine-
matic free-surface condition by differentiating
eq. (3.45) with respect to time and substitute
∂ζ/∂t = ∂ϕ/∂z. This gives

∂2ϕ

∂t2
+ g

∂ϕ

∂z
− Ts

ρ

∂2

∂x2

∂ϕ

∂z
= 0 on z = 0. (3.46)

We now apply this to 2D propagating waves in
deep water. The solution form for the velocity
potential can be expressed in a way similar to the
one in Table 3.1. This satisfies Laplace equation,
decays with depth, and has the form of propagat-
ing waves. This means

ϕ = Bekz cos(ωt − kx). (3.47)

A difference now is that ω is not related to k as
in Table 3.1. B can be expressed in terms of the
wave amplitude from the use of eq. (3.45). We
will instead focus on how ω is related to the wave
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Figure 3.15. Effect of surface tension on 2D deep-water
gravity waves. Vp = phase speed, λ = wavelength.

number k = 2π/λ. Substituting eq. (3.47) into
eq. (3.46) gives

ω2 = gk + k3Ts/ρ. (3.48)

When the wavelength is long, such that k �√
gρ/Ts, the effect of surface tension will be neg-

ligible. When the wavelength is very short, gravity
may be neglected, that is,

ω =
√

Ts/ρ · k3/2. (3.49)

This corresponds to capillary waves or ripples. To
exemplify when the surface tension matters, we
have used eq. (3.48) and in Figure 3.15 plotted the
phase speed Vp = ω/k as a function of λ for water
with Ts = 0.074 Nm−1 and ρ = 1000 kgm−3. The
phase speed without surface tension is also plot-
ted. Figure 3.15 demonstrates that surface tension
does not really matter until λ is less than about
0.05 m. The group velocity for ripples follows from
eq. (3.49) as

Vg = dω

dk
= 3

2

√
Ts

ρ
k1/2. (3.50)

The phase velocity of ripples is

Vp = ω

k
=

√
Ts

ρ
k1/2. (3.51)

This means that

Vg = 3
2

Vp (3.52)

for 2D deep-water ripples. This is clearly dif-
ferent from deep-water gravity waves in which

Vg = 0.5Vp. The consequence of this will be fur-
ther discussed in Chapter 4 on steady ship waves.

3.3 Statistical description of waves in a sea state

In practice, linear theory is used to simulate irreg-
ular seas and to obtain statistical estimates. The
wave elevation of a long-crested irregular sea
propagating along the positive x-axis can be writ-
ten as the sum of a large number of wave compo-
nents, that is,

ζ =
N∑

j=1

Aj sin(ω j t − kj x + ε j ). (3.53)

Here, Aj , ω j , kj , and ε j mean, respectively, the
wave amplitude, angular frequency, wave number,
and random phase angle of wave component num-
ber j. The random phase angles ε j are uniformly
distributed between 0 and 2π and constant with
time. ω j and kj are related by the dispersion rela-
tionship (see Table 3.1). The wave amplitude Aj

can be expressed by a wave spectrum S(ω) as

1
2

A2
j = S(ω j )�ω, (3.54)

where �ω is a constant difference between suc-
cessive frequencies. The instantaneous wave ele-
vation is Gaussian distributed with zero mean
and variance σ 2 equal to

∫ ∞
0 S(ω)dω, which can

be shown by using the definition of mean value
and variance applied to the “signal” represented
by eq. (3.53). We find, for instance, that σ 2 =∑N

j=1 A2
j/2. By using eq. (3.54) and letting N → ∞

and �ω → 0, we get σ 2 = ∫ ∞
0 S(ω) dω. The rela-

tionship between a time-domain solution of the
waves (that is, eq. (3.53)) and the frequency-
domain representation of the waves by a wave
spectrum S(ω) is illustrated in Figure 3.16.

The wave spectrum can be estimated from wave
measurements (Kinsman 1965). It assumes that we
can describe the sea as a stationary random pro-
cess. This means in practice that we are talking
about a limited time period in the range of one half
to maybe ten hours. In the literature, this is often
referred to as a short-term description of the sea.

Recommended sea spectra from the ISSC
(International Ship and Offshore Structures
Congress) and the ITTC (International Towing
Tank Conference) are often used to calculate S(ω).
For instance, for open-sea conditions, the 15th
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Figure 3.16. Illustration of the connection between frequency-domain and time-domain representa-
tions of waves in a long-crested short-term sea state. There are three “sum” lines drawn, illustrating
how regular wave components with random phase angles at a given time add up to give the irregular
wave elevation at that time instant.

ITTC recommended the use of ISSC spectral for-
mulation for fully developed sea:

S(ω)
H 2

1/3T1
= 0.11

2π

(
ωT1

2π

)−5

exp
[
−0.44

(
ωT1

2π

)−4]
,

(3.55)

where H1/3 is the significant wave height defined
as the mean of the one-third–highest waves and T1

is a mean wave period defined as

T1 = 2πm0/m1.

where the spectrum moments, mk, are given by

mk =
∞∫

0

ωkS (ω) dω; k = 0, 1, 2. . . . (3.56)

H1/3 is often redefined as

H1/3 = 4
√

m0, (3.57)

giving a value that is usually close to the H1/3

defined above.
Eq. (3.55) satisfies eq. (3.57). Strictly speaking,

this relation is only true for a narrow-banded spec-
trum and when the instantaneous value of the
wave elevation is Gaussian distributed.

The spectrum given by eq. (3.55) is the same
as the modified Pierson-Moskowitz spectrum, in
which it is more usual to use the mean wave period
T2 defined as

T2 = 2π (m0/m2)1/2
. (3.58)

The following relation exists between T1 and T2 for
the spectrum given by eq. (3.55):

T1 = 1.086T2. (3.59)

The period T0 corresponding to the peak fre-
quency of the spectrum can be written as

T0 = 1.408T2. (3.60)

The peak period T0 is also referred to as the modal
period.

The spectrum formulation given by eq. (3.55)
has little energy density when ωT2/(2π) is less than
0.5 and larger than ≈1.5. For large frequencies,
the wave spectrum decays like ω−5.

The 17th ITTC recommended the following
JONSWAP (Joint North Sea Wave Project) type
spectrum for limited fetch:

S(ω) = 155
H 2

1/3

T4
1 ω5

exp
(−944

T4
1 ω4

)
(3.3)Y (m2s),

(3.61)

where

Y = exp

(
−

(
0.191ωT1 − 1

21/2σ

)2
)

and

σ = 0.07 for ω ≤ 5.24/T1

= 0.09 for ω > 5.24/T1.
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The JONSWAP spectrum formulation may be
used with the other characteristic periods by the
substitution of

T1 = 0.834T0 = 1.073T2. (3.62)

We note that eq. (3.62) differs from the relation-
ship between T1, T0, and T2 given by eqs. (3.59)
and (3.60) for the Pierson-Moskowitz spectrum.

The peak value of the modified Pierson-
Moskowitz (ISSC) spectrum occurs at a different
(ωT2/2π)-value than that for the JONSWAP spec-
trum. This can be seen from eqs. (??) and (3.62).

Tucker and Pitt (2001) have discussed how the
parameters in the JONSWAP spectrum depend on
limited fetch. We can, for instance, write

H1/3 = 0.0163F 0.5U10 (3.63)

T0 = 0.566F 0.3U 0.4
10 . (3.64)

Here U10 is the mean wind velocity in meter per
second (ms −1) 10 m above sea level. F is the fetch
length in kilometers. The other dimensions are in
SI units. We consider as an extreme case U10 =
29.2 ms−1. If F = 15 km, this gives H1/3 = 1.8 m
and T0 = 4.9 s.

A good approximation to the probability den-
sity function for the wave amplitude maxima (peak
values) A of the wave elevation can be obtained
from the Rayleigh distribution given by

p(A) = A
m0

e−A2/(2m0), (3.65)

where m0 is related to H1/3 by eq. (3.57). Strictly
speaking, the Rayleigh distribution depends on
the wave spectrum being narrow banded, which
is an approximation for the spectra we have dis-
cussed. In deriving the Rayleigh distribution, it is
also assumed that the instantaneous value of the
wave elevation is Gaussian distributed.

We can simulate a seaway by using eq. (3.53),
but this expression repeats itself after a time
2π/�ω. Therefore, a large number N of wave
components is needed to avoid this problem. A
practical way to avoid this is to choose a ran-
dom frequency in each frequency interval (ω j −
�ω/2, ω j + �ω/2) and calculate the wave spec-
trum with those frequencies. The number of wave
components ought to be about 1000. This depends
partly on the selection of the minimum and max-
imum frequency component. The minimum fre-
quency component ωmin is easier to select than
the maximum frequency component ωmax. For

instance, if a Pierson-Moskowitz spectrum is used,
ωmin ≈ π/T2. The wave energy drops off more
slowly for larger frequencies than for small fre-
quencies. We should therefore investigate the
results for different values of ωmax, to ensure
that the results do not depend on the selection
of ωmax.

We can use this procedure to simulate the wave
elevation in a sea state with a given duration.
The largest amplitude in each simulation (real-
ization) is different because of the random selec-
tion of frequencies and phase angles. By select-
ing a large number of realizations, we will find
that the extreme values have their own probabil-
ity distribution. This was, for instance, discussed by
Ochi (1982). In practice, the most probable largest
value Amax is often used. This can be approxi-
mated as

Amax =
(

2m0 ln
t

T2

)1/2

, (3.66)

where t is the time duration. We should note that
Amax is the most probable largest value. With that
we imply that there is a probability for Amax to be
exceeded during the time t (Ochi 1982). The most
probable maximum crest-to-trough wave height
Hmax during the same time is simply 2Amax.

The effect of short-crestedness may be impor-
tant. A short-crested sea is often characterized by
a two-dimensional wave spectrum, which in prac-
tice is often written as

S (ω, θ) = S (ω) f (θ) , (3.67)

where θ is an angle measuring the wave-
propagating direction of elementary wave com-
ponents in the sea. An example of f (θ) might be

f (θ) =
{

2
π

cos2 θ, − π/2 ≤ θ ≤ π/2
0; elsewhere

, (3.68)

where θ = 0 corresponds to the main wave-
propagation direction. Other ways of representing
a short-crested sea spectrum may be found in the
report of the 10th ISSC. For a short-crested sea,
eq. (3.53) can be generalized to

ζ =
N∑

j=1

K∑
k=1

(2S (ω j , θk) �ω j�θk)1/2

(3.69)
× sin (ω j t − kj x cos θk − kj y sin θk + ε jk) .
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Table 3.3. Classification of operation of high-speed craft according to DNV Rules for High-Speed and
Light Craft, January 1999

R0 Ocean Long ocean–service restriction applies to craft on long international voyages when the craft
is to be self-sustained without rescue assistance.

R1 Ocean Short ocean–service restriction applies to craft on short international voyages on which the
craft is assumed to be outside the range of rescue assistance from shore, other than from
helicopter. The craft is assumed to be outside the possibility of seeking shelter if weather
forces are above sea state 6.

R2 Offshore Offshore service restriction applies to operation in water when weather conditions may
change during the voyage, but in cases in which the possibility of seeking shelter at the
coast exists if the weather forecast estimates more than sea state 6. Rescue assistance
from shore is assumed.

R3 Coastal Coastal service restriction applies to operation in waters in which the craft may be exposed
to sea state 5 for part of the voyage, but in which the master can decide to change the
voyage depending on weather conditions. Distance away from port of refuge is limited,
and weather is not assumed to change between alternative places of refuge.

R4 Inshore Inshore service restriction applies to operation in waters that are protected by islands and/or
peninsulas. Rough sea is not expected, and close distance to place of refuge is assumed.
Short voyages and good possibility of alternative places of refuge are assumed.

R5 Inland Inland service restriction applies to operation on lakes, rivers, channels, and harbor areas
where the sea is calm and the distance to refuge is short. Each voyage may stop in a few
minutes, and alternative places of refuge are assumed to be numerous.

3.4 Long-term predictions of sea states

So far, we have discussed a “short-term” descrip-
tion of the sea, which means the significant wave
height and the mean wave period are assumed
constant during the time period considered. The
significant wave height and mean wave period
will vary in a “long-term” description of the sea.
In order to construct a long-term prediction of
the sea, we need to know the joint frequency of
the significant wave height and the mean wave
period. This discrete joint frequency distribution
is referred to as a scatter diagram.

High-speed craft normally operate with a limi-
tation on how far from shore they are allowed to
go. This is expressed as an addition to the class
notation issued by a classification society. DNV’s
service restrictions range from R0 to R5. Typical
operation for the different service restrictions is
shown in Table 3.3. There is no direct link between
the service restriction and the sea state a vessel
may experience. A vessel operating at an open
coastline may experience both high and low sea
states, even if it is operating close to shore. It is,
however, expected that a vessel designed for ser-
vice restriction R0 (ocean service) will during its
lifetime experience higher sea states than will a

vessel designed for service restriction R3 (coastal
service). This is reflected in the scatter diagrams.
The scatter diagrams are “constructed” from the-
oretical parameters and are presented in DNV
Report No. 97-0152.

We present in Table 3.4 the recommended scat-
ter diagram for service restriction R0. The num-
bers in the table should first be summed up. This is
995, as we see in the table. Then, for instance, there
is a number 44 for H1/3 = 3 m and T2 = 7 s. Here
H1/3 = 3 m means values between H1/3 = 2.5 m
and 3.5 m. Further, T2 = 7 s means values between
T2 = 6.5 s and 7.5 s. The probability of having a sig-
nificant wave height between 2.5 m and 3.5 m and a
mean wave period T2 between 6.5 s and 7.5 s is then
44/995 = 0.044. The footnote for Table 3.4 states
that there is a 10% probability for exceedance
of H1/3 = 6 m. We obtain this by using the val-
ues in the right column as follows. We use half
the value for H1/3 = 6 m, that is, 26. Then we add
the values for H1/3 > 6 m. The sum is then divided
by the total number, 995. This means (26 + 31 +
20 + 12 + 6 + 4)/995 = 0.1 or 10% probability for
exceedance of H1/3 = 6 m.

For the directional distribution of waves, the
DNV rules say, “It may be assumed that the
vessel’s heading relative to the waves is equally
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Table 3.4. Scatter diagram for service restriction R0 (ocean service) a

T2 (seconds)
H1/3

(m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Sum

1 0 0 1 22 67 84 63 35 16 6 2 1 0 0 0 0 297
2 0 0 0 2 17 48 60 44 23 10 4 1 0 0 0 0 209
3 0 0 0 0 4 22 44 45 29 13 5 2 1 0 0 0 165
4 0 0 0 0 1 8 25 34 27 15 6 2 1 0 0 0 119
5 0 0 0 0 0 3 12 22 21 13 6 2 1 0 0 0 80
6 0 0 0 0 0 1 6 12 14 10 6 2 1 0 0 0 52
7 0 0 0 0 0 0 2 6 9 7 4 2 1 0 0 0 31
8 0 0 0 0 0 0 1 3 5 5 3 2 1 0 0 0 20
9 0 0 0 0 0 0 0 2 3 3 2 1 1 0 0 0 12

10 0 0 0 0 0 0 0 1 1 2 1 1 0 0 0 0 6
11 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 4
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sum 0 0 1 24 89 166 213 204 149 85 40 17 7 0 0 0 995

a 10% probability for exceedence of H1/3 = 6 m.

distributed along the circle, i.e., an equal amount
of time on each heading.” It is also necessary to
define running hours per year (see DNV Report
No. 97-0152).

The sea state number is often used to classify
the sea. This gives a more rough description of the
relationship between H1/3 and mean wave period.
This is shown in Table 3.5 and also gives informa-
tion about the wind speed.

3.5 Exercises

3.5.1 Fluid particle motion in regular waves

a) Use linear theory to show that the fluid particle
motion (x (t), z(t)) in regular sinusoidal propagat-
ing waves in deep water can be expressed as

x (t) − x0 = −ζaekz0 cos(ωt − kx0) (3.70)

z(t) − z0 = ζaekz0 sin(ωt − kx0) (3.71)

when the fluid velocity is given as in Table 3.1. Here
x0 and z0 are the coordinates of a fluid particle in
the absence of any fluid motion.

b) Show that the fluid particle motion given by
eqs. (3.70) and (3.71) represents a circular path
with radius ζa exp(kz0). Discuss in what direction
a fluid particle moves along this circular path and
relate this motion to the free-surface elevation.

c) Make a numerical simulation of the fluid par-
ticle motion by using the linear expression for

fluid velocity in deep-water regular waves at the
instantaneous position of the fluid particle. Choose
ζa = 2 m, λ = 100 m and pick your own fluid par-
ticle.

d) Show both analytically and based on the result
of question c) that a fluid-particle has a mean drift
velocity

ūD = ζ 2
a ωke2kz0 (3.72)

in the wave propagation direction. Compare the
magnitude of the fluid particle drift velocity, the
fluid velocity amplitude at (x0, z0), the group and
phase velocity for the case studied in question c).
(Hint: You can show eq. (3.72) by Taylor expand-
ing the linear fluid velocity at (x, z) about (x0, z0)
and keeping terms of order (ζa/λ)2.)

e) Consider finite water depth and generalize
eqs. (3.70) and (3.71). Show that a fluid particle
follows the elliptical path given by(

x (t) − x0

a

)2

+
(

z(t) − z0

b

)2

= 1, (3.73)

where

a = ζa
cosh k(z0 + h)

sinh kh
(3.74)

b = ζa
sinh k(z0 + h)

sinh kh
. (3.75)

Discuss the fluid particle motion based on
eq. (3.73) when kh → 0.
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3.5.2 Sloshing modes

Consider a rectangular tank with length a and
breadth b. The mean water depth is h. Define a
Cartesian coordinate system with origin in the cen-
ter of the mean free surface in the tank. The z-axis
is positive upward. The linear natural modes are
found by solving the Laplace equation, using the
linear free-surface conditions, and requiring the
normal fluid velocity to be zero on the tank bot-
tom and the sidewalls.

a) Show that the natural modes of the velocity
potential can be expressed as

ϕmn = cos
[mπ

a

(
x + a

2

)]
cos

[
nπ

b

(
y + b

2

)]
× cosh kmn (z + h) cos (ωmnt + εmn) ,

(3.76)

where

k2
mn = π2

(
m2

a2
+ n2

b2

)
(3.77)

and m and n are integers ranging from 0 to ∞. Fur-
ther, show by neglecting surface tension that the
natural frequencies ωmn associated with the natu-
ral modes are

ω2
mn = gkmn tanh kmnh. (3.78)

Express the free-surface elevation ζmn associated
with a natural mode.

b) Consider now a 2D tank with length 20 m and
water depth h = 10 m. Discuss when surface ten-
sion influences the natural modes.

c) Consider a square-base basin, that is, a = b. We
define

f (1)
m (x) = cos

[mπ

a

(
x + a

2

)]
,

(3.79)
f (2)
n (y) = cos

[nπ

a

(
y + a

2

)]
.

Why can [
f (1)
1 (x) ± f (2)

1 (y)
]

cos ωt (3.80)

be called diagonal standing waves?
Why can

f (1)
1 (x) cos ωt ± f (1)

1 (y) sin ωt (3.81)

be called swirling waves, that is, rotating waves that
you may see if you excite your coffee cup?

What does ω mean in eqs. (3.80) and (3.81)?
Draw sketches of the 3D wave patterns in

answering the questions. Discuss the meaning of
± in eqs. (3.80) and (3.81).

3.5.3 Second-order wave theory

We will consider regular sinusoidal propagating
waves in infinite depth. The linear (first-order)
results are presented in Table 3.1. We represent
the velocity potential ϕ and the free-surface ele-
vation ζ as

ϕ = ϕ1 + ϕ2 + · · · (3.82)

ζ = ζ1 + ζ2 + · · · , (3.83)

where ϕ1 and ζ1 are the first-order (linear) results
given in Table 3.1. ϕ2 and ζ2 are second-order
approximations that are assumed proportional to
the square of the linear incident wave amplitude
divided by the incident wavelength.

a) Use the dynamic free-surface condition and
show by a Taylor expansion about the mean free
surface z = 0 that

gζ2 = − ∂ϕ2

∂t
− 1

2

[(
∂ϕ1

∂x

)2

+
(

∂ϕ1

∂z

)2
]

(3.84)

− ζ1
∂2ϕ1

∂t∂z
on z = 0.

b) Express the kinematic free-surface condition
correctly to second order. Combine this with the
dynamic free-surface condition and show that

∂2ϕ2

∂t2
+ g

∂ϕ2

∂z

= − ∂

∂t

[(
∂ϕ1

∂x

)2

+
(

∂ϕ1

∂z

)2
]

(3.85)

+ 1
g

∂ϕ1

∂t
∂

∂z

(
∂2ϕ1

∂t2
+ g

∂ϕ1

∂z

)
on z = 0.

c) Show that the second-order potential is zero
and that ζ2 can be expressed as in eq. (3.13).

d) Draw pictures as in Figures 3.4 and 3.5 to show
horizontal velocity distribution and pressure vari-
ation under a wave crest and wave trough that are
consistent with the derivation of the second-order
wave theory.

e) We consider two linear long-crested wave fields
propagating in the same direction in deep water.
The velocity potential is expressed as

ϕ1 = ga1

ω1
ek1z cos (ω1t − k1x + δ1) + ga2

ω2
ek2z

× cos (ω2t − k2x + δ2) . (3.86)

Show that

ϕ2 = 2a1a2ω1ω2 (ω1 − ω2)

− (ω1 − ω2)2 + g |k1 − k2|
e|k1−k2|z

× sin [(ω1 − ω2) t − (k1 − k2) x + δ1 − δ2]

(3.87)
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is a solution of the second-order boundary-value
problem.

f) Consider then N linear wave components prop-
agating in the same direction in deep water. Write
up the expression for the second-order potential.

3.5.4 Boussinesq equations

Nwogu (1993) has presented extended Boussi-
nesq-type equations. If we assume constant water
depth h and linearize these equations, the follow-
ing dispersion relationship can be derived for har-
monic waves with frequencyω and wave number k:

ω2

k2
= gh

1 − (
α + 1

3

)
(kh)2

1 − α (kh)2 . (3.88)

Here

α = za

h
+ 1

2

(
za

h

)2

(3.89)

and za is a z-coordinate between 0 and –h that is a
variable that must be determined.

Use the dispersion relationship presented in
Table 3.1 and the group velocity given in eq. (3.22)
as the true values for finite depth. Make graphs of
the relative error in using eq. (3.88) to predict the
phase velocity and the group velocity as a func-
tion of the water depth–to-wavelength ratio h/λ

for different choices of za/h. Which choice of za/h
seems to be best if one wants to use these Boussi-
nesq equations for 0 < h/λ < 0.3?

3.5.5 Gravity waves in a viscous fluid

We consider linear long-crested propagating grav-
ity waves in a viscous fluid with infinite depth.
Laminar flow is assumed. A similar problem is con-
sidered by Landau and Lifschitz (1959).

a) Show based on the Navier-Stokes equations
for an incompressible fluid that the following lin-
earized equations apply:

∂u
∂t

= − 1
ρ

∂p
∂x

+ ν

(
∂2u
∂x2

+ ∂2u
∂z2

)
(3.90)

∂w

∂t
= − 1

ρ

∂p
∂z

+ ν

(
∂2w

∂x2
+ ∂2w

∂z2

)
− g,

(3.91)

where (u, w) is the fluid velocity and p is the

pressure. Further, the continuity equation is
∂u
∂x

+ ∂w

∂z
= 0. (3.92)

The coordinate system is defined in Figure 3.2
What condition must be satisfied for the fluid
behavior when z → −∞?

b) Show that the following solutions satisfy
eqs. (3.90), (3.91) and (3.92):

u = e−iωt+ikx
(

Aekz + Bemz
)

(3.93)

w = e−iωt+ikx

(
−i Aekz − ik

m
Bemz

)
(3.94)

p/ρ = e−iωt+ikx · ωAekz

k
− gz + pa

ρ
, (3.95)

where m = (k2 − iω/ν)1/2 and pa is the atmo-
spheric pressure. Further, k and ω will be assumed
real and complex, respectively.

c) Express the linear kinematic free-surface con-
dition. Neglect surface tension and explain why
the two dynamic free-surface conditions

− p + 2µ
∂w

∂z
= pa on z = ζ (3.96)

µ

(
∂u
∂z

+ ∂w

∂x

)
= 0 on z = 0 (3.97)

are consistent with linear theory. Here ζ means
the free-surface elevation. Differentiate eq. (3.96)
with respect to time and apply the linear kinematic
free-surface condition. Explain why we now, but
not in eq. (3.96), can set z = 0 in this free-surface
condition.

Show that the free-surface conditions lead to
the following dispersion relationship:(

2 − iω
νk2

)2

+ g
ν2k3

= 4
(

1 − iω
νk2

)1/2

. (3.98)

Explain why the imaginary part of ω cannot be
positive.

d) Assume that νk2 � (gk)1/2 and show that ω can
be approximated as

ω = ±
√

gk − i2νk2. (3.99)

e) Consider water as the fluid and use eq. (3.99) to
discuss how much the wave amplitude has decayed
because of laminar viscous effects after 100 oscil-
lation periods for wavelengths ranging from 5 cm
to 100 m.
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4 Wave Resistance and Wash

4.1 Introduction

In this chapter, we concentrate on wave resis-
tance and ship-generated waves (wash) of high-
speed vessels in calm water conditions. The focus
is on semi-displacement vessels and air cushion–
supported vehicles. Wave resistance of hydrofoils
is discussed in section 6.8.

4.1.1 Wave resistance

Figure 4.1 shows the numerically calculated rel-
ative importance of resistance components of a
70 m–long catamaran in deep water. The main par-
ticulars are presented in Table 4.1. The ship speed
U is 40 knots in calm water. The effect of head
sea waves with different significant wave heights
H1/3 is also shown. The added resistance due to
the incident waves and wind are accounted for
by selecting a representative wind velocity and
mean wave period for each H1/3. Correspond-
ing data for a 70 m–long surface effect ship (SES)
are shown in Figure 4.2, with the main particulars
given in Table 4.2. The ship power is kept con-
stant in the calculations, which means increasing
speed loss with increasing H1/3. Voluntary speed
reduction, for instance, as a result of excessive
vertical accelerations, is not accounted for. The
speed loss is most pronounced for the SES, as
shown in Figure 4.2. The SES speed has dropped
from 50 knots in calm water to about 35 knots in
H1/3 = 5 m. The speed loss for the catamaran is not
shown. However, because viscous frictional resis-
tance is mainly proportional to U 2, the curve for
frictional resistance as a function of H1/3 shows
that the speed loss is not large. Faltinsen et al.
(1991b) report a study of an operational area with
weather conditions similar to those of the north-
ern North Sea. If the influence from different wave
headings is neglected and the operational limits
are disregarded, the mean vessel speed over one

year for the 70 m–long catamaran is 37 knots, com-
pared with 40 knots in calm water. Figure 4.1 for
the catamaran shows that viscous frictional resis-
tance is most important. The frictional resistance
is divided into two components showing the influ-
ence of hull roughness. Even if the average hull
roughness height is only 150 µm, the contribution
matters. The air resistance is the smallest compo-
nent. An obvious reason is that the resistance is
proportional to the mass density of the fluid and
the air density is the order of one thousandth of
the water density. The added resistance in waves
increases with H 2

1/3 for a given mean wave period
and becomes significant for H1/3 = 5 m. The wave
resistance, which is our main concern in this chap-
ter, is more than 30% of the total resistance. The
relative importance of the resistance components
for an SES is different from that for a catama-
ran. The wave-making resistance (see Figure 4.2)
is divided into two components. One is the result of
the air cushion and the other of the side hulls. The
excess pressure in the air cushion causes a mean
depression of the free surface inside the hull rela-
tive to outside the hull. This results in generation of
waves. Because the wave energy is directly related
to the work done by the ship, this gives a wave-
resistance component. The main effect of the side
hulls is that the hulls push out the water in the
bow and suck the water in at the stern. This causes
changes in the free-surface elevation that result
in far-field waves. Figure 4.2 shows that the wave-
making resistance due to the air cushion is the most
important resistance component in calm water. It
is about 40% of total resistance. The significant
drop in the air cushion–induced wave resistance
as a function of H1/3 is the result of air leakage
caused by relative vertical wave-induced motions.
The power of the fan-lifting system for the air
cushion is assumed constant. The air leakage then
implies lower excess pressure p0 in the air cushion.
We see this indirectly from the curve for cushion
support in Figure 4.2. Cushion support expresses
how much of the weight of the SES the air cush-
ion carries. The other part is assumed to be caused
by buoyancy of the side hulls. Because the impor-
tance of steady hydrodynamic force relative to
hydrostatic pressure on the side hull increases with
speed, this is an approximation. The cushion sup-
port drops from about 80% in calm water to less
than 40% for H1/3 = 5 m. The wave resistance
due to the air cushion is proportional to p2

0. The
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Frictional resistance,
zero roughness

Added resistance, waves 

Wave resistance

Air resistance

Roughness effects

Percentage of
total resistance

60%

40%

20%

0 1.0 2.0 3.0 4.0 5.0 H1/3 (m)

Figure 4.1. Relative importance of resis-
tance components for a 70 m–long cata-
maran (see Table 4.1) in head sea waves.
H1/3 = significant wave height. Ship speed
is 39.6 knots in calm water (Faltinsen
et al. 1991b).

fact that lower p0 causes lower air cushion wave
resistance can also be understood from the fact
that the mean depression of the free surface inside
the air cushion is proportional to p0.

A decrease in p0 also means increased sinkage
and wetted surface S of the vessel. The frictional
resistance is proportional to S. The behavior of the
frictional resistance as a function of H1/3 can be
explained by the increase in S and the decrease
in U. Figure 4.2 shows that the air resistance is
relatively more important for an SES than for a
catamaran. The reason is related to the fact that
the SES is lifted up. This means a larger projected
transverse area in air than for the catamaran. It, of
course, also has to do with the relative importance
of the other resistance components. We note that
the wave making due to the side hull of the SES is
about 10% in calm water and clearly less than the
wave resistance due to the air cushion. Roughly
speaking, this has to do with the fact that the side
hulls of the SES displace less water than does

Table 4.1. Main particulars of a high-speed
catamaran

Length overall 70.0 m
Length of waterline 61.8 m
Beam of each hull 6.2 m
Draft of each hull 3.1 m
Distance between centerplanes of the

hulls
14.0 m

Block coefficient of each hull 0.54
Pitch radius of gyration 15.0 m
Longitudinal position of center of

gravity from FP
36.28 m

Projected area of above-water hull
used in wind force calculations for
head wind

125.0 m2

the air cushion. In this context, one should also
remember that the buoyancy of the side hulls car-
ries only about 20% of the weight in calm water.

The previous examples demonstrate that wave
resistance is an important component. It is there-
fore of interest to understand what influences the
wave resistance. This is dealt with later in the
text. Another important effect of wave genera-
tion is that it influences the trim and sinkage of
a high-speed vessel. Molland et al. (1996) did sys-
tematic experimental model tests with monohulls
and catamarans showing a pronounced change in

Cushion support

Speed (knots)

80%

60%

40%

50.

30.

2.0

1.0

40%

20%

1.0 2.0 3.0 4.0 5.0

1.0 2.0 3.0 4.0 5.0

Resistance ×10−5(N)

Wavemaking, cushion
Roughness effects
Wavemaking, hulls
Air resistance
Frictional, zero roughness
Added resistance, waves

Percentage of total resistance

Skin friction, zero
roughness

Wavemaking, cushion
H1/3 (m)

H1/3 (m)

Figure 4.2. Cushion support and relative importance
of resistance components for a 70 m–long SES (see
Table 4.2) in head sea waves (Faltinsen et al. 1991b).
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Table 4.2. Main particulars of an SES

Length overall 70.0 m
Length of waterline 60.9 m
Trim angle 0.82◦

Longitudinal center of gravity from
stern

26.5 m

Weight 1013.0 t
Cushion support, still water 83.3%
Cushion excess pressure, still water 0.0889 atm
Position of bow seal from stern 57.75 m
Pitch radius of gyration 18.2 m
Projected area of above-water hull

used in wind force calculations for
head wind

293.7 m2

trim and sinkage at Froude number Fn = U/
√

Lg
around 0.35. The trim and sinkage have a direct
influence on the resistance. Trim and sinkage are
also important factors to consider for wetdeck
slamming on multihull vessels.

Theoretical predictions of wave resistance have
a long history going back to Froude (1877) and
Lord Kelvin (1887). The work by Michell (1898)
is still very useful. Havelock (1908) studied how
finite water depth affects ship waves. The many
contributions by Havelock are collected in Have-
lock (1963). Reviews on the subject are given
by Wehausen and Laitone (1962) and Wehausen
(1973). More numerically oriented methods are
needed in order to deal with important nonlinear
aspects. This is discussed later in the text.

4.1.2 Wash

The waves (wash) caused by fast semi-
displacement ships and SES are of concern
in coastal and inland waters. A hydrofoil boat has
an advantage in this respect. The wash may cause
nearby small boats to capsize or ground or cause
large moored ships to move and mooring lines
to break. The waves may cause erosion or even
collapse of a bank. When the waves approach
a beach, the amplitudes increase and the waves
break. This may happen when the ship is out of
sight, surprise swimmers, and represent a risk
factor.

The far-field waves in deep water can be classi-
fied as transverse and divergent waves (Figure 4.3).

TRANSVERSE
WAVE CRESTS

DIVERGING WAVE CRESTS

19°28'

35°16'

Figure 4.3. The Kelvin ship-wave pattern in deep
water. The included half-angle 19◦28′ of the waves is
called the Kelvin angle and is affected by the water
depth. (Newman, J. N., 1977, Marine Hydrodynamics,
Cambridge: The MIT Press. The figure is reprinted with
the permission of The MIT Press.)

The angle between the boundary of the wave sys-
tem and the ship course is 19◦28′. This included
half-angle of the waves is called the Kelvin angle.
We will later see that it is affected by the water
depth. The wavelength can be expressed as λ =
2πU 2 cos2 θ/g where θ is the local wave propaga-
tion direction relative to the ship’s course. It means
that wavelength of the transverse waves along the
ship’s track can be expressed as

λT

L
= 2π Fn2. (4.1)

A vessel is often categorized hydrodynamically to
be a high-speed vessel if Fn ≥ 0.5. This means that
λT is larger than the ship length. The minimum θ -
value for divergent waves occurs at the wave angle
and is 35◦16′ (see Figure 4.3). The corresponding
wavelength λD is

λD

L
= 4π

3
Fn2. (4.2)

The amplitude of the divergent waves is largest
at the Kelvin angle. The transverse waves gener-
ated in the bow and at the stern of the ship may
either tend to enforce each other or cancel each
other behind the ship. This depends on λT/L and
the particular ship. For instance, values around
λT/L = 0.5 may mean large amplification of the
wave height. This corresponds to Fn = 0.28.Large
cancellation may happen around λT/L = 1.0
or Fn = 0.4. These strong amplification and
cancellation effects cause humps and hollows in
the wave resistance curve presented as a function
of Froude number. However, the humps and hol-
lows do not occur for Fn > ≈0.6 − 0.7. Actually
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Figure 4.4. Waves near critical speed in shallow water due to a high-speed ship. The Kelvin angle
(included half-angle of the waves) is close to 90◦. Large waves are created at critical speed (Whittaker
and Elsässer 2002).

the wave picture is dominated by divergent waves
in the far field when Fn is larger than 0.6 to 0.7.

The wave decay along the distance |y| per-
pendicular to the ship’s track is important from
a coastal engineering point of view. The waves
at the Kelvin angle decay slowest with |y|. The
decay rate is |y|−1/3 in deep water. The lead-
ing waves in the wash of a high-speed vessel
operating at maximum speed have long wave-
lengths. However, their amplitudes may not be
large. When the waves come into shallow water,
the wavelength decreases, and the wave amplitude
increases. These waves may arrive unexpectedly at
the shore and break after the fast vessel is out of
sight.

When the ship is in finite water depth and the
water depth–to-ship length ratio h/L is small, large
changes occur near the critical depth Froude num-
ber Fnh = U/

√
gh = 1. The wave resistance and

the wave generation become large. Fast ships have
sufficient power to overcome the critical speed. A
first step in identifying which h/L and Fnh cause
large waves for a particular ship may be to study
the ratio between wave resistance in finite and infi-
nite depth. This was done by Yang (2002) by using
linear theory. If either Fnh < ≈0.6 or Fnh > ≈1.8,
the wave resistance ratio is close to 1. If Fnh ≈1,
the ratios are larger than 3 when h/L < ≈0.2. If
h/L < 0.13 and Fnh ≈1, the ratios are larger than

15. The largest ratio predicted by Yang (2002) was
50. However, nonlinear and unsteady effects may
then matter. Actually, large waves may be created
upstream of the ship in confined water, such as in
a channel.

If h/L > ≈0.4, there is a very small effect of
the water depth. This should be noted when doing
model tests. For instance, at MARINTEK’s facili-
ties, the water depth is 5.5 m and the maximum
towing speed is about 8 ms−1. Then, the depth
Froude number Fnh may be larger than 1. Nev-
ertheless if, for instance, a model length L = 5.5 m
is used, then h/L = 1 and the model test results are
not influenced by the tank bottom, even at critical-
and supercritical-depth Froude numbers. This may
seem surprising at first. It has to do with the fact
that the lengths of the ship-generated waves are
sufficiently small relative to the water depth. The
ship then will not “feel” the tank bottom.

The ship generates both transverse and diver-
gent waves at subcritical speed. However, the
Kelvin angle, which is 19◦28′ for deep water, is
influenced by Fnh. When Fnh < 0.5 − 0.6, the
value is practically the same as that for deep water.
A rapid increase in the angle occurs for Fnh > 0.9,
and the angle is 90◦ for Fnh = 1. We can imagine
this from Figure 4.4, which shows a wave system
near the critical speed. Only divergent waves exist
for Fnh > 1 when the waves “feel” the bottom.
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Figure 4.5. Waves due to a high-speed craft at supercritical speed in shallow water. There are no
transverse waves at supercritical speed and the waves decay slowly perpendicular to the ship’s track
(Whittaker and Elsässer 2002).

Figure 4.5 illustrates a ship at supercritical speed.
The decay rate for small h/L and supercritical
speed is lower than for deep water waves at the
wave angle. Decay rates as low as |y|−0.2 were mea-
sured for shallow water by Doyle et al. (2001).
Actually, the shallow-water theory by Tuck (1966)
shows that the supercritical waves do not decay
at all with |y|. Sections 4.4 and 4.5 give a detailed
description of the effect of finite and shallow water
depth.

There is no simple universal criterion in terms
of maximum wave amplitude that quantifies the
effect of wash. The criterion must be different for
the effects on the seashore or if the effects on other
ships are considered. If, for instance, the effect on
other ships is analyzed, the ship response due to
the wash of passing ships must be studied. This
means that incident wavelengths, amplitudes, and
relative directions all have to be considered. For
instance, if the waves are very long relative to the
ship length and they are not locally steep, the ship
moves like a cork and the situation should not be

of concern. The analysis for moored ships must
include second-order mean and slowly varying
drift forces (Faltinsen 1990). Proper knowledge
about physical parameters influencing the wash
will obviously enable the shipmaster to minimize
the effect. Ferry operators in the United King-
dom must prepare a route assessment with regard
to wash that must be approved by the Maritime
and Coastguard Agency (Whittaker and Elsässer
2002).

In the following main text, we start out study-
ing steady ship waves and wave resistance in deep
water. We end up studying steady ship waves and
wave resistance in finite and shallow water depth.

4.2 Ship waves in deep water

Figure 4.3 shows the wave pattern created by a ship
moving by a constant speed on a straight course
in a calm sea with infinite water depth and hor-
izontal extent. There are two wave systems, cat-
egorized as divergent and transverse waves. The
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Ut

Y

Xx

β
θ

y

Figure 4.6. Ship-fixed coordinate system (x, y, z). Earth-
fixed coordinate system (X, Y, Z). The z- and Z-axes are
vertical upward. The origins of the coordinate systems
are in the mean free surface. U = ship speed, β = wave
propagation angle, θ = angle used in classification of
ship waves, −0.5π ≤ θ ≤ 0.5π . θ has a negative sign in
the figure.

transverse waves have crests nearly perpendicular
to the ship’s course and have longer wavelengths
relative to the divergent waves. The waves are
confined in a domain aft of the ship. The angle
between the outer boundary of the waves and the
ship’s course is 19◦28′ (see Figure 4.3). The char-
acteristics of the waves can be explained by rep-
resenting the waves as an infinite sum of regular
long-crested linear waves with different propaga-
tion directions. It is important to note that the
wave system as observed from a ship-fixed coordi-
nate system will be steady, that is, the wave system
does not change with time. However, if the waves
are observed in Earth-fixed coordinates, they are
unsteady. Therefore, we define one ship-fixed
coordinate system (x, y, z) and one Earth-fixed
coordinate system (X, Y, Z) as shown in Figure 4.6.
The x- and y-axes are in the mean free surface with
the x-axis in the longitudinal aft direction of the
ship. The z-axis is positive upward. We relate the
coordinates as

x = X + Ut, y = Y, z = Z. (4.3)

Here U is the ship’s forward speed and t is the time
variable. A regular wave profile with amplitude ζa

propagating with an angle β relative to the X-axis
can be expressed as

ζ = ζa cos(kXcos β + kY sin β − ωt − ε). (4.4)

This follows from eq. (3.14), but one should not
be confused that (X, Y, Z) has another meaning

in deriving eq. (3.14). Further, we have added a
constant phase angle ε in eq. (4.4) and changed
sine with cosine. The wave number k in eq. (4.4)
is related to the wavelength λ and the circular fre-
quency ω by

k = 2π

λ
= ω2

g
. (4.5)

The phase velocity Vp, which expresses the veloc-
ity of the wave shape, is according to eq. (3.24):

Vp = ω

k
= g

ω
. (4.6)

Further, eq. (3.23) gives that the wave energy
propagation velocity or group velocity for deep
water is

Vg = 1
2

ω

k
= 1

2
g
ω

. (4.7)

Vg is the velocity of the front of the wave system.
We will later use Vg to explain how far the waves
generated by the ship can move relative to the ship.

Let us now transform the waves to the body-
fixed coordinate system and also introduce an
angle θ so that

θ = β − π. (4.8)

This gives

ζ = ζa cos(kx cos θ + ky sin θ

+ (−kU cos θ + ω)t + ε).
(4.9)

The requirement that this wave form must be inde-
pendent of time gives kU cos θ = ω. We now use
that k = ω2/g. This gives ω = 0 as a possibility, but
this is an uninteresting solution. We then get

ω = g
U cos θ

. (4.10)

Because ω > 0, this requires cos θ to be posi-
tive or −π/2 ≤ θ ≤ π/2. The angle θ is shown in
Figure 4.6 together with β, which varies between
π/2 and 3π/2. The wave number k and the wave-
length λ can now be expressed as

k = g
U 2 cos2 θ

, λ = 2π

g
U2 cos2 θ. (4.11)

Eq. (4.11) shows that λ → 0 when |θ | → π/2.
However, when λ becomes very small (less than
5 cm), surface tension matters (see Figure 3.15).
These waves are so small they do not matter from
a wave resistance point of view. If we approxi-
mate the divergent and transverse waves locally as
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Curve of wave energy at time to
generated by ship at time to − t

Ship Position
at time to − t

UtShip Position
at time to 

a)

A

b)

A B

B

0.25 Ut

0.5 Ut cosθ

θ

0.25 Ut
0.75 Ut

αc

sinαc = = 1/3

Figure 4.7. Simplified evaluation of the Kelvin angle
αc of a ship in deep water. ac = 19◦28′ as shown in
Figure 4.3.

long-crested regular waves, the wavelength of
transverse waves on the ship’s track can be
expressed as λT = 2πU2/g. Nondimensionalizing
λT by the ship length L gives

λT/L = 2π Fn2. (4.12)

This shows that the wavelength of the transverse
waves is larger than the ship’s length if Fn > 0.4.
Eq. (4.41) also demonstrates that other wave-
lengths are shorter than λT . Eqs. (4.6), (4.7), and
(4.10) make it possible for us to express the phase
velocity Vp and group velocity Vg as

Vp = U cos θ, Vg = 1
2

U cos θ. (4.13)

4.2.1 Simplified evaluation of Kelvin’s angle

Eq. (4.13) for the wave energy propagation veloc-
ity Vg now makes it possible to determine the
Kelvin angle in a simple way. We first study
Figure 4.7a. The ship is on a straight course with
constant velocity U and is at position A at time t0.
We now look at the maximum distance the waves
propagate from an arbitrary previous time t0 − t
to time t0. The distance can be determined by a
circle, as shown in Figure 4.7a. We construct this
circle by an arrow of length Vgt = 0.5Ut cos θ out
from B and note that the arrow length varies with
θ . Then we draw a line from A that is tangent to the
circle (Figure 4.7b). Because the time t is arbitrary,
no waves due to the ship can be outside this line. It
follows then by trigonometry and Figure 4.7b that

the Kelvin angle αc for deep water is

sin αc = 0.25Ut
0.75Ut

= 1
3
. (4.14)

So we note that all the waves are left behind
the ship. A different situation would appear if
we consider a very small model or actually small
U or small wavelengths so that capillary waves
dominate. We concentrate on the waves along the
course of the model. Eq. (3.52) for the wave energy
propagation velocity Vg for capillary waves shows
this to be equal to 1.5Vp, which is equal to 1.5U.
This means we see waves ahead of the model. You
can do a simple experiment showing the effect. For
instance, if you have a pencil at hand, put it verti-
cally into water and draw it through the water.

4.2.2 Far-field wave patterns

Let us now focus on the complete gravity wave
system generated by a ship. This is found by sum-
ming up all regular waves satisfying eqs. (4.9) to
(4.11). This means

ζ (x, y) =
π/2∫

−π/2

∣∣A(θ)
∣∣ cos

( g
U2 cos2 θ

(4.15)
× (x cos θ + y sin θ) + ε(θ)

)
dθ,

where |A(θ)| and ε(θ) are functions of the sub-
merged ship shape. We will return to that later.
We now write eq. (4.15) in complex form and intro-
duce the polar coordinates (r, α) so that

x = r cos α, y = r sin α. (4.16)

This means

ζ (r, α)
(4.17)

= Re

π/2∫
−π/2

A(θ) exp
[
i

g
U 2 cos2 θ

r cos(θ − α)
]

dθ,

where now A(θ) = |A(θ)| exp(iε) is complex and
we can associate A(θ) dθ with a complex wave
amplitude for waves with propagation direction
θ . When r is large relative to characteristic wave-
length, eq. (4.17) results in the transverse and
divergent wave system shown in Figure 4.3. How
can we see that? This is not obvious. First of all
we should note that the integrand of eq. (4.17)
is highly oscillatory when r is large. This means
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Figure 4.8. Determination of points of stationary phase
for an integral with a highly oscillatory integrand.

there is a strong cancellation effect in the inte-
gration. We have illustrated this in Figure 4.8a
by showing the integrand when r/L = 10, α =
0.2 rad, Fn = 0.5, and A(θ) = 1. Integrals like this
can be evaluated by using the method of station-
ary phase, which is described in mathematical text-
books and in Stoker (1958) and Newman (1977).

If we express the exponential function in
eq. (4.17) as exp[irG(θ)] , where

G(θ) = g cos(θ − α)
U2 cos2 θ

(4.18)

varies slowly, then the points of stationary phase
correspond to solutions of G ′(θ) = 0. We can write

U2

g
dG
dθ

= − sin(θ − α) cos2 θ + 2 cos θ sin θ cos(θ − α)
cos4 θ (4.19)

= sin(2θ − α) + 3 sin α

2 cos3 θ
.

This means that the points of stationary phase are

the solution of

sin(2θ − α) + 3 sin α = 0. (4.20)

Because |sin(2θ − α)| ≤ 1, the only possible solu-
tion to eq. (4.20) will be found for |3 sin α| ≤ 1, that
is, that α is smaller than the Kelvin angle αc. For
0 ≤ α ≤ αc, there exist two solutions to eq. (4.20),
that is,

θ1 = α

2
− 1

2
sin−1(3 sin α)

(4.21)
θ2 = −π

2
+ α

2
+ 1

2
sin−1(3 sin α).

The function dG(θ)/dθ is for the case in Figure 4.8
presented in Figure 4.8b. The zeros of dG/dθ

are, according to eq. (4.21), θ1 = −0.22 rad and
θ2 = −1.15 rad. The main contributions to the inte-
gral in eq. (4.17) come according to the method
of stationary phase from the vicinity of θ1 and θ2.
Further, by this method, eq. (4.17) can be approx-
imated as

ζ =
2∑

i=1

Re

[
A(θi )

(
2π

r |G ′′(θi )|
)1/2

× exp
{

i
[
rG(θi ) ± π

4

]} ]
,

where the ± sign corresponds to the sign of G′′(θi ).
It follows by differentiating eq. (4.19) that

U 2

g
d 2G
dθ2

∣∣∣∣
θ=θi

= cos(2θi − α)
cos3 θi

.

This means

d 2G
dθ2

∣∣∣∣
θ=θi

= ±
√

1 − 9 sin2
α∣∣cos3 θi

∣∣ g
U2

,

where + corresponds to θ1 and – corresponds to θ2.
This means that for 0 ≤ α ≤ αc, the wave elevation
is

ζ =
√

2π

νr

∣∣∣1 − 9 sin2
α

∣∣∣−1/4

Re
{

A(θ1) |cos θ1|3/2

× exp
[

i
[
νr

cos (θ1 − α)
cos2 θ1

+ π

4

]]
, (4.22)

+ A(θ2) |cos θ2|3/2

× exp
[

i
[
νr

cos (θ2 − α)
cos2 θ2

− π

4

]]}

where ν = g/U 2. The solutions θ1 and θ2 given by
eq. (4.21) are presented in Figure 4.9 as a function
of the polar coordinate angle α for α between 0
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Figure 4.9. Angles θ1 and θ2 of stationary phase as a
function of the polar coordinate angle α of a posi-
tion inside the Kelvin angle αc = 19◦28′ ≈ 0.34 rad. θ

is defined in Figure 4.6. −θ1 and −θ2 are propagation
angles for y > 0 of, respectively, transverse and diver-
gent waves.

and the Kelvin angle αc, that is, for positive y in
Figure 4.6.

We note that θi is always negative and that |θ1| <

|θ2|. −θ1 and −θ2 are propagation angles (see Fig-
ure 4.6) of respectively transverse and divergent
waves. When α = αc, θ1 = θ2 = −sin−1(1/

√
3) =

−35◦16′. This is the angle illustrated in Figure 4.3
for the divergent waves at the Kelvin angle. When
−αc < α < 0, we get similar solutions of θi , but
with opposite signs. Eq. (4.22) shows that the wave
amplitude decays like r−1/2 when 0 ≤ |α| < αc.
When |α| = αc, eq. (4.22) gives an infinite value
for the amplitude. Actually, a separate analysis is
needed in the close vicinity of |α| = αc. This will
show that the wave amplitude decays like r−1/3.
This decay factor or the fact that the wave ampli-
tude decays as a function of horizontal distance |y|
from the ship’s track is important from a coastal
engineering point of view, that is, to assess the
wash at the shore due to a passing ship. Because
y = r sin α, the decay rate in terms of |y| is the
same as that in terms of r. One aspect is the decay
rate, as discussed. Another aspect is how large
the amplitudes of the waves are. We will later see
that when Fn > ≈0.6, the divergent waves will be
dominant. The amplitude of the transverse waves
is strongly dependent on the Froude number for
Fn < ≈0.5. This has to do with phasing between
transverse waves generated in the bow and at the
stern. Because the phasing has to do with the wave-
length of the transverse waves, we can understand
from eq. (4.12) that this is related to the Froude

number. We explain this in more detail later. The
conclusion of this discussion is that the divergent
waves at the Kelvin angle are of primary concern
from a wash point of view. It matters also from the
seashore point of view that the wavelengths due to
high-speed vessels are long. This can be illustrated
by noting that the wavelength λc of the divergent
waves at α = αc is according to eq. (4.11), given by

λc

L
= 4π

3
Fn2. (4.23)

We discussed in sections 3.2.4 and 3.2.5 how waves
are modified as they come close to the seashore.

We can find the wave crest positions inside
the Kelvin angle as shown in Figure 4.3 by using
eq. (4.22). If A(θi ) are real, for the transverse
waves they are given by

νr
cos(θ1 − α)

cos2 θ1
+ π

4
= 2nπ, n = 0, 1, . . .

(4.24)

Here θ1 is given by eq. (4.21). Eq. (4.24) can be
written as

r =
(
−π

4
+ 2nπ

) cos2 θ1

ν cos(θ1 − α)
, 0 ≤ α ≤ αc

(4.25)

in polar coordinates (r, α). Similarly for the diver-
gent waves, that is,

r =
(π

4
+ 2nπ

) cos2 θ2

ν cos(θ2 − α)
, 0 ≤ α ≤ αc

(4.26)

where θ2, is given by eq. (4.21).

4.2.3 Transverse waves along the ship’s track

We will now discuss how ship parameters influ-
ence the transverse waves along the ship’s track.
However, our theoretical model of how the ship
generates waves is very simplified at this stage. The
problem is analyzed from the ship reference sys-
tem. This means that the ship speed appears as an
incident flow with velocity U. We assume that the
ship has a long parallel midpart with submerged
cross-sectional area S. It is only at a small part in
the bow and the stern where the ship cross section
changes. Because a high-speed semi-displacement
vessel has a transom stern and the flow separates
from the transom stern with a resulting hollow in
the water behind the ship, we may in this case con-
sider the body to consist of the ship and the hollow.
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Sink SourceU

Figure 4.10. The ship moves the water. The ship has
a long parallel midpart with submerged cross-sectional
area S.

The effect of the ship will be that it pushes the
water out in the bow, that is, it acts like a source,
whereas the ship attracts the water in the stern,
that is, it acts locally like a sink. This is illus-
trated from the Earth-fixed reference system in
Figure 4.10. A source or a sink that properly satis-
fies the boundary conditions for this problem is a
complicated function. The linearized free-surface
condition follows from eq. (3.10) by setting p0 and
∂/∂t equal to zero. This means

U2 ∂2G
∂x2

+ g
∂G
∂z

= 0 on z = 0, (4.27)

where G is the velocity potential due to the source
(sink). This is also called a Green function. Fur-
ther, we must require that there is no flow at large
water depths. A radiation condition ensuring that
the ship waves are downstream of the ship is also
needed. Newman (1987) has derived the following
velocity potential for the source (sink):

G(x, y, z; ξ, η, ζ )

= − Q
4π

Re


 1

R
− 1

R0
+ 2

π
iν

π/2∫
−π/2

cos θ ev E1(v)dθ

+ 4iνH(x − ξ)

π/2∫
−π/2

sec2 θ eudθ


 , (4.28)

where

v = ν[(z + ζ ) cos2 θ + |y − η| cos θ sin θ

+ i |x − ξ | cos θ ]

u = ν[(z + ζ ) sec2 θ + i |y − η| sec2 θ sin θ

− i |x − ξ | sec θ ]

ν = g/U2 (4.29)

R =
√

(x − ξ)2 + (y − η)2 + (z − ζ )2

R0 =
√

(x − ξ)2 + (y − η)2 + (z + ζ )2

This is based on the coordinate system (x, y, z)
defined in Figure 4.6. (ξ, η, ζ ) is the source point
and (x, y, z) is a field point at which we want
to evaluate the influence of the source (sink).
E1 is the complex exponential integral as defined
in Abramowitz and Stegun (1964), and H is the
Heaviside step function

H (x) =
[

1 for x ≥ 0
0 for x < 0

. (4.30)

Further, Q is the source (sink) strength. To be pre-
cise, Q > 0 means a source and Q < 0 means a
sink. The expression −Q/(4π R) is a source (sink)
in infinite fluid. The last integral term in eq. (4.28)
represents the downstream waves, that is,

G ≈ −i
ν

π
Q

π/2∫
−π/2

sec2 θ eu dθ (4.31)

for large positive values of (x − ξ). It can be
shown that the source strength in the bow can
be expressed as US, whereas the sink strength in
the stern is –US. Here S is the submerged midship
cross-sectional area. Later we show that this is cor-
rect. The source and sink coordinates are, respec-
tively, ξ = −0.5L, η = 0, ζ = 0 and ξ = 0.5L, η =
0, ζ = 0. Here L is the ship length and the origin of
the coordinate system is midships, and the x-axis
points aft.

Let us call the velocity potential due to the
source-sink pair ϕ. The resulting free-surface ele-
vation follows from the dynamic free-surface con-
dition, that is,

ζ (x, y) = −U
g

∂ϕ(x, y, 0)
∂x

(4.32)

(see eq. (3.7) with p0 and ∂/∂t equal to zero). Let us
start with the contribution ζBS from the bow source
to the downstream wave elevation. We then use
eq. (4.31) in approximating the velocity potential.
This gives

ζBS = U2 S
gπ

ν2

π/2∫
−π/2

sec3 θei ν

cos2 θ
·[|y| sin θ−|x+ L

2 | cos θ] dθ.

(4.33)

By noting that it is the real part of eq. (4.33) that
has physical meaning and introducing θ ′ = −θ , we
see that eq. (4.33) can be expressed in the form of
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eq. (4.15), that is,

ζBS =
π/2∫

−π/2

A(θ ′) cos
[

g
U2 cos2 θ ′

(4.34)
×

(∣∣∣∣x + L
2

∣∣∣∣ cos θ ′ + |y| sin θ ′
)]

dθ ′,

where

A(θ ′) = U2 S
gπ

ν2 sec3 θ ′. (4.35)

The asymptotic analysis that leads to eq. (4.22) can
then be used. A similar analysis can be followed
for the contribution from the stern sink. We focus
on the transverse waves along the ship’s track.
This gives

ζ (x, 0)

= S

√
2ν

π

[√
1

x + L/2
cos

(
ν (x + L/2) + π

4

)
(4.36)

−
√

1
x − L/2

cos
(
ν (x − L/2) + π

4

)]
.

We should note that eq. (4.36) is similar to the
θ1-part of eq. (4.22) with θ1 = 0. Let us then make
eq. (4.36) nondimensional, that is,

ζ (x, 0)L
S

= 1
Fn

√
2
π

[√
1

x/L+ 0.5

× cos
(

1
Fn2

( x
L

+ 0.5
)

+ π

4

)
(4.37)

−
√

1
x/L− 0.5

cos
(

1
Fn2

( x
L

− 0.5
)

+ π

4

)]

for large positive x. What large x means is difficult
to quantify (see below).

Eq. (4.37) shows that the wave elevation is
proportional to the submerged midships cross-
sectional area S. Results are presented in
Figure 4.11 as a function of x/L larger than 1
for Froude numbers 0.4, 0.5, and 0.8. The total
wave elevation and the contributions from the
bow source and the stern sink are shown. Look-
ing only at the term outside the brackets in eq.
(4.37), one may be tempted to believe that maxi-
mum values should decay like 1/Fn for increasing
Fn. That this is not so has to do with the Froude
number dependence of the term inside the brack-
ets. For instance, looking at the maximum value
for Fn = 0.4 shows it is relatively small compared

2
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Total

Fn = 0.8
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Figure 4.11. Wave elevation ζ (x, 0) along the track of a
ship. The ship is represented by a source in the bow and
a sink in the stern. The total wave elevation, together
with the contributions from the bow source and the stern
sink, is shown. L = ship length. S = midships submerged
cross-sectional area. Effect of Froude number Fn.

with the results for Fn = 0.5. This has to do with
cancellation effects of the wave systems from the
bow source and the stern sink. This is also evi-
dent from Figure 4.11, which shows the contri-
butions from the bow source and the stern sink
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separately. One can also explain it by the wave-
length, which is λ/L = 2π Fn2 ≈ 1 for Fn = 0.4.
Because the bow source and the stern sink are
one wavelength apart and the effect of the source
is 180◦ out of phase with the effect of the sink, we
get a cancellation effect. However, the cancella-
tion effect is not complete. This is because of the
terms (x + L/2)−1/2 and (x − L/2)−1/2 associated
with the source and the sink, respectively. It also
means that the larger the x/L value, the stronger
the cancellation effect. We note from Figure 4.11
that the contributions from the bow source and
the stern sink are amplifying each other and caus-
ing a relatively large transverse wave amplitude
when Fn = 0.5. A stronger amplification from a
phasing point of view should occur when there
is half a wavelength between the position of the
source and the sink. This means λ/L = 2π Fn2 = 2
or Fn = 0.56. There are also other Froude num-
bers for which either strong amplification or strong
cancellation occurs because of the transverse wave
systems from the bow source and stern sink.
However, these amplifications or cancellations are
for Froude numbers lower than those we have
discussed.

Because the wave resistance arises directly from
the far-field waves that the vessel generates, the
amplification and cancellation tendency of the
transverse waves causes humps (maxima) and hol-
lows (minima) in the wave resistance as a function
of Froude number. The magnitude of the humps
and hollows depends on the relative contributions
from transverse waves to the wave resistance. For
instance, later we show that for specific cases,
divergent waves cause nearly all the wave resis-
tance when Fn > ≈0.8.

4.2.4 Example

We consider a catamaran with length L = 70 m and
Fn = 0.5, which means U = 13.1 ms−1. We use the
results in Figure 4.11 as a basis by assuming no
hydrodynamic interaction between the two cata-
maran hulls. This means S is two times the maxi-
mum cross-sectional area of one hull. We choose S
equal to 25 m2 and look at the results in Figure 4.11.
However, there is a difficulty because we do not
know for how small an x/L the results are applica-
ble. However, we should not forget the simplifica-
tions made in using a source-sink pair and that our
objective is to make an estimate only. We use the

largest value in Figure 4.11 to estimate the ampli-
tude A0 of the waves. This means A0 L/S = 3.3 or
A0 = 1.2 m.

4.3 Wave resistance in deep water

Newman (1977) shows by energy arguments how
to relate the complex wave amplitude function
A(θ) in eq. (4.17) to the wave resistanceRW, that
is,

RW = 1
2
πρU2

π/2∫
−π/2

∣∣A(θ)
∣∣2

cos3 θ dθ. (4.38)

The contribution to the integral from θ close to
±π/2 corresponds to contributions for divergent
waves with very small wavelength. This has negli-
gible influence on the wave resistance.

There exist different computational methods to
find the wave field around a ship and the wave
resistance. A simple and still useful method for
monohulls is the linear thin ship theory by Michell
(1898). It represents the flow due to the ship as a
source (sink) distribution along the center plane
of the vessel, which requires a thin hull form. The
local source strength is proportional to the longi-
tudinal slope ∂η (x, z) /∂x of the mean submerged
hull surface. Here

y = ±η(x, z) (4.39)

defines the hull surface.
Let us try to give some more detail about this.

We start out with writing the total velocity poten-
tial as in eq. (3.4), where ϕ is the velocity potential
caused by the ship. We must require that there be
no flow through the hull surface. This means that

∂

∂n
(Ux + ϕ) = 0

on the hull surfacey = ±η(x, z).

Here ∂/∂n is the derivative along the normal vec-
tor n = (n1, n2, n3) to the hull surface. We choose
the normal vector to be positive into the fluid
domain. We can also write

∂

∂n
= n1

∂

∂x
+ n2

∂

∂y
+ n3

∂

∂z
.

This means the body boundary condition becomes

n1
∂ϕ

∂x
+ n2

∂ϕ

∂y
+ n3

∂ϕ

∂z
= −Un1

on the hull surface.
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y

x

Centre plane of
the ship

Source point

a
Figure 4.12. Single source in infinite fluid
with source point on the centerplane of the
ship. The figure shows the velocity vector
due to the source on the surface of a sphere
with radius a and center in the source point.

We now make assumptions about a slender hull.
This means n1 � n2 and n1 � n3. Then we make
the additional assumption of a thin ship. Then
n3 � n2 and we can approximate n2 = ±1 for
respectively positive and negative y-values. We
then Taylor series expand ∂ϕ/∂y about the cen-
ter plane cp of the hull. The dominant term is then

∂ϕ

∂y
= ±U

∂η (x, z)
∂x

for, respectively, y = 0+ (4.40)

and y = 0− on the cp,

where we have expressed n1 as −∂η/∂x by geo-
metric considerations.

Eq. (4.40) says the flow caused by the ship
appears like a flow coming out from the ship with
horizontal velocity ±U · ∂η (x, z) /∂x on the two
sides of the hull. Water appears to either be pushed
out or attracted, depending on the sign of ∂η/∂x.
Because ∂η/∂x is positive in the bow region, water
is pushed out there. The opposite happens in the
stern region. Figure 4.10 gives a simplified view
of the flow caused by the ship. However, in our
representation of the flow, this happens continu-
ally along the ship. So we can represent the flow
caused by a ship as a source (sink) distribution
along the ship’s center plane. We will now show
that the source strength follows by eq. (4.40).

A single source is expressed as in eq. (4.28). We
concentrate first on the 1/R part, that is, the part
corresponding to a source in infinite fluid. We have
in Figure 4.12 sketched the velocity field due to the
source when the source point is at the center plane
of the hull. We find the velocity vector at the sur-
face of a sphere with radius a and center in the
source point. The velocity is radial to this surface.
The magnitude of the velocity is constant on the
spherical surface, and the flow appears as if it is
coming from the center of the source. We note that
the velocity along the center plane is tangential to

the hull surface. So the source does not induce
any velocity normal to the center plane outside
the source point. However, at the source point, we
must be careful. Taking the single source expres-
sion gives infinite velocity at the source point. We
try to circumvent this problem by first calculat-
ing the mass flux through the spherical surface of
radius a. The normal velocity of the infinite fluid
source part of eq. (4.28) on the spherical surface is

Q
4π

· 1
a2

,

so the mass flux is Q. Because this is indepen-
dent of a, we can make the radius very small.
Before using this feature, we introduce a con-
tinuous source distribution with source density
σ (x, z), which means σ (x, z) dx dz replaces Q.
We concentrate on a given point (x,z) on the cen-
ter plane. It is only the source with a center in this
point that can introduce a normal velocity at that
point.

Then we look at eq. (4.40), which says that a
flow appears through an elemental area dxdz with
mass flux 2U∂η/∂x · dx dz at a point (x,z) on the
center plane. From the arguments above, this must
be equal to σ (x, z) dx dz. This means

σ (x, z) = 2U
∂η

∂x
. (4.41)

Have we forgotten something now? Let us express
eq. (4.28) as G = −(Q/4π)Re(1/R + f ). We have
argued as if the additional part f in eq. (4.28) for
the source expression did not exist. However, this
function has no singularities in the fluid domain
such as those of 1/R. Further due to the nature of
a source, the flow induced by f must be symmet-
ric about the x-z plane. Because f has no singu-
larities in the fluid domain, the symmetry proper-
ties imply that ∂ f/∂y is zero in the center plane.
This means that eq. (4.41) is true and we have
shown how to represent the flow due to the ship
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as a source distribution along the center plane of
the hull. Before we proceed with this analysis, we
should use eq. (4.41) to check that the source and
sink strengths that we used previously in the sin-
gle bow source and stern sink model are correct
(see text after eq. (4.31) and Figure 4.10). Let us
take the single bow source first. According to eq.
(4.41), the source strength should be

Q = 2U

xmax∫
−L/2

dx

0∫
−D

∂η

∂x
dz.

Here xmax is the x-coordinate of maximum cross-
sectional area S. So we see that the integration
gives Q = US as previously claimed. A similar
result holds for the stern sink.

Newman (1977) shows that the wave ampli-
tude function A(θ) in eq. (4.38) can, according to
Michell’s thin ship theory, be expressed as

A(θ) = 2
π

ν sec3 θ

(4.42)
×

∫ ∫
cp

∂η

∂x
exp[ν sec2 θ(z + i x cos θ)] dzdx.

Here ν = g/U2, sec θ = 1/ cos θ , and cp means the
center plane of the hull. Because a high-speed ves-
sel has a transom stern, Michell’s expression needs
some modifications. In this case, we can consider
an elongated body consisting of the hull and the
hollow in the water behind the transom stern. How
to do this was studied by Doctors and Day (1997).
We will leave the hollow out in the following exam-
ples on applications of Michell’s theory.

4.3.1 Example: Wigley’s wedge-shaped body

Wigley’s wedge-shaped body has a constant draft
D along the ship. Further, η which expresses the
hull surface, is only a function of x. This means the
ship has a flat bottom. By integrating eq. (4.42) in
the z-direction, we get

A(θ)
(4.43)

= 2
π

sec θ

L/2∫
−L/2

ηx (x, 0) eiν sec θx
[
1 − e−ν sec2 θ D

]
dx.

The waterplane of the wedge-shaped body is
shown in Figure 4.13. It is seen that the hull is
symmetric about the y-z plane. It has a parallel

B x

y

x = − L
2

x = −
LP
2 x =

LP
2

x =L
2

Figure 4.13. Wedge-shaped body with draft D.

midbody of length LP and

ηx = B
L− LP

≡ C from x = − L
2

to − LP

2
(4.44)

ηx = −C from x = LP

2
to

L
2

.

Then eq. (4.43) becomes

A(θ) = 4C
π iν

(
1 − e−ν sec2 θ D

)
[cos (0.5ν sec θ · LP)

(4.45)
− cos (0.5ν sec θ · L)] .

We study θ = 0 and write LP = L− 2LB, where
LB is the length of either the bow or stern part.
This gives

A(0) = 4C
π iν

(1 − e−νD)[cos(0.5νL) cos(νLB)

+ sin(0.5νL) sin(νLB) − cos(0.5νL)].

If LB is small, that is, has a long parallel mid-
body, then A(0) is approximately proportional
to sin (0.5νL) , which is zero for 0.5νL = nπ, n =
1, 2, . . . This means for Fn = (0.5/nπ)1/2 or for
Fn = 0.4, 0.28, 0.23. . . . This is consistent with the
results in Figure 4.11 showing small transverse
wave amplitude along the ship’s track. The max-
imum absolute values of sin(0.5νL) correspond
to 0.5νL = π/2 + nπ. Here n = 0 gives Fn =
(1/π)1/2 = 0.56, where Figure 4.11 also indicated
large wave amplitude. Further, n = 1 gives Fn =
0.33. Because there is a direct connection between
A(θ) and RW through eq. (4.38) and the transverse
waves are important contributors to Fn < ≈0.7,

local minimum value of A(0) gives hollows in
the wave resistance as a function of Froude num-
ber. Further, local maximum values of A(0) give
humps in the wave resistance curve.

4.3.2 Example: Wigley ship model

The equation for the hull surface for y ≥ 0 for the
Wigley’s (1942) ship-shaped model is

y
L

= B
2L

(
1 −

( z
D

)2
) (

1 −
( x

0.5L

)2
)

. (4.46)
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Here B is the beam, D is the draft and L is
the ship length. We use the same main particu-
lars as Lunde (1951). This means B/L = 0.75/8
and D/L = 1/16. It is possible to analytically inte-
grate the expression for A(θ). However, we do not
show the details here. When A(θ) is obtained, we
have to numerically integrate it into eq. (4.38) to
find the wave resistanceRW. This can, for instance,
easily be done by using the mathematical soft-
ware Maple. The integrand is singular at θ = ±π/2
and rapidly oscillating in the vicinity of θ = ±π/2.
However, this region has a negligible contribution
to the wave resistance. Because this contribution
is associated with divergent waves of very small
wavelengths, we should also be able to under-
stand this negligible influence from physical argu-
ments. If it had some influence, we certainly would
have to deal with the effect of surface tension,
which matters for ripples. Mathematically, we can
avoid the singular behavior by performing the
integration numerically from−π/2 + δ toπ/2 − δ,

where δ is a small positive number. The integra-
tion must be repeated to see that the results do not
depend on δ.

Lunde (1951) presented interesting numerical
studies with this hull form. He divided the contri-
bution to the wave resistance into contributions
from the transverse waves and divergent waves.
The transverse waves correspond to |θ | between
0 and sin−1(1/

√
3) and the divergent waves corre-

spond to |θ | between sin−1(1/
√

3) and π/2, as we
discussed in the text after eq. (4.22). Lunde (1951)
used the following definition of nondimensional
wave resistance:

c©W = 125
π

RW

0.5ρU2∇2/3
, (4.47)

where ∇ is the displacement, which is equal to
0.002604L3 in the present case. Further, the nota-
tions c©WD and c©WT were introduced to iden-
tify the contribution to c©W from respectively
divergent and transverse waves. c©W, c©WD, and
c©WT were presented as a function of the Froude
number Fn = U/

√
Lg between 0.15 and 0.6. We

present similar results for Fn between 0.3 and 3.0
(Figure 4.14). It should be remembered that
Fn > ≈1.0 implies a planing craft. Because trim,
sinkage, and nonlinear effects then are impor-
tant and the hull shape would certainly not look
like common semi-displacement and planing ves-
sels, the practical relevance of doing calculations

1.4
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1

0.8

0.6

0.4

0.2

0

−0.2
0 0.5 1 1.5 2 2.5 3

Total W

U/(Lg)0.5

WD
Divergent
waves only

WT
Transverse
waves only

Figure 4.14. Wave resistance coefficients for the Wigley
model studied by Lunde (1951). B/L = 0.75/8, D/L =
1/16, ∇/L3 = 0.002604. c©W = 125

π
RW

0.5ρU2∇2/3 . Similar
for c©WD and c©WT .

for such high Froude numbers is questionable.
However, the results show some general features
that do have practical relevance. The nondimen-
sional wave resistance does not become negligible
before U/

√
Lg = 3.0, contrary to common the-

oretical analysis of planing vessels that neglects
gravity wave effects. One may also be misled by
the nondimensionalization in terms of U2. For
instance, using the weight to nondimensionalize
the resistance would illustrate better the relative
contribution of wave resistance at high Froude
numbers. Further, we note that the divergent
waves give the main contribution to wave resis-
tance for Fn > ≈0.8. This has relevance when we
later discuss what is referred to as 2.5D (2D+t)
theory.

In the previous example, in which a ship was
represented by a source in the bow and a sink
in the stern, we emphasized that the superpo-
sition of the transverse waves originating from
bow and stern caused amplification and cancella-
tion of the resulting transverse waves behind the
ship. This causes, respectively, maxima and minima
in the contribution from transverse waves to the
wave resistance. These maxima are for the Froude
number range in Figure 4.14 and, for this case,
occurring at Fn ≈ 0.3 and Fn ≈ 0.5. The mini-
mum value occurs at Fn ≈ 0.35. Because in this
case we represent the ship by a continuous source
distribution and the effect is dependent on the hull
form, the maxima and minima will not be exactly
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Figure 4.15. Wave resistance RW of Tuck’s parabolic
strut. D/L = 0.05. B = beam, D = draft, L = length,
U = forward speed.

the same for each case. This is also evident for the
next example with a parabolic strut.

4.3.3 Example: Tuck’s parabolic strut

The equation for the vertical hull surface for y ≥ 0
is

y
L

= B
2L

(
1 −

( x
0.5L

)2
)

. (4.48)

The draft dependence of A(θ) is given by the
term (1 − exp(−ν sec2 θ D)) in eq. (4.43). This
means the draft Froude number FnD = U/

√
gD

matters. Because transverse waves correspond to
smaller θ than divergent waves, the dependence
of the term exp(−ν sec2 θ D) = exp(−sec2 θ/Fn2

D)
on FnD matters for larger FnD for the trans-
verse waves than for the divergent waves. There
is a direct connection between A(θ) and RW (see
eq. (4.38)). This discussion is therefore relevant
for the influence of FnD on the contribution from
transverse and divergent waves to wave resistance.
Because A(θ) is proportional to B for a parabolic
strut, the wave resistance will be proportional to
B2. This means it is natural to use

RW

0.5ρU2 B2
(4.49)

as nondimensional wave resistance. Thus, the
nondimensional wave resistance will not depend
on B but is a function of U/

√
Lg and U/

√
Dg in

this case. When studying the Wigley ship model,

we used c©W given by eq. (4.47) to present nondi-
mensional wave resistance. Using eq. (4.49) for
that case also is believed to be better. This means
we would have less significant B/L dependence.
Another way to nondimensionalize RW is to use

CW = RW

0.5ρU2 S
, (4.50)

where S is the wetted surface. This is natural to do
for the viscous resistance RV . The reason is that RV

for a slender ship is dominated by frictional forces
that are proportional to S.

Tuck (1988) presented nondimensional wave
resistance for a parabolic strut with D/L = 0.05.
Both Michell’s thin ship theory and a 2.5D (see
section 4.3.4) thin ship theory were used. We recal-
culated the results by Michell’s theory and sepa-
rated the contributions from the transverse and
divergent waves. The results are presented in Fig-
ure 4.15. Similar to the Wigley ship model pre-
sented in Figure 4.14, the transverse waves have
a negligible influence for Froude numbers higher
than approximately 0.8. We note that the 2.5D the-
ory agrees well with the divergent part of Michell’s
theory for Fn > ≈0.6. Note also that the 2.5D the-
ory will clearly overpredict the wave resistance for
very small Fn. A 2.5D theory is in practice used
for Fn > 0.4. More details about the 2.5D theory
are given in the next section.

Figure 4.16 shows nondimensional wave resis-
tance for parabolic struts with D/L between 0.1

1.8
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1

0.8

0.6

0.4

0.2
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0 0.5 1 1.5 2 2.5 3

D/L = 0.1
D/L = 0.2
D/L = 0.3
D/L = 1.0
D/L = 2.0
D/L = 3.0

U/(Lg)0.5

RW/(0.5ρ U2B2)

Figure 4.16. Wave resistance RW for Tuck’s parabolic
strut calculated by Michell’s thin ship theory. B = beam,
D = draft, L = length, U = forward speed.
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Figure 4.17. Wave resistance RW for Tuck’s parabolic
strut calculated by Michell’s thin ship theory. B = beam,
D = draft, L = length, Fn = Froude number. The symbols
represent calculated points.

and 3.0. The large values of D/Lmay, for instance,
have relevance for the struts of a hydrofoil vessel.
The Froude number range is from 0.3 to 3.0. The
maximum nondimensional wave resistance occurs
for Fn ≈ 0.5. The nondimensional wave resistance
for a given Fn increases with increasing D/L up
to a value (D/L)min, beyond which there is a small
dependence on D/L. This is also illustrated in Fig-
ure 4.17, in which nondimensional wave resistance
is presented as a function of D/L for different Fn
values. The general tendency is that the smaller
Fn, the smaller (D/L)min. This can be explained by
the fact that the wavelength for a given θ decreases
with decreasing Fn and that the wave effect is neg-
ligible for a depth larger than half a wavelength.
Figure 4.16 shows a small difference in the nondi-
mensional wave resistance for D/L in the range
from 2 to 3. It means that the results for D/L =
3 are close to the results for a parabolic strut with
infinite draft.

4.3.4 2.5D (2D+t) theory

A 2.5D theory implies that the flow at a cross
section of the ship is influenced only by the flow
upstream of this section. Further, there is assumed
to be no influence of the ship upstream of the
bow. This means a numerical solution for the flow
around the hull starts at the bow. The free-surface

conditions are used to step the solutions of the
free-surface elevation ζ and the associated veloc-
ity potential on the free surface in the longitudi-
nal downstream direction of the hull. The veloc-
ity potential for each cross section is found by a
two-dimensional analysis, that is, that the velocity
potential due to the ship satisfies the 2D Laplace
equation

∂2ϕ

∂y2
+ ∂2ϕ

∂z2
= 0. (4.51)

This implies that changes of the flow in the x-
direction are assumed small relative to changes
in the cross-sectional plane. If the Froude num-
ber is small, the transverse wavelengths are small
relative to the ship’s length. This means longitudi-
nal flow variations cannot be neglected relative to
cross-sectional plane variations. The consequence
is that we must assume high Froude numbers in the
2.5D theory. Ohkusu and Faltinsen (1990) showed
by matched asymptotic expansions that a 2.5D the-
ory only accounts for divergent waves. This is an
implicit consequence of the results in Figure 4.15.
The reason we call it a 2.5D theory is that the
2D Laplace equation is combined with 3D free-
surface conditions.

Let us exemplify the procedure when the free-
surface conditions can be linearized as in eqs. (3.7)
and (3.9).We rewrite the dynamic and kinematic
free-surface conditions as

∂ϕ

∂x
= −g

ζ

U
on z = 0 (4.52a)

∂ζ

∂x
= 1

U
∂ϕ

∂z
on z = 0. (4.52b)

We start the procedure at the bow by setting
ϕ = 0 and ζ = 0 on the free surface. This means
the upstream influence on the ship is neglected.
Eqs. (4.52) express how ϕ and ζ change in the
longitudinal direction. Let us consider an arbi-
trary transverse cross section. ϕ and ζ on z = 0
is then known from the upstream influence by
using eq. (4.52). The problem in the cross-sectional
plane is then solved by a numerical method such
as the boundary element method (BEM). The
body boundary condition is satisfied on the exact
body boundary for z ≤ 0. This is different from
the thin-ship theory by Michell, in which body
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Figure 4.18. Example of hollow in the water aft of the transom stern. The length Froude number is
0.47. The transom draft Froude number is 2.85. The length of the hollow increases with Froude number.

boundary conditions are transferred to the cen-
ter plane. When the problem has been solved in
the cross-sectional plane, we can evaluate ∂ϕ/∂z
on z = 0. Then we know ∂ζ/∂x from eq. (4.52b)
and can, together with eq. (4.52a), continue to the
next downstream cross section.

When the calculations come to the transom
stern, the solution does not know that the pres-
sure on the hull should be atmospheric. The pro-
cedure predicts a pressure different from the
atmospheric pressure at the stern. This causes, in
reality, an error in a small distance upstream of
the transom stern. The flow for a high-speed ves-
sel will, in reality, separate from the transom stern.
This implies that the transom stern is dry and
there is a hollow in the water behind the transom
stern (Figure 4.18). This flow separation occurs
for Froude numbers higher than approximately
0.4. However, Doctors (2003) showed by a sys-
tematic test series that the Froude number with
the draft DT at the transom as a length parameter,
that is, FnT = U/ (DT g)0.5

, was a more important
parameter. A representative lower value of FnT

for a dry transom was approximately 2.5. Vanden-
Broeck (1980) analyzed an idealized 2D problem
that is relevant for the transom stern flow. The
solution representing a dry transom gives a min-
imum FnT = 2.26 below which the downstream
waves would exceed the theoretical breaking wave
steepness limit (H/λ = 0.141) for Stokes waves
(Schwartz 1974). Here H and λ are the wave height
and wavelength, respectively.

Ogilvie (1972) derived a very simple 2.5D solu-
tion for the wave elevation ζ in the bow region
along the surface of a symmetrical wedge with
draft D and wedge half angle α. The body-
boundary condition was transferred to the center-
plane, and the linearized free-surface conditions

given by eqs. (4.52) were used. The result was

Z(x) =
∞∫

0

dµ

(
1 − e−µ

µ

) (
sin(

√
µX)√
µ

)
, (4.53)

where

Z(x) = π

2αFnD

ζ

D
(4.54)

and

X = x
D · FnD

. (4.55)

Here FnD means the draft Froude number
U/

√
gDand x is a longitudinal coordinate with x =

0 corresponding to the edge of the bow. Eq. (4.53)
is presented in Figure 4.19. The maximum
value

ζmax = 1.59D
2α

π
FnD (4.56)

of the wave elevation occurs when x = 0.91D ·
FnD.Bow-wave elevation predictions by 2.5D the-
ory for other hull shapes have been studied by
Faltinsen (1983) and Fontaine et al. (2000).

We can illustrate the calculation procedure in
a different way by using an Earth-fixed cross-
sectional plane and letting the ship pass through
this plane (Figure 4.20). The flow in this Earth-
fixed plane is then time dependent. If the prob-
lem is linearized, the dynamic and kinematic
free-surface conditions in the Earth-fixed cross-
sectional plane are

∂ϕ

∂t
+ gζ = 0 on z = 0. (4.57a)

∂ζ

∂t
= ∂ϕ

∂z
on z = 0. (4.57b)

We see that eqs. (4.52) and (4.57) are the same if we
make the coordinate transformation x = Ut + x0

between the Earth-fixed and ship-fixed coordinate
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Figure 4.19. Bow-wave elevation ζ along the surface of
a symmetrical wedge with draft D and wedge half-angle
α as a function of the longitudinal coordinate x and draft
Froude number FnD = U/

√
gD. x = 0 corresponds to

the edge of the bow. The calculations are based on the
linear 2.5D theory by Ogilvie (1972).

systems. Because we can formulate the problem
as a 2D time-dependent problem in an Earth-
fixed coordinate system, the 2.5D method is also
referred to as a 2D+t method.

It is not necessary to assume linear flow. By
using the nonlinear free-surface conditions, we
can simulate breaking waves. However, a BEM
breaks down when a plunging breaker impacts
on the underlying fluid (see Figure 3.1). The
SPH (smoothed particle hydrodynamics) method
(Tulin and Landrini 2000) is then a more robust
method. This is the method used in the calcula-
tions presented in Figure 4.20. The SPH method
follows fluid particles. When a fluid particle in a
plunging wave, as presented here, hits the under-
lying free surface, it is reflected. This causes a new
splash flow, as illustrated both in Figures 4.20 and
3.1. This picture is, for instance, different from a
waterfall, in which falling fluid particles penetrate
the underlying free surface and create white water
with entrained air. This can also be predicted by
the SPH. The plunging wave impact simulations by
the SPH create large gradients in the velocity tan-
gential to the underlying free surface at the impact
position. This is the same as saying that vorticity
is generated.

Lugni et al. (2004) presented a comprehensive
experimental and numerical study of the steady

Figure 4.20. Numerical solution of the steady wave field
by a 2D+t method. A 2D time-dependent problem is
solved in an Earth-fixed cross-sectional plane. The ship
passes through this cross-sectional plane. The simula-
tions are illustrated in two different ways. In the last set
of figures, we see clearly how the ship’s cross section
changes with time.

wave elevation around a semi-displacement
monohull and catamaran. The ship models are
described in Figure 4.21. Because one objective
was to study the interaction between the demihulls
of a catamaran, the submerged parts of the mono-
hull and a demihull were identical. The chosen
monohull has therefore a much smaller beam-to-
draft ratio than typical semi-displacement mono-
hulls. Both a nonlinear 2D+t method and a linear
3D Rankine panel method (RPM) were used. A
panel method is the same as a boundary element
method (BEM). Sometimes it is also referred to
as a boundary integral method (BIM). In marine
hydrodynamics, flow singularities such as sources,
dipoles, and vortices are distributed over a bound-
ary of the fluid to represent a potential flow satis-
fying Laplace equation in the fluid. The surface on
which the singularities are distributed may con-
sist of the total boundary enclosing the fluid or
only part of it. The surface always includes the
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�L       =   6.25 
L       =   25    m 
LCG  =   1.7   m 
KG    =   3      m 
D       =   1.75 m 
B       =   2      m 
2p     =   5      m 
∇       =   40.48 m3

Figure 4.21. Body plan of the demihull and main par-
ticulars. Dimensions given in full-scale values. L is the
ratio between the full-scale and model-scale lengths.
LCG is relative to station 10. Station 20 is at the tran-
som stern. D = draft, B = beam. 2p indicates the dis-
tance between the centerlines of the catamaran demi-
hulls (Lugni et al. 2004).

wetted, or mean wetted surface, of the hull. How
large a surface is used in the singularity distri-
bution depends on what boundary conditions the
flow singularities satisfy.

A BEM used to solve the 2D and 3D lift-
ing problem of hydrofoils is described in detail
in section 6.4. Lugni et al. (2004) apply a direct
BEM formulation to solve the 2D fully nonlin-
ear free-surface flow for each time step in their
2D+t method. The plunging breakers are numer-
ically cut off to avoid impact with the underly-
ing free surface. The 3D RPM used by Lugni
et al. (2004) is similar to the numerical method
described by Iwashita et al. (2000) but is based
on the mathematical model proposed by Nakos
(1990). The resulting solver does not account for
flow separation from the transom stern. A Rank-
ine panel method means that Rankine sources,
that is, sources in infinite fluid, and Rankine
dipoles in the surface normal direction are dis-
tributed over the mean wetted hull surface and
a truncated part of the mean free surface around
the ship model. Satisfaction of the body bound-
ary condition, free-surface conditions, and the
radiation condition requiring only far-field waves
downstream of the vessel determine the source
and dipole densities. When the 2D+t method was
compared with the model tests, the experimen-

Figure 4.22. Transom stern wave field at Fn = 0.5 for
the monohull described in Figure 4.21. Experimental pic-
ture (top) and contour lines of the steady wave pattern
predicted by 2D+t theory (bottom). The numbers are
ζ/L · 102, where ζ is the wave elevation and L is the ship
length (Lugni et al. 2004).

tally determined sinkage and trim were used in
the numerical calculations. This has an important
effect when the Froude number (Fn) is larger than
about 0.35. Froude numbers 0.3, 0.4, 0.5, 0.6, 0.7,
and 0.8 were studied. The transom stern was dry
for Fn = 0.5 and higher, which is consistent with
Doctors (2003).

The 3D RPM simulations were able to capture
the wave pattern along the hull for Fn smaller than
0.6. However, the stern and wake flows were not
satisfactory for Fn ≥ 0.5. This is because of the
assumed wet transom and the linearization of the
free-surface conditions. When Fn ≥ 0.5, the non-
linearities are particularly important.

The nonlinear 2D+t results were not satisfac-
tory for the smaller Froude numbers, 0.3 and 0.4.
This is because of both the neglection of the trans-
verse waves and the fact that a 2D+t method
assumes a dry transom. When Fn ≥ 0.6, the 2D+t
method agrees quite well with the experiments.
Figure 4.22 shows a picture of the experimental
wave field behind the monohull as well as numeri-
cal results by the 2D+t method. The Froude num-
ber is 0.5. As we can see, the 2D+t formulation
is able to reproduce the flow scenario behind the
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Figure 4.23. Cut of the steady wave pattern along
the centerline of the transom stern for the monohull
described in Figure 4.21. x is the longitudinal distance
from the transom (Lugni et al. 2004).

transom: hull hollow, rooster tail, and incipient
breaking divergent system. Nevertheless, because
the plunging jet is cut to avoid the occurrence of
impact on the underlying water, the energy of the
wave system is focused close to the crest of the
divergent wave. Differently, in the physical phe-
nomenon, the breaking causes a spatial spread of
the wave energy. Figure 4.23 shows the longitu-
dinal wave cut along the centerline of the mono-
hull transom as obtained by the 2D+t theory. The
results show that the rooster tail height is not
affected by the Froude number whereas both its
horizontal width and the extension of the hollow
increase with the speed. The hollow extension can
be measured as the longitudinal distance between
the transom position and the location where the
free surface becomes zero. The wave elevation
downstream from a catamaran demihull transom
showed a quite different behavior. Except for the
smaller speeds, showing an increase of the hol-
low extension with the Froude number, the hollow
width is not particularly affected by the speed. The
rooster tail height is lower than the correspond-
ing value for the monohull. It shows a nonmono-
tonic but rather limited variation with the Froude
number. This demihull wave behavior behind
the transom is the result of the presence of the
other demihull. The arrangement of the two demi-
hulls causes three rooster tails downstream from
the catamaran, respectively, in correspondence to
the demihull transom sterns and the catamaran
centerline.

Let us now return to our linearized steady prob-
lem in a ship-fixed coordinate system. The wave
resistance is found by using a linearized Bernoulli
equation for the pressure p, that is,

p = −ρU
∂ϕ

∂x
− ρgz. (4.58)

Obviously we do not integrate the pressure over
the dry transom stern. We should realize that
the hydrostatic pressure −ρgz gives a longitudi-
nal force. This is because of the flow separation at
the transom stern. We use Figure 4.18 to demon-
strate this. If the transom stern is wet, we know
that the hydrostatic pressure integrated over the
hull surface below z = 0 will not give a longitudi-
nal force. We can either show this mathematically
or simply appeal to Archimedes’ principle:∫

SB

ρgzn1 dS +
∫
ST

ρgzn1 dS = 0. (4.59)

Here n1 is the x-component of the normal vec-
tor n = (n1, n2, n3) to the hull surface. The positive
normal direction is into the fluid domain. Further,
SB is the wetted body surface below z = 0 and ST

is the dry transom stern area below z = 0. By using
eq. (4.59), we can write the longitudinal force F HS

1

due to hydrostatic pressure as

F HS
1 =

∫
SB

ρgzn1 dS = −
∫
ST

ρgzdS. (4.60)

If the transom stern has a rectangular cross sec-
tion, which is not so in reality, we get that F HS

1 =
0.5ρgD2 B, where D and B are the draft and beam
at the transom stern.

Having obtained the pressure by eq. (4.58), we
can also calculate the vertical force and the trim
moment. This is needed in calculations of the
sinkage and trim, which are important quanti-
ties affecting wave resistance (and viscous resis-
tance) of high-speed vessels. Molland et al. (1996)
showed by a systematic experimental series of dif-
ferent high-speed monohulls and catamarans that
sinkage and trim started to be significantly differ-
ent from their zero forward speed values when
Fn > ≈ 0.35. This is an implicit consequence of
the increasing importance of the hydrodynamic
pressure term −ρU∂ϕ/∂x relative to the hydro-
static pressure term −ρgz with increasing Froude
number. Actually, the notation semi-displacement
vessel means that the two terms are, roughly speak-
ing, of equal importance for vertical steady loads.
Trim tabs and/or interceptors are used to change
the trim angle. This cannot be included in a rational
way in the 2.5D theoretical procedure. We must
add the effect of trim tabs and interceptors by
a separate analysis in the calculation of trim. A
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description of trim tabs and interceptors is given
in section 7.1.3.

In practice, a 2.5D theory is often used for
Fn > 0.4. The results by thin ship theory (see e.g.,
Figures 4.14 and 4.15) show that the 2.5D theory is
not really accurate before Fn becomes larger than
about 0.8.

This section has shown that nonlinearities and
breaking waves matter. The latter is a reason why
the wave pattern resistance obtained by measuring
the far-field wave elevation is different from the
measured residual resistance. However, we should
not conclude that the linear Michell thin ship the-
ory is not useful in predicting the wave-pattern
resistance. This type of analysis is very efficient
relative to a nonlinear method and important at
the predesign stage. Michell’s thin ship theory can
also be generalized and is useful for multihull ves-
sels. This will be discussed in the next section.

4.3.5 Multihull vessels

A common way to calculate the wave resistance
of a multihull vessel is to superimpose the waves
generated by each hull as if they were individual
hulls without the presence of other hulls (see e.g.,
Tuck and Lazauskas 1998 and Day et al. 2003).
Let us describe this procedure. A local coordinate
system (xj , yj , zj ) for hull number j is introduced
(Figure 4.24). Similar to eq. (4.17), we can express
the fact that hull number j creates a far-field wave
system:

ζ j (xj , yj ) = Re

π/2∫
−π/2

Aj (θ) exp
[
i

g
U2 cos2 θ

(4.61)
× (xj cos θ + yj sin θ)

]
dθ.

Then we introduce the global coordinate system
(x, y, z). The origin of the local coordinate sys-
tem has coordinates (xj0, yj0, zj0) in the global
coordinate system. This means eq. (4.61) can be
expressed as

ζ j (x, y) = Re

π/2∫
−π/2

Aj (θ) exp
[
−i

g
U2 cos2 θ

× (xj0 cos θ + yj0 sin θ)
]

(4.62)
× exp

[
i

g
U2 cos2 θ

(x cos θ

+ y sin θ)
]

dθ.

y

x

yj

xj

(xjo, yjo)

Figure 4.24. Global coordinate system (x, y, z) and
local coordinate system (xj , yj , zj ) for hull number j.

This means the wave amplitude function A(θ) due
to N hulls can be expressed as

A(θ) =
N∑

j=1

Aj (θ)

(4.63)

× exp
[
−i

g
U2 cos2 θ

(xj0 cos θ + yj0 sin θ)
]
.

Here Aj (θ) can be expressed by eq. (4.42) and use
of the local coordinate system. Having obtained
A(θ), we can use eq. (4.38) to calculate the wave
resistance of the multihull vessel.

This means the wave resistance of a catama-
ran with nonstaggered identical side hulls can be
expressed as

RW = π

2
ρU2

π/2∫
−π/2

∣∣A(θ)
∣∣2

SH

(4.64)

× 4 cos2

(
0.5 (2p/L)
Fn2 cos2 θ

sin θ

)
cos3 θ dθ,

where
∣∣A(θ)

∣∣
SH refers to the amplitude function

for the side hull and 2p is the distance between the
center lines of the demihulls. A(θ) can be evalu-
ated by eq. (4.42). The hull interference function

F(θ) = 4 cos2

(
0.5 (2p/L)
Fn2 cos2 θ

sin θ

)
(4.65)

determines then the amount of interference
between the two hulls. This depends on the Froude
number Fn, the ratio between the catamaran
demihull centerlines 2p and the ship length L,
as well as θ . The values θ that contribute to
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Figure 4.25. Schematic view of transverse wave crests
generated by two staggered hulls. Superposition of the
transverse wave system generated by each hull causes
zero amplitude of the transverse waves in a broad area of
the wake for the studied Froude number (Søding 1997).

wave resistance can indirectly and qualitatively
be seen from, for instance, Figure 4.14. When the
Froude number is high, the divergent waves, that
is, |θ | > sin−1(1/

√
3), are most important. Gener-

ally speaking, the interference matters for diver-
gent waves but is less important for transverse
waves.

We will present another example showing the
importance of the phasing of the waves generated
by each hull. This is illustrated in Figure 4.25 with
a staggered arrangement of the side hulls of a cata-
maran. The transverse waves generated by the two
hulls are 180◦ out of phase, that is, the transverse
wave amplitude of the catamaran is zero in a broad
area of the wake. This cancellation effect depends
on the Froude number and the longitudinal shift
of the catamaran hull with respect to each other.
For a Froude number of 0.4, this shift amounts
to half the hull length. The cancellation effect of
the transverse waves will have a beneficial effect
on the wave resistance not only for the Froude
number in which cancellation occurs but also in
the vicinity of this Froude number (Søding, 1997).
Tuck and Lazauskas (1998) have also theoretically
optimized the placement of individual hulls in a
multihull configuration in order to minimize the
wave resistance.

However, the previous procedure does not
account for the fact that waves generated by one
hull will be incident to another hull and hence
be diffracted (scattered) by the other hull. The
diffracted waves include reflected and transmit-
ted waves. This means the total wave system by

αc

b1

b2

LI

L

Figure 4.26. Hull interaction due to wave effects.

a multihull vessel is not a superposition of waves
generated by each hull as if the other hulls were not
present. Let us discuss the hull interaction by con-
sidering a catamaran, which is the most common
type of multihull vessel. To assess the importance
of hydrodynamic hull interaction, we first assume
there is no hydrodynamic hull interaction and then
consider the Kelvin angle αc for one hull and see if
the waves inside the Kelvin angle are incident on
the other hull and hence diffracted by the other
hull. The length LI of the aft part of this side hull
that is affected by the other hull can, by using the
notation in Figure 4.26, be expressed as

LI = L− (b1 + 0.5b2) cot αc.

By using sin αc = 1/3, we find that

LI

L
= 1 −

(
b1 + 0.5b2

L

) √
8. (4.66)

A representative example is b1/b2 = 1.5, b2/L =
1/12. This means LI/L = 0.53. We should
note that it is the divergent waves at the Kelvin
angle that cause the major part of the interaction.
These incident waves oblique to the other hull will
be diffracted by that hull. The transverse waves for
θ = 0 are not causing interaction effects. In the
form presented here, the thin ship theory cannot
predict this diffraction effect. However, a 2.5D or
3D theory can simultaneously account for the side
hulls. Figure 4.27 shows calculations by a linear
3D Rankine panel method for the catamaran and
monohull presented in Figure 4.21. Because the
displacement of the catamaran is twice as large
as for the monohull, we certainly expect a dif-
ference in the magnitude of the wave elevation
for the two vessels. However, Figure 4.27 shows
that the wave pattern around a catamaran is also
quite different from that of a monohull. There are,
for instance, large negative wave elevations occur-
ring between the catamaran hulls in the aft part
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Figure 4.27. Comparison of numerically predicted linear wave elevation ζ around a monohull and a
catamaran. Each demihull of the catamaran is identical to the monohull. The ship models are described
in Figure 4.21. Calculations done with a 3D Rankine panel method (Lugni et al. 2004).

of the vessel. The effect of flow separation from
the transom stern was not accounted for in the
calculations.

We will illustrate the importance of hull inter-
action by another example from the experimental
and numerical study by Lugni et al. (2004) with
the catamaran model presented in Figure 4.21.
Figure 4.28 shows the wave elevation along a longi-
tudinal wave cut along the centerline of the cata-
maran for different Froude numbers. The 2D+t
calculations are presented together with the exper-
iments (for the tested speeds). In the plots, the
curves with small squares give the 2D+t results
obtained as the superposition of two monohull
solutions, that is, the interaction between the demi-
hulls is not accounted for, just their interfer-
ence. From the results, the interference is not the
only mechanism. The interaction between the two

demihulls plays a fundamental role. This interac-
tion is mainly nonlinear, as evidenced both by dif-
ficulties of the linear solution in capturing the first
peak and by the phase shifting existing between
the linear and nonlinear results accounting for the
demihull interaction.

4.3.6 Wave resistance of SES and ACV

The excess pressure in the cushion of an SES
or ACV deforms the free surface, causing sur-
face waves when the vessel is moving forward.
Tatinclaux (1975) has presented approximate ana-
lytical formulas, and Doctors (1992) has given a
comprehensive survey article. Tuck and Lazouskas
(2001) have studied choices of spatial pressure
variations that minimize wave resistance of an
ACV. The wave resistance due to the air cushion
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Figure 4.28. Catamaran: cut of the steady wave pat-
tern along the catamaran centerline. Experimental data
(large square symbols: mean value and error bar) and
2D+t theory (solid lines). The curves with small squares
give the 2D+t results obtained as the superposition of the
two monohull solutions, that is, the interaction between
the demihulls is not accounted for. From top to bottom:
Fn = 0.5, 0.6. The ship model is described in Figure 4.21
(Lugni et al. 2004).

of an SES and ACV can be calculated by eq. (4.38)
with ∣∣A(θ)

∣∣2 = 4g4

π 2U8

(P2 + Q2)
cos8 θ

(4.67)

and

P + iQ
(4.68)

= 1
2ρg

∫ ∫
Ab

p (x, y) ei g
U2 cos2 θ

(x cos θ+y sin θ) dx dy.

Here Ab is the horizontal cross-sectional area
of the air cushion at the mean free surface and
p (x, y) is the excess pressure in the air cushion.
If we assume a constant excess pressure p0 and
the cushion area Ab is rectangular with length L
and breadth b, this gives a nondimensional wave
resistance:

RW

ρU2 (p0/ρg)2 = 16
π

π/2∫
0

cos θ

sin2
θ

sin2
(

0.5
Fn2 cos θ

)
(4.69)

× sin2
(

0.5 (b/L) tan θ

Fn2 cos θ

)
dθ.

This nondimensional wave resistance is presented
in Figure 4.29 as a function of Fn for different
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Rw/(ρ U2 (p0/(ρ g))2)

Figure 4.29. Wave resistance RW due to rectangular
cushion area with length L and breadth b presented as
a function of Froude number Fn = U/ (Lg)0.5 for differ-
ent b/L ratios. Constant excess pressure p0.

b/L ratios. The general tendency is that nondi-
mensional wave resistance increases with increas-
ing b/L. The curves clearly show “humps and hol-
lows” (maxima and minima), which are associated
with the transverse wave system. The wave resis-
tance is roughly proportional to b at the humps,
whereas it is practically independent of b at the
hollows. Doctors and Sharma (1972) discussed the
influence of the falloff of the excess pressure at the
edges of the cushion area. This has a pronounced
effect for Froude numbers lower than those pre-
sented in Figure 4.29.

In addition, there is wave resistance due to the
side hulls of an SES. In principle, there is an inter-
action between wave resistance due to the hulls
and the air cushion.

4.4 Ship in finite water depth

We consider a ship in finite constant water depth
h and assume infinite horizontal extent. The ship
waves may be considerably modified because of
the depth, particularly for shallow water.

The depth Froude number

Fnh = U√
gh

(4.70)

plays an important role for ship waves and wave
resistance in shallow water. Large changes occur at
the critical depth Froude number equal to one. The
ship waves are very different for subcritical, crit-
ical, and supercritical flows in shallow water. We
return to this point later in the text but exemplify
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Figure 4.30. Shallow-water wave resistance ratio for a
Wigley hull as a function of h/L and Fnh. B/L = 0.1.

D/L = 0.0625. See more details in Figure 4.31 (Yang
2002 and Yang et al. 2005).

the importance by presenting the ratio between
wave resistance of a Wigley hull at depth h and infi-
nite depth as a function of Fnh and h/L, where L
is the ship length. The equation of the Wigley hull
model is given by eq. (4.46). Further, B/L = 0.1
and D/L = 0.0625 are used. The ratio between
shallow-water and deep-water wave resistance is
presented in Figures 4.30 and 4.31 and has been
calculated using the linear thin ship theory, as pre-
viously outlined for infinite water depth. Even if it
is not explicitly shown, this ratio can be less than
1. However, the ratio is generally larger than 1.
When h/L > ≈0.4, there is a very small effect of
the depth. When Fnh is around 1 and h/L is small,
the shallow-water wave resistance ratio is very
large. For instance if h/L < 0.13, the ratio is larger
than 15 for Fnh ≈ 1. The largest ratio shown in
Figure 4.31 is 50. Obviously, we should then ques-
tion the linearity assumption of the theory. When
Fnh < ≈0.6, there is negligible effect of the depth
on the wave resistance for any h/L. When Fnh >

≈2, there is a small but not negligible effect.
Because there is a clear connection between the

wave resistance and the waves generated by the
ship, Figures 4.30 and 4.31 are also indicators of
how the wash is influenced by Fnh and h/L. How-

ever, because the wave decay is important from
a coastal point of view, more detailed knowledge
about the wave systems generated at subcritical,
critical, and supercritical speeds is required. We
deal with this in more detail later.

Another way of presenting the influence of
water depth on wave resistance is shown in Fig-
ure 4.32. Experimental values for residual resis-
tance R R for a ship are shown as a function of
Froude number for different h/L. The residual
resistance is an approximation of the wave resis-
tance. The ship model has a prismatic coefficient
CP = 0.64 and a beam-to-draft ratio of 3. The
curves of R R have very clear peaks for the pre-
sented h/L-values between 0.05 and 0.333. These
peaks occur very close to a depth Froude number
of 1. This can be seen from Table 4.3. Figure 4.32
illustrates that a ship needs extra power in shal-
low water to go through critical speed. Because
Figure 4.32 also presents the residual resistance
for infinite depth, we can compare the results with
the trend in the ratio between the shallow-water
and deep-water wave resistance for the Wigley hull
presented in Figures 4.30 and 4.31. We see that
this ratio at critical speed clearly increases with

Fnh
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Figure 4.31. Shallow-water wave resistance ratio for a
Wigley hull as a function of h/L and Fnh. B/L = 0.1.

D/L = 0.0625. Detailed view near critical speed and
small h/L (Yang 2002 and Yang et al. 2005).
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Figure 4.32. Experimentally obtained residual resistance RR for a ship in deep and shallow water. The peak values
occur at depth Froude number 1. See Table 4.3 (Graff et al. 1964).

decreasing h/L. The results also confirm that a
relatively large range of supercritical speeds have
a large influence on the wave resistance for small
h/L. However, for all presented cases, the shallow-
water wave resistance ratio approaches a value
less than 1 for the highest presented supercritical
speed. The trend for subcritical speed is that the
wave resistance approaches the value for infinite
depth when the speed decreases.

In order to translate the information in Fig-
ures 4.30 and 4.31 to ship speeds, water depth, and
ship length, we first present in Figure 4.33 the rela-
tionship between ship speed and water depth at
critical Froude number. For instance, Figure 4.30
shows that the shallow-water wave resistance ratio
is less than 3 for h/L≈0.2. Using, for instance,
h/L = 0.2 as an upper limit for significant influ-

Table 4.3. Values of Froude numbers for different
water depth–to–ship length ratios h/L that
correspond to depth Froude numbers equal to 1,
that is, critical Froude number

h/L Fn = U/
√

Lg

0.050 0.22
0.125 0.35
0.167 0.41
0.208 0.46
0.250 0.50
0.333 0.58

ence of critical Froude number means that for a
given h in Figure 4.33, ship lengths larger than 5 h
would have a significant influence on critical speed
effects. However, one should note that the discus-
sion is based on the shallow-water wave resistance
ratios, not on the values of shallow-water wave
resistance. This means we must also have the wave
resistance in infinite depth in mind. That depends
on the length Froude number Fn = U/

√
Lg, (see

e.g., Figure 4.33). If Fn < ≈0.15, the wave resis-
tance in deep water is negligible.

As an example, let us consider a ship length
L = 100 m. The previous discussion then says that

Figure 4.33. Critical speed as a function of water
depth h.
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h < 20 m should be of concern. What the cor-
responding critical speeds are follows from Fig-
ure 4.33. This means the ship speeds are less than
27 knots. However, there is a minimum ship speed
that is of concern. We must require that Fn ≥ 0.15.
Fn = 0.15 corresponds to a ship speed of 9 knots.
However, Figure 4.32 shows that a critical speed
of 9 knots corresponds to an unrealistically small
water depth for a 100 m–long vessel with realistic
drafts in which to operate.

4.4.1 Wave patterns

We start by examining the mathematical represen-
tation of the linear far-field waves, as in section 4.2
for deep-water waves. This means we start out with
a harmonic long-crested wave in an Earth-fixed
coordinate system (see eq. (4.4)). The dispersion
relationship for regular waves in finite water depth
is (see Table 3.1)

ω2

g
= k tanh kh. (4.71)

The group velocity is given by eq. (3.22). By now,
using a ship-fixed coordinate system and requiring
the waves to be steady (time independent) relative
to the ship-fixed coordinate system, we find, as for
deep-water waves, that ω = kU cos θ . This means
that eq. (4.71) can be written as

kU2 cos2 θ/g = tanh kh. (4.72)

By introducing k = 2π/λ, we can express this
equation for θ = 0 as Fn2 = λT/ (2π L) tanh
((2π L/λT) h/L), where λT means the transverse
wavelength along the ship’s track. Certain values
of λT/L, independent of the depth, are responsi-
ble for the humps and hollows in the wave resis-
tance. Because tanh((2π L/λT)h/L) → 1 when
(h/L) → ∞ and generally tanh((2π L/λT)h/L) ≤
1, it means that when transverse waves exist, the
humps and hollows for finite depth correspond to
smaller Fn than those for infinite depth. Later we
discuss the condition for transverse waves to exist
in finite water depth.

It follows from eq. (4.72) that

Fn2
hkh cos2 θ = tanh kh, (4.73)

where we have introduced the depth Froude num-
ber given by eq. (4.70). As already described,
this plays an important role in classifying shallow-

Figure 4.34. Illustration of how we can solve eq. (4.73)
to find kh for given wave propagation direction θ and
depth Froude number Fnh.

water steady ship waves. By using the expression
for ω, we can write the group velocity as

Vg =
(

1
2

+ kh
sinh 2kh

)
U cos θ. (4.74)

Eq. (4.73) has to be solved numerically for kh. We
can geometrically find the solution as the intersec-
tion point between the straight line Fn2

h cos2 θ · kh
and tanh kh as a function of kh (Figure 4.34).
Because tanh kh and d (tanh(kh)) /d (kh) are
monotonically increasing and decreasing with kh,
respectively, the slope of tanh kh at kh = 0 is
important for the existence of a solution of eq.
(4.73). We can write

d tanh(x)
dx

∣∣∣∣
x=0

= 1

cosh2 (x)

∣∣∣∣
x=0

= 1.

This means that it is necessary that

Fnh |cos θ | ≤ 1 (4.75)

for a solution to exist. If Fnh < 1 (subcritical
Froude numbers), then solutions exist for all θ .
If Fnh > 1 (supercritical Froude numbers), then
there exists a minimum |θmin| = cos−1 (1/Fnh)
(Figure 4.35) so that solutions exist only for
|θmin| < |θ | < π/2. This means, for instance, that
transverse waves along the ship’s track (θ = 0)
cannot exist for supercritical flow.

In order to show the far-field wave patterns, we
could use the “method of stationary phase” as for
deep-water waves. We only outline the procedure.
We start by representing the waves as in eq. (4.17),
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Figure 4.35. Minimum value of |θ | (wave propagation
direction) for steady waves to exist for supercritical-
depth Froude numbers.

giving

ζ = Re

π/2∫
−π/2

A(θ) exp[irG (θ)]dθ, (4.76)

where

G (θ) = k(θ) cos (θ − α) . (4.77)

Here k(θ) is determined by eq. (4.73). Points of
stationary phase follow from solutions of dG/dθ =
0. This procedure cannot be done analytically, as
was done for infinite depth. The calculations show
that for Fnh < 1, both transverse and divergent
waves exist in a similar way to those for deep water.
However, the Kelvin angle, which is 19◦28′ for
deep water (see Figure 4.3), is influenced by Fnh

(Figure 4.36). When Fnh < 0.5 − 0.6, the value is
practically the same as for deep water. We will
explain this by considering the longest ship waves
in deep water, that is, the transverse waves along
the ship’s track. The wavelength is λT = 2πU2/g
(see eq. (4.11)). This means λT/h = 2π Fn2

h, that
is, λT/h = 2.3 for Fnh = 0.6. Because of the expo-
nential decay of the fluid motion with depth, the
waves hardly feel the bottom. A rapid increase
in the Kelvin angle occurs for Fnh > 0.9, and the
angle is 90◦ for Fnh = 1.

We explain the Kelvin angle of 90◦ at Fnh = 1
similarly to the way we explained, by means of Fig-
ure 4.7, the Kelvin angle of 19◦28′ for deep water.
First we consider eq. (4.73), which determines kh
as a function of θ . When Fnh = 1, the solution of
kh is small for small θ . So we Taylor expand tanh kh

and get

cos2 θ ≈ 1 − 1
3

(kh)2 for small kh. (4.78)

Using this expression, we can express the group
velocity given by eq. (4.74). This gives

Vg =
(

0.5 +
√

3|sin θ |
sinh(2

√
3|sin θ |)

)
U cos θ

(4.79)
for small θ.

At time t0 − t, the ship is at position B and gen-
erates waves in different directions. After time t,
the ship has moved to the new position, A. Now
the time is t0. We consider the position of the
wave energy that was created by the ship at the
previous time t0 − t. This is given by Vgt and is
a function of the propagation direction θ of the
waves. This is presented in Figure 4.37 by using
eq. (4.79), which is valid for small θ. In order to
predict Vgt for other θ -values, eq. (4.73) has to be
solved numerically. An exception is when θ is close
to π/2. Then the solution will correspond to large
kh so that tanh kh ≈ 1 and we get the deep water
solution k = g/

(
U2 cos2 θ

)
. The group velocity is

then 0.5U cos θ . We have also shown that curve in
Figure 4.37.

Because the front of the waves generated at the
arbitrary previous time t0 − t touches the position
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Figure 4.36. The relation between the depth Froude
number Fnh and the Kelvin angle behind the ship in
finite water depth. The Kelvin angle is the angle between
the boundary of the wave system and the ship course.
This curve is based on linear theory in water with an
infinite free-surface extent (Yang 2002).



P1: GDZ
0521845688c04 CB921-Faltinsen 0 521 84568 7 October 21, 2005 14:12

128 • Wave Resistance and Wash

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0.1B 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ut

Ship position
at time “to − t”

Ship position
at time “to”

Curve for where
wave energy is
at  time “to” that
was emitted at
time “to − t” at
point B.

Based on
Vg = 0.5Ucosθ Vg t

Aθ

Figure 4.37. Illustration of propagation of
waves generated by a ship at critical speed.

A of the ship at time t0, the Kelvin angle is 90◦. We
see this if we draw a line from point A tangent to
the curve represented by Vgt. This is similar to the
procedure for Figure 4.7 to define the Kelvin angle
for deep water. In the present critical Froude num-
ber case, we get a vertical line through A, which
means the Kelvin angle is 90◦.

Let us now study the case θ = 0 in Figure 4.37.
We notice that the group velocity Vg is then equal
to U. As the ship moves ahead, the ship continu-
ously generates waves and all the waves with θ = 0
will have an energy propagation velocity equal to
the ship’s speed. This results is an accumulation
of wave energy along θ = 0. This energy can-
not escape according to our linear theory. It is
constrained to follow the ship’s speed at critical
speed, according to linear theory. However, there
is a limit to how steep waves can be. They will
finally break, but nonlinear effects matter before
that. This may imply that steady conditions rela-
tive to the ship are not obtained. Let us illustrate
that for shallow-water waves in which the wave
energy propagation velocity Vg is

√
g (h + A), with

A as the wave amplitude. When A increases,
Vg becomes larger and larger relative to the
ship’s speed. This means steady conditions are not
obtained. This effect is clearly seen for a ship in
a shallow-water channel. Large-amplitude waves
will then exist upstream of the ship around critical
speed.

The wave amplitude at critical speed depends
strongly on h/L. This can be seen indirectly from
Figures 4.30 and 4.31. It is a small h/L that causes
large waves at critical speed. Yang (2002) pre-
sented wave patterns around a Wigley hull at sub-
critical and supercritical speeds by using thin ship
theory.

4.5 Ship in shallow water

We assume shallow-water conditions, that is, kh →
0, as Tuck (1966) did in his analysis of linear
shallow-water ship waves. This is a simplification,
which does not fully account for eq. (4.73). This
will be demonstrated by comparing the results
with thin ship results by Yang (2002) for finite but
small depth.

The flow analysis is divided into far-field and
near-field descriptions. In the far-field description,
we look upon the flow at a distance from the ship
that is of the order of the length of the ship. We
do not see the details of the flow around the cross
sections of the ship from that perspective. We need
a near-field solution to do that. The flow cannot be
completely determined by either the far-field or
near-field solution. In order to do that, we match
the two solutions.

4.5.1 Near-field description

The variation of the flow in the near field is
stronger in the transverse cross-sectional plane
than in the longitudinal direction. We divide the
velocity potential into two parts, as in eq. (3.4),
and want to find the velocity potential ϕ caused by
the ship. In the near field this can be assumed to
satisfy the 2D Laplace equation, that is,

∂2ϕ

∂y2
+ ∂2ϕ

∂z2
= 0. (4.80)

The body boundary condition follows from the
requirement that there be no flow through the hull
surface. This means

∂ϕ

∂n
= −Un1 on the hull surface.
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Figure 4.38. Near-field description of the flow.

Here n = (n1, n2, n3) is the normal vector to the
hull surface. The positive normal direction is into
the fluid domain. We now assume a slender ship
and use the fact that n1∂/∂x is much smaller than
n2∂/∂y and n3∂/∂z. This means we can approxi-
mate ∂ϕ/∂n as

n2
∂ϕ

∂y
+ n3

∂ϕ

∂z
≡ ∂ϕ

∂ N
(4.81)

= −Un1 on the hull surface,

where N = (n2, n3) . We must also satisfy the con-
dition that ∂ϕ/∂z = 0 on z = −h. The free-surface
condition is simplified in Tuck’s analysis by using a
rigid wall condition, that is, ∂ϕ/∂z = 0 on z = 0. At
a distance from the cross section, the flow will be
depth independent with a velocity V as shown in
Figure 4.38. V can be determined by conservation
of fluid mass, that is,

V2h =
∫

C(x)

∂ϕ

∂ N
dl = −U

∫
C(x)

n1 dl. (4.82)

The integral can be rewritten by means of Fig-
ure 4.39, in which we consider a strip of the ship
of length �x. Noting the direction of the hull

∆x

x

−n1∆x

Figure 4.39. Strip of the ship of length �x. n1 is the x-
component of the unit normal vector to the hull surface
pointing outward and into the fluid.

surface normal vector, we then see from geometry
that

�x
∫

C(x)

n1 dl = − (S (x + �x) − S (x)).

Here S is the submerged cross-sectional area of
the ship. In the limit �x → 0, we have∫

c(x)

n1 dl = −dS
dx

. (4.83)

It follows from eq. (4.82) that

V = U
2h

dS
dx

. (4.84)

So if S(x) increases, V is an outward-going velocity.

4.5.2 Far-field equations

The field equation is now the 3D Laplace equation
for the velocity potential ϕ, that is,

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
= 0. (4.85)

The free-surface conditions follow from eqs. (3.7)
and (3.9) by setting p0 and ∂/∂t equal to zero. The
bottom condition is ∂ϕ/∂z = 0 on z = −h. It fol-
lows by integrating eq. (4.85) in the z-direction
that

1
h

0∫
−h

[
∂2ϕ

∂x2
+ ∂2ϕ

∂y2

]
dz+ 1

h
∂ϕ

∂z

∣∣∣∣
z=0

− 1
h

∂ϕ

∂z

∣∣∣∣
z=−h

= 0.

The depth-averaged velocity potential

ϕ̄ (x, y) = 1
h

0∫
−h

ϕdz (4.86)

is now introduced in combination with using the
kinematic free-surface condition (see eq. (3.9))
and the bottom condition. This gives

∂2ϕ̄

∂x2
+ ∂2ϕ̄

∂y2
+ U

h
∂ζ

∂x
= 0.

Using the dynamic free-surface condition (see
eq. (3.7)) and approximating ϕ by ϕ̄ gives

∂2ϕ̄

∂x2
+ ∂2ϕ̄

∂y2
− Fn2

h

∂2ϕ̄

∂x2
= 0. (4.87)
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4.5.3 Far-field description for supercritical speed

We can formally write a solution of eq. (4.87) for
Fnh > 1 as

ϕ̄ = F (u) , (4.88)

where

u = x ± (
Fn2

h − 1
)1/2

y. (4.89)

This can easily be shown by substituting ϕ̄ into
eq. (4.87). The function F is undetermined at
this stage, but the dependence of F on x and y
expressed by eq. (4.89) gives us valuable informa-
tion that will be explored later. In order to deter-
mine F, the ship must be introduced into the anal-
ysis. This means that F must have a symmetric
dependence on y. Further, we require that the flow
caused by the ship appear downstream of the ship.
We can then write

ϕ̄ = F
(

x − (
Fn2

h − 1
)1/2 |y|

)
. (4.90)

The function F must be found by matching with
the near-field solution, that is, the inner expansion
of eq. (4.90) near the ship must be consistent with
eq. (4.84). We assume y > 0 without loss of gener-
ality. Eq. (4.90) gives horizontal velocity

∂ϕ̄

∂y
= − (

Fn2
h − 1

)1/2

× F ′
(

x − (
Fn2

h − 1
)1/2

y
)

for y > 0.

If we let y → 0, this must be equal to V given by
eq. (4.84), that is,

− (
Fn2

h − 1
)1/2

F ′ (x) = U
2h

dS
dx

.

This means

ϕ̄ = − U
2h

(
Fn2

h − 1
)−1/2

S
[
x − (

Fn2
h − 1

)1/2 |y|
]
.

(4.91)
The free-surface elevation can then be expressed
by the dynamic free-surface condition as

ζ = 0.5Fn2
h(Fn2

h − 1)−1/2dS (u) /du, (4.92)

where

u = x − (Fn2
h − 1)1/2 |y| .

It means that ζ is constant along the lines

x − (
Fn2

h − 1
)1/2 |y| = const. (4.93)

The lines must originate from the ship, otherwise
dS/dx is zero. We can then write the constant

U

y

α = tan−1((Fn2
h −1)−1/2)

x

Figure 4.40. Boundaries of the wave system for super-
critical flow according to Tuck’s (1966) shallow-water
theory.

lines as

|y| = 1
(Fn2

h − 1)1/2
(x − x0), (4.94)

where −L/2 ≤ x0 < L/2. We have depicted the
lines originating from the bow and the stern in
Figure 4.40. The angle α of the lines as shown in
Figure 4.40 can be related to the wave propagation
direction as

θ = α − π

2
.

This means

cos θ = sin
(

tan−1
((

Fn2
h − 1

)−1/2
))

= 1/Fnh.

(4.95)

This is the same as the minimum angle |θmin| for
waves to exist, as presented in Figure 4.35. The
wave system shown in Figure 4.40 has a delta-
like formation. The higher the speed, the smaller
the α.

Eq. (4.92) shows that the wave amplitude does
not decay at all with lateral distance. As pointed
out in the introduction to this chapter, this has
important consequences for wash on the seashore.

Figure 4.41 shows comparisons among Tuck’s
(1966) shallow-water theory, thin ship theory, and
linear and nonlinear Boussinesq-type equations
by Yang (2002). The wave elevation is predicted
at the two longitudinal cuts y = L and y = 1.5L.
Fnh is 1.2 and h/L = 0.1. The angle α by Tuck’s
theory is 56.4◦. The wave elevation according to
Tuck is a sawtooth function. When y = L, the wave
elevation ζ is zero upstream from x/L = −0.66
and downstream from x/L = −1.66. ζ jumps to
the value 0.0181L at x/L = −0.66 and jumps from
the value −0.0181L to zero at x/L = −1.66. Sim-
ilar behavior occurs at y = 1.5L. Then the wave
elevation is zero upstream of x/L = −0.99 and
downstream of x/L = −1.99. The other calcula-
tion methods have a smooth behavior in the free
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Figure 4.41. Comparison of longitudinal wave cuts for Wigley hull at different locations by thin ship
theory and linear and nonlinear Boussinesq-type equations (Yang 2002) as well as Tuck’s shallow-
water theory. The input of Boussinesq-type equations is obtained by thin ship theory at y = 0.5L. The
ship is located at −1 < x/L < 0, y/L = 0. Fnh = 1.2. h/L = 0.1.B/L = 0.1, D/L = 0.0625. ζ= wave
surface elevation.

surface and do not predict zero wave elevation
outside a strip, as does Tuck’s method. One rea-
son for the difference is that Tuck’s shallow-water
theory is nondispersive whereas the other meth-
ods account for dispersion. The results also show
that nonlinearities matter.

By Fourier expanding the sawtooth function, we
see that many Fourier components are needed to
describe the function. This means that a broad, dis-
crete spectrum of wave numbers is of importance.
This is not in contradiction with the shallow-water
approximation of eq. (4.73), which simply says that
Fn2

h cos2 θ = 1, that is, all wave numbers satisfy
this equation. However, this leads to a contradic-
tion if we insert the wave numbers following from
the Fourier analysis into eq. (4.73). This means that
all the wavelengths corresponding to the neces-
sary wave numbers are not sufficiently long for
the shallow-water approximation to be valid.

Later we see that Tuck’s shallow-water theory
gives a better description of forces and moments,
but before doing that, we analyze subcritical
speed.

4.5.4 Far-field description for subcritical speed

Eq. (4.87) also applies for subcritical speed, but the
solution is not in the form of eqs. (4.88) and (4.89).

We see that u, given by eq. (4.89), is imaginary
when Fnh < 1. This has no physical meaning. So
we proceed differently for subcritical speed. The
first step is to introduce the new variable

y′ = y
(
1 − Fn2

h

)1/2
. (4.96)

This transformation means that eq. (4.87) can be
written as

∂2ϕ̄

∂x2
+ ∂2ϕ̄

∂y ′2 = 0. (4.97)

We do not see the details of the ship in the far
field. The ship appears as a line from x = −L/2
to x = L/2. In several previous examples, we have
seen that the effect of the ship on the flow is to
push the water out in the front part and attract
the flow in the stern part. This means we have
used a distribution of sources (sinks) to repre-
sent the effect of the ship. In those cases, the 3D
Laplace equation had to be satisfied in the fluid. In
our approximation, we do not have a 3D Laplace
equation but a 2D Laplace equation given by eq.
(4.97). This means that the sources (sinks) must
satisfy this equation outside the source points. This
leads to writing the velocity potential in terms
of the following line distribution of 2D sources
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and sinks:

ϕ̄ = 1
2π

L/2∫
−L/2

q(ξ) ln
√

(x − ξ)2 + y′2dξ . (4.98)

Here the source density q (x) is an unknown that
will be determined by matching with eq. (4.84).
This means we evaluate ∂ϕ̄/∂y wheny → 0. Before
doing that, we need to study ∂ϕ̄/∂y ′ when y ′ → 0.
We can go through an argument similar to the one
in the 3D case in which we used Figure 4.12. The
result is

∂ϕ̄

∂y′

∣∣∣∣
y′=0+

= 1
2

q(x).

Because it follows from eq. (4.96) that

∂ϕ̄

∂y
= (

1 − Fn2
h

)1/2 ∂ϕ̄

∂y′ ,

the matching gives

(
1 − Fn2

h

)1/2 1
2

q (x) = U
2h

dS
dx

.

This means

ϕ̄ = U
2πh

(
1 − Fn2

h

)−1/2

(4.99)

×
L/2∫

−L/2

dξ S ′(ξ) ln
√

(x − ξ)2 + y2
(
1 − Fn2

h

)
.

We note that this is not a solution containing
waves. It was a surprise for some when Tuck first
presented these physically based simple analyt-
ical models showing that waves are generated
in the supercritical flow regime only for a ship
at moderate-length Froude numbers in shallow
water. Some expected the opposite. However,
Tuck’s theory gives a correct description.

4.5.5 Forces and moments

We derive formulas for forces and moments based
on Tuck’s theory and start with his expressions
for supercritical speed. An approximation of the
free-surface elevation along the hull is obtained
by setting |y| = 0 in eq. (4.92). We now use that
the pressure is hydrostatic relative to the instanta-
neous free-surface elevation. This can be shown by
using the finite-depth expressions in Table 3.1 and
letting kh → 0. We separate out the pressure part
that is hydrostatic relative to the mean free-surface

level z = 0. That part gives buoyancy forces. This
means that the dynamic pressure along the hull is
approximated as

p = ρU20.5h−1 (
Fn2

h − 1
)−1/2 dS

dx
,

(4.100)
− L

2
< x <

L
2

for Fnh > 1. We note that the pressure is indepen-
dent of y and z for a given x. Further, the pres-
sure is positive in the forward part of the ship
where dS/dx is increasing, whereas it is negative
in the aft part of the ship where dS/dx is decreas-
ing. We can then intuitively understand that this
pressure causes a resistance and a pitch moment
that forces the bow up. Further, the net vertical
force is zero for a ship with fore-and-aft symme-
try. The expression for the wave resistance can be
derived by formally writing

RW = −
∫∫
SB

pn1 dS. (4.101)

Here SB is the mean wetted body surface and
n1 is the x-component of the normal vector n =
(n1, n2, n3) to the body surface. The positive nor-
mal direction is into the fluid domain. Eq. (4.101)
can be simplified by using the fact that p is inde-
pendent of y and z, together with eq. (4.83). This
means the wave resistance for supercritical flow
can be expressed as

RW = ρU2

2h
(
Fn2

h − 1
)1/2

L/2∫
−L/2

[S ′(x)]2dx. (4.102)

The vertical force follows by exchanging n1 in
eq. (4.101) with n3. We note from Figure 4.42 that

−
∫

n3 dl =
b/2∫

−b/2

dy = b(x). (4.103)

The left-hand integral is along the cross-sectional
surface. Further, b (x) is the local beam. We then
see by using eqs. (4.103) and (4.100) that the ver-
tical force can be expressed as

F3 = ρU2

2h
(
Fn2

h − 1
)1/2

L/2∫
−L/2

b(x)S ′ (x) dx (4.104)

for supercritical speed. If the ship has fore-and-aft
symmetry, F3 is zero.
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z

y

−n3dl

n3 n

b(x)

Figure 4.42. Cross section of the ship. n3 is the z-
component of the normal unit vector to the hull surface,
pointing outward.

We can now write up the pitch moment as

F5 = − ρU2

2h
(
Fn2

h − 1
)1/2

L/2∫
−L/2

xb (x) S ′(x) dx (4.105)

for supercritical flow.
Because the ship according to Tuck’s analysis

does not generate waves for subcritical speed, the
wave resistance is zero. Further, it turns out that
the pitch moment is zero for a ship with fore-and-
aft symmetry, and relatively small otherwise. How-
ever, the vertical force is important. This can be
expressed as

F3 = ρU2

2πh
(
1 − Fn2

h

)1/2

(4.106)

×
L/2∫

−L/2

b′ (x)

L/2∫
−L/2

S ′(ξ) ln|ξ − x|dξ dx.

The ξ -integral is connected with the pressure. This
follows from eq. (4.99) by setting y = 0 and using
the pressure part −ρU∂ϕ̄/∂x from eq. (3.6). Actu-
ally, the ξ -integral, as expressed in eq. (4.106), is
connected with the velocity potential and a manip-
ulation of the integral has been done. We will show
this by first noting that −ρU∂ϕ̄/∂x on the hull is
independent of y and z according to the analysis.
This means we can write

F3 = −ρU

L/2∫
−L/2

b (x)
∂ϕ̄

∂x
dx.

By integration by parts and noting that b is zero at
the ship ends, we get

F3 = ρU

L/2∫
−L/2

b′ (x) ϕ̄ dx.

Then we can directly identify the terms in eq.
(4.106). We recall that in the case with supercrit-
ical speed, we expressed the pressure in terms of
the wave elevation ζ. However, ζ is connected
to −ρU∂ϕ/∂x by the dynamic free-surface con-
dition given by eq. (3.7).

Yang (2002) compared Tuck’s theory for forces
and moments with his own calculations based
on thin ship theory for finite water depth. The
water depth–to–ship length ratio was h/L = 0.1,
and a Wigley hull with B/L = 0.1 and D/L =
0.0625 was used. The comparison is shown in Fig-
ure 4.43. Generally speaking, the agreement is
better than that shown for the wave elevation in
Figure 4.41.

Figure 4.43a shows the comparison of wave
resistance coefficient CW = RW/

(
0.5ρU2 S

)
by the

two theories. Here RW is the wave resistance and
S is the mean wetted surface area. As already
stated, the wave resistance coefficient is zero at
subcritical speeds according to Tuck’s (1966) slen-
der body theory for shallow water, whereas it is
a small value by the thin ship theory. At critical
speed, the result of Tuck’s (1966) slender body
theory for shallow water goes to infinity, whereas
thin ship theory gives finite, large results. At super-
critical speeds, the two theories show similarities.
Figure 4.43b shows the comparison of vertical
force F3 from the two theories. The two theo-
ries agree well at subcritical speeds. At supercrit-
ical speeds, Tuck’s (1966) shallow-water slender
body theory predicts zero result but the thin ship
theory predicts nonzero small values. The reason
that Tuck’s (1966) shallow-water slender body the-
ory predicts zero results is that the Wigley hull
has for-and-aft symmetry. This is also the rea-
son Tuck’s (1966) slender body theory in shallow
water predicts zero pitch moment at subcritical
speeds. Figure 4.43c shows the comparison of pitch
moment F5 from the two theories. The two theo-
ries agree well at supercritical speeds. At subcrit-
ical speeds, Tuck’s (1966) shallow-water slender
body theory predicts zero whereas the thin ship
theory predicts nonzero results. We must note that
Tuck’s (1966) shallow-water slender body theory
is very fast from a computational point of view
whereas the thin ship theory is only fast when cal-
culating the wave resistance but takes long CPU
time when calculating the vertical force F3 and
the pitch moment F5. Tuck’s (1966) shallow-water
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Figure 4.43. Comparison of wave resistance coefficient CW, vertical force F3, and pitch moment F5 by
thin ship theory and Tuck’s (1966) slender body theory in shallow water. Wigley hull. B/L = 0.1, D/L =
0.0625, h/L = 0.1 (Yang 2002 and Yang et al. 2005).

slender body theory is, however, limited to small
water depth, whereas the thin ship theory can be
applied to any water depth.

4.5.6 Trim and sinkage

We now use Tuck’s shallow-water theory to predict
trim and sinkage. We start with sinkage in which
only subcritical speed is of interest. Static balance
of vertical force requires the hydrodynamic force
given by eq. (4.106) to balance the weight and the
buoyancy force due to hydrostatic pressure −ρgz.
When U = 0, the weight and the buoyancy force
are in equilibrium. The ship then has a submerged
cross-sectional area S0 (x). This area is increased
because of sinkage ηs , which we define as positive
downward. We assume that the ship is wall-sided
at the mean free surface and ηs is small relative to
the draft. The submerged cross-sectional area can
then be expressed as

S (x) = S0 (x) + b (x) ηs . (4.107)

Because the trim is negligible for subcritical speed,
we can assume that ηs is x-independent. We can
now set up the following vertical force balance:

Fn2
h

2π
(
1 − Fn2

h

)1/2 ·
L/2∫

−L/2

dxb′ (x)

×



L/2∫
−L/2

S′
0 (ξ) ln |ξ− x|dξ (4.108)

+ ηs

L/2∫
−L/2

b′ (ξ) ln |ξ − x|dξ


 + AWηs = 0.

The last term is associated with the added buoy-
ancy due to sinkage. This means AW is the water-
plane area of the vessel. The equation is linear in
ηs and can easily be solved. The results for the
Wigley hull used for Figure 4.43 are presented
in Figure 4.44 in terms of ηs/L as a function of
Fnh. We have avoided presenting results too close
toFnh = 1 where the theory is invalid. The nondi-
mensional results are independent of h/L, but of
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Figure 4.44. Sinkage ηs of a Wigley hull with B/L = 0.1
and D/L = 0.0625 based on Tuck’s shallow-water theory.
Zero trim.

course h/L is assumed small. The results show that
ηs/L can be of the order of 0.01, which means 1 m
sinkage for a 100 m–long vessel. This could be of
concern from a grounding point of view, and it also
increases the ship’s resistance.

The speed dependence of sinkage presented in
Figure 4.44 should be emphasized. If you are oper-
ating a ship in shallow water at subcritical speed
with a risk of grounding due to squat, you should
slow down.

We now study supercritical speed, in which the
main effect is the result of trim. We express the ver-
tical motion along the ship due to trim as −xη5,
which means that positive trim (pitch) angle η5

causes bow up. We consider now the balance of
pitch moments in the same way as we did for ver-
tical forces. The hydrodynamic pitch moment is
given by eq. (4.105) and we get

− Fn2
h

2
(
Fn2

h − 1
)1/2 ·


 L/2∫

−L/2

xb (x) S′
0 (x) dx

− η5

L/2∫
−L/2

xb(x) (b (x) x)′ dx


 . (4.109)

− η5

L/2∫
−L/2

x2b (x) dx = 0

Strictly speaking, we should have chosen x = 0 to
coincide with the longitudinal position of center of
gravity (COG). The effect of the vertical distance
between COG and center of buoyancy should in
principle have been included in the contribution
from the hydrostatic pressure. This is important

for transverse metacentric height for a monohull
but is often neglected for the longitudinal meta-
centric height. Results for the Wigley hull are pre-
sented in Figure 4.45, both in terms of trim angle
and resulting local sinkage at the stern due to trim.
It indicates that this local sinkage due to trim for
supercritical speed may be of the order of twice
the sinkage for subcritical speed.

4.6 Exercises

4.6.1 Thin ship theory

a) Michell’s thin ship theory for wave resistance
is described in the main text. Let ϕ be the veloc-
ity potential due to the ship and approximate the
dynamic free-surface condition with ϕ = 0 (rele-
vant for very high speed and in the bow region of
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Figure 4.45. Trim (η5) and local sinkage (ηs) at the
stern due to trim. Wigley hull. B/L = 0.1, D/L = 0.0625.

Based on Tuck’s shallow-water theory.
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Figure 4.46. Wedge-shaped bow.

slender ships). Show that ϕ can be written as

ϕ = U
2π

∫∫
cp

dξ dζn1 (ξ, ζ )
[(

(x − ξ)2

+ y2 + (z − ζ )2
)−1/2

(4.110)

−
(

(x − ξ)2 + y2 + (z + ζ )2
)−1/2

]
Here cp is the center plane of the ship, n1 is the
x-component of the normal vector to the hull sur-
face, and U is the ship’s speed. The coordinate sys-
tem is shown in Figure 4.46.

b) Assume the ship is wedgelike (Figure 4.46) and
semi-infinite in extent. (Physically, one can imag-
ine that one is studying the flow locally around a
wedgelike bow.) Show that ϕ can be written as

ϕ = U
2π

n1

0∫
−D

dζ

(4.111)

× ln


−x +

√
x2 + y2 + (z + ζ )2

−x +
√

x2 + y2 + (z − ζ )2


 .

c) Assume x → −∞. Show that ϕ ≈ 0. Express
briefly what it means.

d) Use the kinematic free-surface condition
U∂ζ/∂x = ∂ϕ/∂zon z = 0, and show that the wave
elevation at the bow (x = 0, y = 0) is

ζ0 = αD
π

, (4.112)

where α is half the wedge angle. (Hint: Integrate
∂ζ/∂x from far upstream.)

e) Assume x is positive and much larger than y
and z. Show that

ϕ ≈ −U
π

n1

0∫
−D

dζ ln




√
y2 + (z − ζ )2√
y2 + (z + ζ )2


 (4.113)

For what boundary-value problem is eq. (4.113)
the solution? What does this express qualitatively
about the flow in the transverse plane relative to
the longitudinal direction?

f) Use eq. (4.113) from the bow x = 0 of the ship
and assume ζ = 0 at x = 0. Find an expression for
the wave elevation ζ along the ship hull by first
showing that

∂ζ

∂x
= −n1

π
ln

[
n2

1x2 + D2

n2
1x2

]
. (4.114)

Discuss the dependence on Froude number
(U/

√
Lg) and ship form.

g) According to eq. (4.114), ζ will increase with
increasing x-value. If we think in terms of a real-
istic ship, what will cause the wave elevation to
decrease with increasing x-value?

4.6.2 Two struts in tandem

Consider two parabolic struts in tandem with a
constant forward speed U (Figure 4.47). Use thin
ship theory (see eq. (4.42)) to express the wave
amplitude function A(θ).

Consider transverse waves for θ = 0 and, as in
Figure 4.47, define L to be the length of each strut
and Lt to be the distance between the centers of
each strut.

Derive an expression for A(0), and use this to
discuss when there is amplification and cancella-
tion of the transverse waves generated by each
strut.

4.6.3 Steady ship waves in a towing tank

Consider a ship model in a towing tank (Fig-
ure 4.48) with breadth b and water depth h. The
towing speed U is constant. A Cartesian ship-fixed

U

L

Lt

L

yy

x x

Figure 4.47. Two struts in tandem.
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U

y

x b

−L/2 L/2

Figure 4.48. Ship model in a towing tank with breadth
b and water depth h.

coordinate system (x, y, z) is defined as in Fig-
ure 4.48. Consider linear steady ship-generated
waves.

a) At what distance behind the ship model will the
ship-generated waves start to be reflected from the
tank walls?

b) Assume that we are aft of the ship model and
at a sufficient distance behind the ship model for
tank wall reflection to occur. Show that the wave
amplitude can be expressed as

ζ =
∞∑

n=0

An cos (wnx + εn) cos
(

un

(
b
2

− y
))

,

(4.115)

Figure 4.49. Submerged floating tunnel with tension-leg mooring system.

where

un = nπ/b, n = 0, 1, 2, 3 . . .

w2
n = k2

n − u2
n

g
U2

kn tanh knh = w2
n.

(Hint: Use the Laplace equation for the velocity
potential and the boundary conditions of the tank
wall and bottom, as well as the free-surface condi-
tion given by eq. (4.27).)

c) Express the wave system in an Earth-fixed coor-
dinate system.

4.6.4 Wash

Feasibility studies of submerged floating tunnels
crossing deep Norwegian fjords have been made.
Figure 4.49 shows one concept using tension-leg
mooring. The tunnel length is on the order of 1 km.
Consider a horizontal circular cylinder with diam-
eter D = 12 m as part of such a tunnel. The vertical
distance from the top of the cylinder to the mean
free surface is 20 m.

Consider a scenario of a 70 m–long monohull
vessel passing over one of the moorings with the
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track perpendicular to the tunnel axis. The Froude
number is 0.5 and there are deep-water conditions.

Evaluate the vertical wave force on the tunnel
due to the passing ship by using the mass term
in Morison’s equation. This means we write the
vertical wave force per unit length as

Fz = ρπ
D2

2
az, (4.116)

where az is vertical incident fluid acceleration at
the tunnel axis.

Consider only the transverse waves perpen-
dicular to the ship’s track and account for the
Kelvin angle and wave decay. Consider first the
time instant when there is longitudinally one ship
length’s distance between the ship stern and the
tunnel axis. Further, assume that there is a wave
amplitude of 0.5 m at the tunnel position. Use
expressions for long-crested regular waves, as pre-
sented in Table 3.1, to calculate az. Relate the cal-
culations to the requirement that there should be
no slack in the tension legs shown in Figure 4.49.
Neglect dynamic motions of the tunnel. Assume
that the distance between each tension-leg moor-
ing is 200 m and the structural weight of the tun-
nel is 2.5% lower than the buoyancy of the tunnel.
Examine different distances between the ship and
the tunnel to find the most severe situation.

4.6.5 Wave patterns for a ship on a circular course

Consider a ship in deep water with constant speed
on a circular course. Figure 4.50 illustrates the
steady divergent and transverse wave system pre-
dicted by linear theory. Explain, as we did in Fig-
ure 4.7 for a ship on straight course, the outer
boundaries of the waves by considering curves
for where wave energy was emitted at a previous
time. We have in Figure 4.50 helped this process
by drawing two circles that are tangential to the
outer boundaries of the wave system.

a) Draw additional circles like this and show a
larger part of the outer boundaries of the wave
system. Explain what you are doing.

b) Consider now a ship with a constant speed on
a circular course in shallow water at critical-depth
Froude number. Use arguments similar to those in
Figure 4.37 to sketch the outer boundaries of the
wave system.

Figure 4.50. Wave crests for a ship with constant speed
on a circular course in deep water. Based on a figure in
Stoker (1958). Two circles that are tangential to the outer
boundaries are added. These follow from wave energy
propagation considerations, as in Figure 4.7.

4.6.6 Internal waves

The scenario is shown in Figure 4.51. There are two
layers of fluid with different mass densities. There
are gravity waves occurring both on the upper sur-
face facing air and on the interface between the
two fluids. The mass density ρ ′ of the upper layer
is smaller than the density ρ for the lower layer.
The upper and lower layer have mean heights h′

and h, respectively. It is convenient for further
derivation to use a coordinate system with the
xy-plane in the mean interface of the two fluids
(Figure 4.51).

a) Consider two-dimensional linear harmonic
waves propagating both on the upper surface and
on the interface. We assume that the lower layer
has infinite depth and that there is no mean flow.
The following derivation follows Landau and Lif-
shitz (1959). The velocity potentials for the lower

ζ x

z
ρ’

ρ

h’

h

SEA FLOOR

AIR

Figure 4.51. Free-surface waves and internal waves. The
upper layer has a mean depth h′, mass density of fluid
ρ′. Corresponding notation for the lower layer is without
superscript.
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and upper layers are expressed as

ϕ = Aekz cos (kx − ωt) (4.117)

ϕ′ = (
Be−kz + Cekz

)
cos (kx − ωt) . (4.118)

The free-surface condition, as in eq. (3.11),
applies on the upper surface for z = h′. Linearized
conditions for continuity of vertical velocity and
pressure on the interface are used.

Two solutions of the circular frequency as a
function of the wave number k are as follows:

ω2 = kg
(ρ − ρ ′)

(
1 − e−2kh′)

(ρ + ρ ′) + (ρ − ρ ′) e−2kh′ (4.119)

ω2 = kg. (4.120)

We recognize that eq. (4.119) is the disper-
sion relationship for deep-water waves without
an interface. Eq. (4.118) is related to the internal
waves.

What are the phase velocity and group velocity
of the internal waves?

b) The interface between the two fluids is a thin
free shear layer. Actually, we have set the thick-
ness equal to zero, which is similar to what we do
with the boundary layer of a ship when we find a
potential flow solution.

Express the integrated vorticity ω = ∇ × u (u
is fluid velocity) across the interface by using the
potential flow solutions given by eqs. (4.117) and
(4.118).

c) Consider now h′ → ∞ and assume that there is
a way that internal waves have been generated, for
instance, by an object moving near the interface.
Express the solution form of the velocity poten-
tial in the upper and lower layers. Formulate the
boundary conditions at the interface and find the
dispersion relationship.

d) Consider now steady ship waves by transferring
the results for the internal waves in problem a) to
a ship-fixed coordinate system in a way similar to
the one we used in section 4.2. Show that this gives
the following equation for the wave number:

F2 cos2 θ · kh′ =
(
1 − e−2kh′)

2 − �ρ

ρ
(1 − e−2kh′ )

. (4.121)

Here �ρ/ρ = (ρ − ρ ′) /ρ, θ is the wave propaga-
tion direction as defined by eqs. (4.8) and (4.9)

together with Figure 4.6. Further,

F = U(
�ρ

ρ
gh′

)1/2 . (4.122)

F is called the densimetric Froude number. There
is a similarity between this problem and ship waves
in finite water depth. This means there is a critical
speed corresponding to F = 1.

Show that divergent and transverse internal
waves occur at subcritical speed and that there are
only divergent waves for supercritical speed.

What is the minimum |θ | for the divergent waves
as a function of F for supercritical speed?

e) The phenomenon discussed in d) is called “dead
water.” There is a clear hump in the internal wave
resistance at F = 1 for small h′/L. The ship speed
corresponding to F = 1 is very low. Let us consider
an example with h′ = 5 m and �ρ/ρ = 3 · 10−2 cor-
responding to freshwater as the upper layer and
saltwater as the lower layer. This may be a sce-
nario in a Norwegian fjord. Calculate the critical
speed.

Consider the transverse internal waves along
the ship’s track for F = 0.8 and the divergent
waves for F = 4 corresponding to minimum|θ |.
Assume that the corresponding wave amplitude
at the interface is not negligible. Use the solution
form given by eq. (4.118) and k determined by
eq. (4.121) to discuss, based on your own crite-
rion, if the waves are visible by eye from above in
the air.

Use the solution form given by eq. (4.117) to
discuss, based on your own criterion, what water
depth is needed for these two internal waves to
be negligibly influenced by the presence of the sea
floor.

f) The ship speeds that we have discussed above
are low. Because the ship must have a draft that is
not too small relative to h′ to cause internal waves,
we can generally expect that the length Froude
number is low. This means that the ship would
cause negligible free-surface waves when there is
no interface in the water. Using a rigid wall as the
upper surface, then, is a good approximation. Lan-
dau and Lifshitz (1959) have presented linearized
solutions that account for both finite h and h′ in
the unsteady flow case. The solution form of the
velocity potential in the lower and upper layers
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are, respectively,

ϕ = Acosh k(z + h) cos(kx − ωt) (4.123)

ϕ′ = Bcosh k(z − h′) cos(kx − ωt) (4.124)

By using the boundary conditions at the interface,
it follows that

ω2 = kg (ρ − ρ ′)
ρ coth kh + ρ ′ coth kh′ (4.125)

We could now have transferred the solutions to a
ship-fixed coordinate system as we did in d). We
will instead consider a different application. The
problem is a tank that is completely filled by two
fluids, and we want to express the natural frequen-
cies for sloshing caused by internal waves.

We must then re-express ϕ and ϕ′ so that they
represent standing waves with zero horizontal

velocity at the vertical wall. This can be obtained,
for instance, by adding propagating waves in the
negative x-direction to ϕ and ϕ′ given by eqs.
(4.123) and (4.124). The zero normal velocity con-
dition on the walls, then, determines k. This implies
infinite numbers of k-values. We concentrate on
the lowest k-value, that is, the lowest natural mode
for sloshing in the tank.

Consider now an example with a tank that has
a length of 0.42 m and in which h = 0.025 m
and h′ = 0.045 m. We can use eq. (4.125) with
wave numbers k that are consistent with the body
boundary conditions to determine the natural fre-
quencies of sloshing in the tank. The highest nat-
ural period has been measured to be 12 s. Argue
by assuming that kh and k′h are small that you can
approximate eq. (4.125) by letting kh and kh′ tend
to zero. Use that expression to find (ρ − ρ ′) /ρ.
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5 Surface Effect Ships

5.1 Introduction

Figure 5.1 shows an example of a surface effect
ship (SES). Figure 1.8 gives a fish-eye view. The
vessel is supported by an air cushion that is
bounded by flexible seal systems at the bow and
stern and by two side hulls. The aft seal is usually
a flexible bag consisting of a loop of flexible mate-
rial open against the side hulls, with one or two
internal webs restraining the aft face of the loop
into a two- or three-loop configuration. In equi-
librium position, there is a very small gap between
the bottom of the bag and the water surface. An
example is a gap height of 3 cm. The bow seal
(skirt) is usually a finger seal consisting of a row
of vertical loops of flexible material. Details are
shown in Figures 5.2 and 5.3. The seal material is
rubber.

There is an air fan system (Figure 5.4) that pro-
vides the excess pressure in the air cushion and
lifts the SES up, thereby reducing the water resis-
tance. The excess pressure in the air cushion causes
a water level inside the cushion lower than the
level outside. Typically, the air cushion carries 80%
of the weight of the vessel. The buoyancy of the
side hulls carries the rest of the weight at zero
speed. When the vessel speed increases, the verti-
cal side hull forces due to the water are caused by
both hydrostatic (buoyancy) and hydrodynamic
pressures.

An SES on cushion has a lower resistance than
a similarly sized catamaran, can achieve a higher
speed with less total power, and has better sea-
keeping characteristics in head sea conditions in
moderate sea states. Calm water resistance com-
ponents of an SES are discussed in Chapters 2 and
4. The relative importance of resistance compo-
nents is exemplified in Figure 4.2. Section 4.3.6
analyzes the wave resistance due to the air cush-
ion. In this chapter, we discuss added resistance
and speed loss in waves, which can be quite severe.

Problem areas for an SES are:

� Wear of skirts
� Power peaks and wear and tear of propulsion/

machinery systems caused by ventilation and
cavitation

� Speed loss in waves
� Cobblestone oscillations

Cobblestone oscillations cause unpleasant ver-
tical accelerations in small sea states and are the
result of resonant compressible flow effects in the
air cushion. They are called cobblestone oscilla-
tions to highlight the resemblance to driving a car
on roughly layed cobblestones. Ride-control sys-
tems are used to dampen some of the “cobble-
stone” effect.

An important consideration is steering and
maneuvering of an SES. Figure 5.5 presents results
from full-scale trial results with SES “Agnes 200.”
In the cushionborne mode, a remarkable speed
loss while turning was experienced at the speed
related to the hump (maximum) of the air cushion
drag. This results from high drift angles and asso-
ciated feeding problems of the waterjets. Turning
radii are difficult to measure under these condi-
tions, and vehicle speed becomes fairly unstable,
particularly at higher wind speeds. Berthing of an
SES at high wind speeds may be difficult. Maneu-
vering of an SES is discussed further in Chapter 10.

A general problem area for all types of high-
speed vessels is the conflict between small weight
and sufficient strength. The effect of impact wave
loading (slamming) is important for all high-speed
vessels. Because air leakage from the air cushion in
high sea states can cause an SES to be off-cushion
and lower the wetdeck inside the cushion, wet-
deck slamming on an SES is of concern. Global
wave loads are important for catamarans, mono-
hulls, and SES when the vessel length is larger
than, say, 50 m. Global wave loads and slamming
are discussed in Chapters 7 and 8, respectively.

5.2 Water level inside the air cushion

We show by an example what the water level typ-
ically is inside the air cushion of a 200-tonne SES
in calm water and zero speed and in static equilib-
rium. Let us say that the fans are able to provide
an excess pressure p0 in the cushion corresponding
to 0.05 times the standard atmospheric pressure

141
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Figure 5.1. SES mine countermeasure vessel by UMOE Mandal. (Printed with permission of the
copyrightholder: Royal Norwegian Navy.)

(Figures 5.6 and 5.7). The pressure in the water is
simply

p = pa − ρgz, (5.1)

where pa is the atmospheric pressure. The coor-
dinate system is defined in Figure 5.7, with the
z-axis pointing vertically upward and z = 0 cor-
responding to the mean free-surface level outside
the cushion. By applying eq. (5.1) on the water
surface inside the cushion, we find

p0 + pa = pa + ρgh,

that is,

h = p0

ρg
.

The standard atmospheric pressure at sea level is
1.01 × 105 Pa. This gives h = 0.5 m. As we see
in Figure 5.6, it is common to use the unit mil-
limeters water column (mm Wc) for the excess
pressure. This can be translated into pascals (Pa)

Figure 5.2. Details of the bow seal (skirt) of an SES.
(Photo: Hans Olav Midtun.)

by noting that 1 mm Wc corresponds to a pres-
sure 10−3ρg in pascals. Here the mass density of
water, ρ is in kilogram per meter cube (kgm−3) and
g = 9.81 ms−2. For instance, using ρ = 1025 kgm−3

gives that 1 mm Wc is equal to 10.055 Pa.
We can find the buoyant volume of the side hulls

of the SES (Figure 5.7) by balancing the weight,
cushion pressure forces, and buoyancy forces,
that is,

p0 Ab + ρgVb = Mg, (5.2)

whereAb is the cushion area, Vb is the hull volume
below z = 0, and M is the mass of the SES. Let us
say Mg = 2 · 106 N, ρg = 104 Nm−3, Ab = 320 m2

and h = 0.5 m. This means Vb = 40 m3. This
is consistent with the fact that the air cushion car-
ries typically 80% of the weight of the vessel.

We have in eq. (5.2) set the buoyancy force equal
to ρgVb. If we blindly had followed Archimedes’
law, this would say that the buoyancy force is equal
to ρg times the submerged volume, but what is
the submerged volume in this case when there
are different free-surface levels inside the cush-
ion and outside the SES? This dilemma can be
solved by instead studying the vertical force on

deck

inner side
of port hull

Figure 5.3. Detailed view of a bow seal consisting of
individual fingers (Moulijn 2000).
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h

Fan

Pa + P0

Pa

Qin

Fan

Figure 5.4. Air fan system. Qin = volume flow rate, pa = atmospheric pressure, p0 = excess pressure
in the air cushion.

the side hulls due to hydrostatic pressure −ρgz.
We can then solve the problem by first pretending
that the free-surface level inside the cushion is the
same as outside the SES. Then we have a situation
in which Archimedes’ law applies, and the sub-
merged volume is well defined. Then we can take
away the water from z = 0 to z = −h inside the
cushion. However, the hydrostatic pressure in this
virtual fluid mass causes only a horizontal force
on the vertical side hulls shown in Figure 5.7. So
when Vb is as shown in Figure 5.7, our formulation
of buoyancy force in eq. (5.2) is correct.

1.0
U/Uo

0.8

0.6

0.4

0.2

0.0
0 5 10 15 20 25 30 35

Rudder angle δ (deg.)

Uo (knots)Cushion
Off
Off
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11
15
22.5
34

Figure 5.5. “Agnes 200” speed reduction in turning cir-
cle. U0 is maximum speed (Skorupka et al. 1992).

5.3 Effect of air cushion on the metacentric
height in roll

The air cushion has a destabilizing effect on the
heel (roll)-restoring moment of an SES. We show
that by studying the heel-restoring moment about
an axis through the center of gravity (COG) of
the SES when the SES has a small heel angle η4

(Figure 5.8).
It is then appropriate to define a body-fixed

coordinate system (x′, y′, z′) with the origin in the
center of gravity (COG). One part of the heel

2100 rpm

2000 rpm

Qin

1800 rpm

Normal
operation

Pressure
(mm Wc)

P

600

400

200

20 40 60

Flow rate
(m3 s–1)

Figure 5.6. An example of fan characteristics for an SES.
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Ab

0.5Vb

pa + po

pa

Fan

z

h
y

0.5Vb

Figure 5.7. Water level inside the air cush-
ion (pa = atmospheric pressure, p0 =
excess pressure in the cushion). No for-
ward speed. Simplistic drawing of the fan.

moment caused by the excess pressure is a result
of the fact that the cushion area A1 disappears
and the cushion area A2 appears (Figure 5.8). We
assume constant cross section along the length of
the SES and can write

A2 = 0.5b�η4,

where b is defined in Figure 5.8 and � is the cush-
ion length. There is an excess pressure p0 acting
perpendicular to A2. This pressure load causes a
heel moment hFG p00.5b�η4 about the COG. Here
hFG is the lever arm for the moment (Figure 5.8).
We get a similar contribution from the fact that A1

disappears. Because A1 = A2, the total contribu-
tion is hFG p0 Abη4. Here Ab = bl is the waterplane
area inside the cushion. This means a destabilizing
moment contribution.

In the same way as is known from conventional
ships, we get contributions from the hydrostatic
pressure. We can divide this effect into two parts.
We first calculate as if the water level is the same
inside and outside the cushion. Then we get similar
expressions as for catamarans. Further, we have to
make a correction because the water level is lower
inside the cushion. We can write this correction
term for the heel moment as

F4HC = −ρg
∫
�

z(y′n′
3 − z′n′

2) ds,

A1

A2

pa

0.5b
p0 + pa

hFG

4

COG

z ′

y ′

4

Figure 5.8. Definitions used in calculating metacentric
height of an SES on cushion at zero forward speed.

where � is the hull surface that we have incorrectly
included by assuming the same water level inside
and outside the SES. Further, n′ = (n′

1, n′
2, n′

3) is
the hull surface normal in the body-fixed coordi-
nate system. The positive normal direction is out-
ward from the hull. If we assume wall-sided body
surface at the free surface, then n′

3 = 0 and n′
2 =

±1 for positive and negative y′-values, respec-
tively. We note that both z and z′ appear in the
formula for F4HC . The origin of the z-term is the
hydrostatic pressure, which is defined relative to
the Earth-fixed coordinate system. We can write

z′ ≈ z − zG − y′η4,

where zG is the z-coordinate of the center of grav-
ity of the vessel. This implies that we can write

F4HC =ρg


∫

�

z2n′
2 ds−zG

∫
�

zn′
2 ds−η4

∫
�

y′zn2 ds


.

The contribution from the two first terms are zero.
This means

F4HC = ρgη4 lb

0∫
− p0

ρg

z dz

= −ρg Ab0.5
(

p0

ρg

)2

η4 = −p0 Ab0.5hη4,

where we have used the fact that h = p0/ρg.
We now sum up the results. We refer to Fig-

ure 5.9 and recall the following definitions:

p0 = static excess pressure in the cushion
(x′, y′, z′) = body-fixed coordinate system with

origin in the center of gravity
(x, y, z) = Earth-fixed coordinate system,

where z = 0 corresponds to mean
free-surface level outside the
cushion
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z ′
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p0 
  g
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Figure 5.9. Definitions used in calculating metacentric
height of an SES on cushion at zero forward speed.

Aw2 = the total waterplane area inside the
hulls

Ab = waterplane area of the cushion
Vb = total volume of the hulls below z = 0

(shaded areas in Figure 5.9)
z′

B = z′-coordinate of center of buoyancy
of Vb.

The heel (roll) moment F4 about an x-axis through
the center of gravity when the SES has a small heel
(roll) angle η4 can be written

F4 = −

− p0 Ab(hFG − 0.5h)

(5.3)

+ ρg
∫

Aw2

y2 ds + ρgz′
BVb


 η4.

The transverse metacentric height GM is
defined by

F4 = −MgGM η4. (5.4)

Because about 80% of the weight of the SES is
carried by the excess pressure in the air cushion, it
makes a big difference if we use ρgVb instead of Mg
in eq. (5.4). As an example of a typical GM -value,
we can mention a GM of 10 m for a 37 m–long SES.
Eq. (5.3) illustrates that the static excess pressure
p0 in the cushion gives a negative contribution to
the metacentric height. This follows by noting that
the center of gravity is in reality higher than the
wetdeck and that hFG − 0.5h is positive. Further,
z′

B is lower when the SES is on-cushion than when
it is off-cushion.

If we want to express the static restoring mo-
ment F4 for finite η4, we write F4 = −MgGZ (η4).
This can be obtained numerically by evaluating
the hydrostatic pressure −ρgz on the wetted hull
together with the static excess pressure p0 on the
hull surface in the air cushion for a given η4. Then
we evaluate the heel moment due to this pressure

distribution. Leakage under a side hull starts to
occur for a certain roll (heel) angle, and the GZ -
value then becomes the same as for a catamaran.

5.4 Characteristics of aft seal air bags

A flexible-bag aft seal is commonly used on an
SES. It was originally developed for the hovercraft
(ACV). A three-loop bag is shown in Figure 5.10,
in which there are two internal webs restraining
the aft face of the bag. There are holes in the webs
to equalize the pressure in the bag. The bag is open
against the side hulls. The bag material is usually
reinforced rubber. Dedicated booster fans provide
air with a pressure inside the bag that is typically
15% higher than in the air cushion. Figure 5.10
shows a system with booster fans from the air cush-
ion through ducts in the wetdeck. The air is flowing
out between the bag and the side hulls and through
drain holes in the lower part of the bag and in
the part facing the open air. There is a small gap
between the lower part of the bag and the free sur-
face in calm water conditions. Advantages of the
flexible-bag aft seal are low weight, no water resis-
tance in calm water conditions, and small leakage
of air through the gap below the bag in heavy sea
conditions. However, the impact between water
and the bag in heavy sea causes wear of the
material.

Figure 5.11 shows the static shape and the four
lowest dynamic modes of a two-loop flexible-bag

Leakage gap

Lower lobe

Mid lobe

Booster fan
Internal restraining webs

p0 + pa

pb + pa

Upper lobe

Figure 5.10. Side-view cross section of a flexible bag in
three-loop configuration. pa= atmospheric pressure. pb

and p0 are static excess pressures in the air bag and in
the air cushion, respectively (Steen 1993).
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0.0

1 2 3

−0.2
−0.4
−0.6
−0.8
−1.0
−1.2
−1.4

Mode shape 1 (f1 = 1.97 [Hz])
Static shape

Figure 5.11. Example of the static configuration and the first four mode shapes of a flexible stern
seal bag. For this configuration, the static difference pressures �P01 and �P02 are 500 Pa and 5500
Pa relative to the air cushion and the atmosphere, respectively. Length dimensions are in meters. The
axial and bending stiffnesses of the bag structure are equal to EA= 0.6 × 106 N and EI = 4.0 Nm2

and the structural mass per unit length of the bag segment is Mm = 4.3 kgm−1 (Ulstein 1995).

aft seal. The calculations are based on setting
the air gap below the bag equal to zero, thereby
neglecting the airflow below the air bag. This air-
flow will cause a suction pressure on the bag and
influence the shape of the bag. It is assumed in
Figure 5.11 that there is a constant pressure differ-
ence �P01 = pb − p0 = 500 Pa between the pres-
sure inside the bag and the air cushion. Further,
there is a constant pressure difference �P02 =
pb = 5500 Pa between the pressure inside the bag
and the atmospheric pressure. This means �P01

and �P02 are pressure loadings on the bag struc-
ture facing the cushion and the air outside the SES,
respectively.

Let us illustrate how the static shape of the bag
can be calculated by just considering one loop
(Figure 5.12). Only tension (membrane) forces in
the structure are considered. The membrane struc-
ture is divided into two segments, OA and AB,
where OA faces the cushion. It is assumed that
the membrane structure has a continuous deriva-
tive at the lowest point, A. The tension, T0, is then
constant along the structure. We can set up the
following equilibrium conditions for segments 1
and 2:

�P01 R1 = T0 (5.5)

�P02 R2 = T0. (5.6)

Here R1 and R2 are the radii of curvature of

the two segments as illustrated in Figure 5.12. So
eqs. (5.6) and (5.6) contain three unknowns: R1,
R2, and T0. However, we can write

Hb = R1(1 − cos θ1) (5.7)

Lb = R1 sin θ1. (5.8)

Here the length Lb and the height Hb are known.
The angle θ1 is defined in Figure 5.12. Eliminating

θ1

θ2

R1

R2

T0

∆P02

∆P01

segment 1segment 2

B

A

Lb

Hb

O

Figure 5.12. Static geometry of a one-loop flexible-bag
seal. It consists of two weightless cable segments with
constant radii of curvature (R1 and R2). The tension
in the two segments is constant and equal (Ulstein
1995).
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θ1 between eqs. (5.7) and (5.8) gives

Hb = R1


1 −

(
1 −

(
Lb

R1

)2
)0.5


 . (5.9)

The unknown R1 can now be found numerically
from eq. (5.9). Eqs. (5.5) and (5.6) then deter-
mine R2 and T0. θ1 follows from either eq. (5.7)
or eq. (5.8).

We can now proceed to find the angle θ2 (Fig-
ure 5.12) that defines the end point B of segment
2. The following relationship can be set up:

θ2 = π − tan−1

[
Hb − R2(1 − cos θ2)

Lb + R2 sin θ2

]
. (5.10)

This must then be numerically solved to find θ2.

If we now proceed to a two-loop bag like the one
in Figure 5.11, one more segment with unknown
radius of curvature R3 and tension T03 has to be
introduced. We can set up a relationship like the
one in eq. (5.6) by replacing R2 and T0 with R3

and T03. The presence of the internal restraining
web implies that T03 differs from the tension in
the lower part of the structure. We refer to Ulstein
(1995) for further details about the analysis. This
also includes the linear dynamic analysis leading
to the mode shapes shown in Figure 5.11. Second-
order differential equations coupling the motions
in the transverse (ηn) and longitudinal (η�) direc-
tions of the bag structure are formulated with nec-
essary boundary conditions. The reason for cou-
pling between ηn and ηl is the radius of curvature
R of the bag structure. The differential equations
can be formulated as

Mm
d2ηn

dt2
= T0

d2ηn

ds2
+ T0 + EA

R
dη�

ds (5.11)
− EA

R2
ηn + �P

Mm
d2η�

dt2
= EA

d2η�

ds2
− EA

R
dηn

ds
. (5.12)

Here Mm is structural mass per unit length, EA is
axial stiffness, T0 is static tension, s is the coordi-
nate along the membrane structure, and �P is the
dynamic pressure difference across the bag struc-
ture. The analysis in Figure 5.11 is based on set-
ting �P = 0, and a small bending stiffness term
EI d4ηn/ds4 was added on the left-hand side of
eq. (5.11). General methods for analysis of ten-
sioned structures are described by Leonard (1988).

20
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Figure 5.13. Different bow seal systems used by
Yamakita and Itoh (1998) during sea trials with the SES
test craft Meguro-2. Side view of Series B test pieces.

5.5 Characteristics of bow seal fingers

Bow seal fingers behave as a flag flapping in the
wind, and their wear rate is proportional to a high
power of the vessel speed, that is, U4. Yamakita
and Itoh (1998) made a broad investigation of the
wear characteristics of the bow seal fingers on the
SES test craft Meguro-2 by means of sea trials.
Detailed views of bow seal fingers have been given
in Figures 5.2 and 5.3. The lower part of the bow
seal was exchangeable, and different materials and
angles α (Figure 5.13) between the bow seal and
the mean free surface were investigated. An opti-
mum angle α from a wear-rate point of view was
found to be about 40◦.

The measured accelerations of the finger tips
were extremely high. The largest value was 7450
times the acceleration of gravity. Figure 5.14 shows

5000

0
0

f [Hz]
400

S
(f

) 
[G

2 rm
s
/H

z]

Figure 5.14. Power spectral density of accelerations due
to finger vibration on the SES test craft Megura-2. Mea-
surements are 100 mm from the tip. RMS (root mean
square) value of accelerations is 418 times the acceler-
ation of gravity g. Ship speed U = 38 knots (Yamakita
and Itoh 1998).
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Figure 5.15. Mean frequencies, f01, f02 of finger vibra-
tions during sea trals with the SES Megura-2. Eq. (9)
refers to theoretical estimate by Yamakita and Itoh
(1998).

an example of the measured power spectral den-
sity S( f ) of vertical accelerations as a function
of frequency f in hertz. It is more common in
marine hydrodynamics to present a spectrum as
a function of ω = 2π f in rad/s. The relationship
between S( f ) and S(ω) is simply that S( f ) df =
S(ω) dω. Another way of saying this is that the
area under the spectrum should be the same using
S( f ) and S(ω). We can define mean frequencies

f01 = m1

m0
, f02 =

√
m2

m0
, (5.13)

where

mn =
∞∫

0

f nS( f ) df . (5.14)

These frequencies are presented in Figure 5.15,
together with an estimate by Yamakita and Itoh
(1998). We will do a similar analysis based on their
ideas. The formulation of their model is based on
Figure 5.16. There is a rigid flat plate of length � in
the free surface that can rotate with angle θ about

A
Water surface

θ

U

Finger

�

Figure 5.16. A simplified model of finger vibrations pro-
posed by Yamakita and Itoh (1998). Note that the elastic
properties are not accounted for.

a point A. One should note that assuming a rigid
plate is a simplification. The bow seal is elastic.
If θ is fixed, a steady hydrodynamic force acts on
the plate that is a function of the forward speed U.
Because the Froude number U/ (�g)0.5 of the plate
is high and the submergence is low, hydrostatic
pressure loads on the plate can be neglected. The
difference between our analysis and Yamakita and
Itoh’s analysis is how this steady hydrodynamic
force on the plate is handled. However, our anal-
ysis is of a qualitative nature.

A two-dimensional hydrodynamic flow past the
rigid flat plate is assumed. The static (steady) equi-
librium position of the plate follows by consider-
ing the effect of the static excess pressure p0 in the
cushion, the hydrodynamic loads on the plate, and
the weight distribution. If the moment about the
point A is taken, these three load contributions
must cause balance.

The steady hydrodynamic load on the plate
is a function of the angle of attack θ shown in
Figure 5.16. If θ increases, the steady hydrodyna-
mic loads on the plate will increase. If θ decreases,
the steady hydrodynamic loads decrease. If we
consider this in combination with the excess pres-
sure and the weight of the plate, we find that
the steady hydrodynamic loads cause a restoring
(spring) effect.

Let us try to exemplify this restoring effect by
using linear potential flow theory for the flow
past the plate. A more accurate description of the
hydrodynamic loads on a high-aspect–ratio plan-
ing surface is given in section 9.2.4. Because the
Froude number U/ (g�)0.5 of the plate is very high,
we simplify the free-surface condition as ϕ = 0,

where ϕ is the velocity potential due to the plate.
Further, because linear theory is assumed, this
free-surface condition is imposed on the mean
free-surface position. If we now take the image of
the plate above the mean free surface, the prob-
lem is the same as the linear steady flow past a thin
flat plate in infinite fluid (see Chapter 6). So we use
that solution by noting that, in our case, the hydro-
dynamic pressure loads act only on the lower part
of the plate whereas in the infinite fluid problem,
fluid forces act on both the lower and upper parts
of the plate. So we divide the infinite fluid loads by
two. The lift coefficient on the plate in the infinite
fluid is 2πθ , and the force acts �/4 from the lead-
ing edge (i.e., point A in Figure 5.16). This gives
the following pitch moment F5 per unit length
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about A:

F5 = ρ

8
πU2�2θ. (5.15)

We divide θ into a static part and small time-
dependent pitch angle η5 and write the equation
for η5 as

(I55 + A55)
d2η5

dt2
+ ρ

8
πU2�2η5 = 0. (5.16)

Here I55 and A55 are, respectively, the structural
mass and added mass moment of inertia in pitch
about point A. Yamakita and Itoh (1998) base
their estimate of A55 on the infinite frequency
results by Newman (1977). This means A55 =
9πρ�4/256. I55 can be neglected relative to A55.

Assuming a time dependence exp (iωnt) with i
as the complex unit in eq. (5.16) gives a natural
frequency:

ωn = 4
3

√
2U/�. (5.17)

This value is 27% higher than what Yamakita
and Itoh (1998) estimated. The calculations in
Figure 5.15 are based on � = 0.18 m. Eq. (5.17)
shows that the frequency increases with speed,
that is, similarly to the experimental results in
Figure 5.15. However, we cannot quantitatively
predict the experimental frequencies with this sim-
ple formula.

Another matter is that the finger vibrations are
probably caused by instabilities. This means that in
our simplified model, we need a negative damping
term.

In order to improve our model, we may need
to introduce nonlinear free-surface effects for 2D
planing (see section 9.2.4). Further, Malakhoff
and Davis (1981) demonstrated that the bow
seal accelerations are a result of 3D folding
and dynamic instability (flutter) of the finger
material.

5.6 “Cobblestone” oscillations

An important effect of the air cushion pressure for
an SES in small sea states is the so-called cobble-
stone effect. It is caused by resonance effects in
the air cushion. Figure 5.17 shows full-scale mea-
surements of the phenomena on a 35 m–long SES.
The power spectrum of vertical accelerations at
the bow shows large energy for about 2 Hz and
5 Hz. At the resonance frequency of 2 Hz, the
dynamic part of the excess pressure in the cushion

0
0

1

2

3

4
S(f) [(ms−2)2 s]

2 4

Freq. (Hz)

6 8 10

Figure 5.17. Full-scale measured power spectrum S( f )
of vertical accelerations at the bow of a 35 m–long SES
with flexible-bag aft seal, running at 45 knots in head
sea waves with significant wave height estimated to be
H1/3 = 0.3 to 0.4 m, f = frequency in hertz (Steen
1993).

is oscillating with nearly the same amplitude
all over the cushion. Compressibility effects of
the air in the cushion are essential. The oscilla-
tions are excited because the waves change the
enclosed air-cushion volume. It is the vertical ves-
sel accelerations that are of concern. The verti-
cal vessel motions associated with the cobblestone
oscillations are small. This follows simply by not-
ing that the frequency of oscillation ω is high and
that the motion amplitudes are equal to accelera-
tion amplitudes divided by ω2.

Figure 5.18 gives an overview of the physical
effects that matter in describing the cobblestone
oscillations (Ulstein 1995). We will not consider
all these aspects in detail. The 1D wave equation
referred to in the figure means that spatially vary-
ing one-dimensional standing acoustic waves and
spatially uniform dynamic air-cushion pressures
are studied. These two aspects are handled sepa-
rately in the following text. However, we do not
discuss in detail the effect of the dynamic pressure
in the air bag, the fact that the water waves impact
on the bag, and elastic vibrations of the bag. The
vibrations of the bag are like a wave maker for the
acoustic wave motions in the air cushion. The fig-
ure also mentions spatially varying air pressure in
the vicinity of the air bag. Because this occurs on a
length scale that is short relative to the important
acoustic wavelength, it can be analyzed by assum-
ing incompressible fluid. Because of the continuity
of fluid mass, the escaping airflow under the air bag
must have a mean velocity that is dependent on the



P1: GDZ
0521845688c05 CB921-Faltinsen 0 521 84568 7 October 31, 2005 20:36

150 • Surface Effect Ships

Air
leakage

Spatially varying
air pressure

Water impact loads
Incident waves

Air
leakage

Bag
pressure

Air flow
into bag

Heave & Pitch
accelerations Fan flow

1-D wave equation:
air cushion pressure

Flexible bag motions

Air flow
out of bag

Figure 5.18. Physical effects influenc-
ing cobblestone oscillations of an SES
(Ulstein 1995).

local height between the air bag and the water sur-
face. Because high velocity implies small pressure,
the escaping airflow causes a suction force on the
air bag. This influences the mean escape area of
the air from the air cushion. Later we see that this
influences the damping level of the cobblestone
oscillations.

The following text considers uniform pressure
and acoustic wave resonance separately. Because
the frequency range of these two phenomena are
very different and the coupling between the air
motion modes associated with uniform pressure
and acoustic wave resonance is weak in practice, it
is appropriate to consider these two sub-problems
separately.

5.6.1 Uniform pressure resonance
in the air cushion

Let us present the main principles in the analysis of
uniform pressure resonance that shows how a 35 m
SES typically has a resonance frequency of 2 Hz.
We consider head sea deep-water waves. Before
presenting the details, we must introduce the fre-
quency of encounter in regular head sea waves.
Let us concentrate on one point P on the vessel
and consider the time Te it takes for two succes-
sive wave crests to pass point P. This will obviously
be less than the wave period T0. From Figure 5.19,
we can deduce that

UTe + cTe = λ, (5.18)

where U is the ship speed, c is the phase speed of
the waves (i.e., the propagation speed of the wave
profile), and λ is the wavelength. We can write c =
ω0/k, where ω0 = 2π/T0 and k = ω2

0/g = 2π/λ

(see Table 3.1). This means that the circular fre-
quency of encounter ωe = 2π/Te between the ship

and the waves for head sea can be written as

ωe = ω0 + ω2
0U/g. (5.19)

In section 7.2, this is derived for a general heading
angle.

Equations of heave and dynamic cushion
pressure and density
The pressure is assumed to be constant in the
whole air cushion. If the longitudinal position of
the center of gravity is in the middle of the air
cushion and we neglect the effect of the side hulls,
there will not be any effect due to pitch. The fol-
lowing analysis is based on Kaplan et al. (1981) and
neglects pitch. There are three unknown variables:
the heave η3 at the center of gravity of the SES, the
dynamic variations of the pressure, and the mass
density of the air in the air cushion. These variables
require three equations:

1. Continuity equation for the air mass in the
cushion

2. Relationship between pressure and mass
density

3. Newton’s law

The continuity equation for the air mass in the
cushion can formally be written as

ρa Qin − ρa Qout = d
dt

(ρc �). (5.20)

Here

ρa = Air mass density at equilibrium
pressure p0 + pa

ρa Qin = Air mass flow per unit time through
the fans

ρa Qout = Air mass flow per unit time due to
leakage
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P P

UTe cTe

λ

Figure 5.19. An SES in regular head sea waves with an explanation of the frequency of encounter
effect (U = forward speed of the SES, Te = encounter period between the SES and the waves, c =
phase speed of the waves, λ = wavelength). (Based on Figure 5.7, copyrightholder: Royal Norwegian
Navy.)

ρc = Dynamic air mass density of the
pressurized air cushion

� = Air-cushion volume

We have neglected the influence of the air bag. The
relationship between pressure and mass density is
based on adiabatic conditions, that is,

p
p0 + pa

=
(

ρc

ρa

)γ

, (5.21)

where γ is the ratio of specific heat for air. γ = 1.4
for air. Further,

p = p0 + pa + µ(t)p0

is the total pressure in the air cushion.
Finally Newton’s law gives

M
d2η3

dt2
= p0µ(t)Ab. (5.22)

Here p0µ(t) is the dynamic part of the pressure
in the air cushion and Ab is the cushion area.
Eq. (5.22) implies that the hydrodynamic forces
on the hull are neglected. The justification is that
typically 80% of the weight of the SES is carried
by the air cushion. This tells indirectly about the
relative importance of hydrodynamic forces and
forces due to the dynamic excess pressure in the
air cushion.

The next step in the analysis is to linearize the
equations. Let us start with the right-hand side of

eq. (5.20), which can be expressed as

dρc

dt
� + ρc

d�

dt
≈ dρc

dt
Abh b + ρa

d�

dt
, (5.23)

where (see Figure 5.20)

Ab = cushion area
h b = cushion plenum height

We can express dρc/dt by the pressure varia-
tions by using eq. (5.21). The first step is to lin-
earize eq. (5.21). We can write

ρc

ρa
=

(
1 + µ(t)p0

p0 + pa

) 1
γ

≈
(

1 + 1
γ

µ(t)p0

p0 + pa

)
.

This means

dρc

dt
= ρa

γ

p0

p0 + pa

dµ

dt
. (5.24)

hb

Ab

p0 + pa

Figure 5.20. Transverse cross section of an SES on-
cushion.
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The air-cushion volume will change with time
because of the wave motion in the cushion area
and the heave motion. We can write

d�

dt
= Ab

dη3

dt
+ dVW

dt
, (5.25)

where dVW/dt is associated with the wave motion
and is denoted in the literature as the wave volume
pumping.

Let us express dVW/dt by assuming that this can
be described by the incident waves only. This is not
appropriate for lower frequencies when ω2

e b/g is
of order one (Ogilvie 1969b). Here b is the breadth
of the air cushion. The pressure oscillations in the
air cushion will then cause free-surface waves.

We can express the incident waves in an Earth-
fixed coordinate system as

ζ = ζa sin(ω0t − kX) (5.26)

(see Table 3.1). We then introduce a coordinate
system (x, y, z) moving with the ship’s forward
speed, that is, X = x − Ut. This gives

ζ = ζa sin(ωet − kx). (5.27)

We assume an air cushion of constant breadth b
and length �. Further, the skirt and air bag have
x-coordinates −0.5� and 0.5�, respectively. Then

dVW

dt
= −b

0.5�∫
−0.5�

dζ

dt
dx

= −bζaωe


 0.5�∫

−0.5�

[cos(ωet) cos(kx)

+ sin(ωet) sin(kx)] dx


 .

Hence,

dVW

dt
= −2bζaωe

k
sin(0.5k�) cos(ωet)

or

VW = VWa sin ωet = −2bζa

k
sin(0.5k�) sin ωet.

(5.28)

We now linearize the effect of Qin and Qout

in eq. (5.20). Linearizing the fan charactistic (see
Figure 5.6) gives

Qin = Q0 +
(

∂ Q
∂p

)
0

p0µ, (5.29)

where Q0 is the mean flow rate due to the fans.
This means (∂ Q/∂p)0 is found by a quasi-steady

approach by using the fan characteristics, as illus-
trated in Figure 5.6.

Qout through small leakage areas AL are esti-
mated by the formula

Qout = 0.61AL

[
2 (p0 + µp0)

ρa

]1/2

. (5.30)

A contraction coefficient of 0.61 for the escap-
ing jet flow has been used here. In reality, this
will depend on the local details of the structure at
the leakage area. Leakage will, for instance, occur
under the air bag (see Figure 5.10). AL will then
be influenced by the relative vertical motions at
the leakage area. However, this generally has a
smaller influence on the dynamic variations of Qout

than the effect of dynamic pressure variations. It
implies that AL is considered a constant in the fol-
lowing analysis. We now Taylor expand eq. (5.30)
about µ = 0, that is,

Qout ≈ Qout

∣∣∣∣
µ = 0

+ µ
∂ Qout

∂µ

∣∣∣∣
µ = 0

.

By noting that Qout |µ=0 must be equal to Q0, we
find that

Qout = Q0

(
1 + 1

2
µ

)
. (5.31)

It now follows that the linearized version of
eq. (5.20) can be written as

Abh b

γ (1 + pa/p0)
dµ

dt
+ Ab

dη3

dt (5.32)

+
(

0.5Q0 − ∂ Q
∂p

∣∣∣∣
0

p0

)
µ = −dVW

dt
.

We can eliminate µ from eq. (5.32) by using
eq. (5.22). This gives a third-order differential
equation in η3. If we integrate this equation once
with respect to time, we get

Mh b

γ (p0 + pa)
d2η3

dt2
+ M

p0 Ab

[
0.5Q0− ∂ Q

∂p

∣∣∣∣
0

p0

]
dη3

dt

+Abη3 = −VW. (5.33)

This assumes a steady-state solution. The struc-
ture of this equation is now in a form that is famil-
iar to us from dynamics of mechanical systems.
This means we can make the analogy to a mass
term associated with the acceleration d2η3/dt2, a
damping term with the velocity dη3/dt, a spring
term with the motion η3, and an excitation on
the right-hand side of the equation. This means
that the inflow and leakage from the cushion act
as damping and the wave motion in the cushion
area as excitation. Because ∂ Q/∂p |0 is negative in
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normal operations (see Figure 5.6), the heave
damping will always be positive. The air cushion
acts like a spring.

The undamped natural circular frequency ωn is
found by setting damping and excitation equal to
zero and assuming η3 is proportional to exp(iωnt).
This gives

ωn =
[

Abγ (p0 + pa)
Mh b

] 1
2

. (5.34)

The critical damping of the system given by
eq. (5.33) is two times ωn times the mass term.

Eq. (5.33), therefore, gives a critical damping:

bcr = 2
Mh b

γ (p0 + pa)
ωn.

The ratio ξ between the damping and the critical
damping is

ξ =

[
0.5Q0 − ∂ Q

∂p

∣∣∣∣
0

p0

]
γ

(
1 + pa

p0

)
2h b Abωn

. (5.35)

This is an important parameter characterizing
the response amplitude at resonance (see sec-
tion 7.1.4).

Let us write eq. (5.33) as

mac
d2η3

dt2
+ bac

dη3

dt
+ cacη3 = −VWa sin ωet,

(5.36)

where VWa is given by eq. (5.28). After finding the
steady-state solution of η3 from eq. (5.36) (see sec-
tion 7.1.4), we can obtain the corresponding accel-
eration by differentiating η3 twice with respect to
the time. The amplitude a3a of the vertical accel-
eration at the center of the gravity of the SES is
then

a3a = ω2
e |VWa |[

m2
ac

(
ω2

n − ω2
e

)2

+ ω2
e b2

ac

]0.5 . (5.37)

By using eq. (5.22) we can then find the dynamic
pressure in the air cushion.

Example: Natural frequency, damping, and
vertical accelerations
Consider an SES with mass M = 2 · 105 kg, a
cushion length of 40 m, a cushion beam of 10 m,
and a cushion plenum height of 2 m. Assume
p0 = 400 mm Wc (= 4.022 · 103 Pa when ρ =
1025 kgm−3), Q0 = 50 m3s−1, and ∂ Q/∂p |0 =
−4.5 · 10−3 m3s−1Pa−1. This corresponds to real-
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Figure 5.21. Example of calculated amplitude a3a of
vertical accelerations at the center of gravity of a 200-ton
SES at forward speed 25 ms−1 head sea regular waves
of wavelength λ and amplitude ζa .

istic values and gives ωn = 12.1 rad/s, fn =
ωn/(2π) = 1.9 Hz, and ξ = 8 · 10−2.

We then assume a forward speed U = 25 ms−1.

The amplitude a3a of the vertical acceleration of
the center of gravity of the SES in head sea reg-
ular waves with wavelength λ and amplitude ζa is
presented in Figure 5.21. The natural frequency ωn

corresponds to λ = 15.5 m. This can be obtained
by setting ωe = ωn in eq. (5.19) and solving this
equation with respect to ω0. This gives

ω0 =
− g

U +
[( g

U

)2 + ( 4ωng
U

)]0.5

2
.

The corresponding wavelength is obtained by
assuming that ω2

0/g = k = 2π/λ. We see that the
largest response occurs in the vicinity of λ =
15.5 m. The reason a3a is zero for several λ-values
in Figure 5.21 is the sin (0.5k�)-term in VW (see
eq. (5.28)). Because we have approximated VW by
saying that the air cushion oscillations do not cause
free-surface waves, the cancellation of VW for cer-
tain wavelengths is an approximation.

In a sea state, there are many regular wave
components (see Chapter 3). The significant wave
height H1/3 is between 0.3 and 0.4 m for the data
presented in Figure 5.17. A wavelength of 15.5 m is
realistic in such a sea state. This shows that the res-
onance oscillations with 1.9 Hz natural frequency
can be excited in realistic sea states. How to deal
with the response in irregular seas is described in
section 7.4.
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Scaling
By approximating Mg as p0 Ab (this gives about
80% of Mg), we can write eq. (5.34) as

ωn ≈
[

γ g(1 + pa/p0)
h b

]0.5

.

Further, pa/p0 is large. For instance, pa/p0 is 25 in
the previously presented example. This means

ωn ≈
[

γ gpa

p0h b

]0.5

=
[

γ pa

ρhh b

]0.5

. (5.38)

Here ρ is the mass density of the water and h is the
vertical distance between mean free-surface levels
outside and inside the cushion (see Figure 5.7).

Let us use eq. (5.38) to discuss scaling from
model tests to full scale. By using superscripts (m)
and (p) to indicate model and full scales, we can
write

ω
(m)
n

ω
(p)
n

=
[

h(p)h(p)
b

h(m)h(m)
b

]0.5

. (5.39)

It is then assumed that ρ and pa are the same in
model and full scales. Let us introduce Lm and Lp

as the length of the SES in model and full scales.
The weight and Ab of the SES scale are 3

L and 2
L,

respectively. Here L = Lp/Lm. Because p0 Ab =
ρghAb ≈ Mg, h scales as L. The consequence is
that h b also scales as L. Eq. (5.39) then gives

ω
(m)
n

ω
(p)
n

= Lp

Lm
. (5.40)

However, model tests are based on Froude scal-
ing. This means ω (L/g)0.5 should be the same in
model and full scales. Eq. (5.40) does not satisfy
this. According to eq. (5.40), the natural frequency
will be too high in model scale to detect cobble-
stone oscillations.

So what can we do in order for ωn to satisfy
Froude scaling ? If we go back to eq. (5.38), we
could change the atmospheric pressure pa . How-
ever, depressurized towing tanks with wave mak-
ers are certainly not common, if they exist at all.
Let us say we had been able to Froude scale ωn.

We must also consider the scaling of the damping.
However, we will not deal with the details of scal-
ing of damping. It is also difficult in model tests to
generate quality waves with the small wavelengths
needed to study cobblestone oscillations. Anyway,
a common procedure is not to do model tests
with cobblestone oscillations. In model tests, one
considers only sea states in which the dominant

frequency is sufficiently low for the air cushion
dynamics to be insignificant. Cobblestone oscilla-
tions are instead studied numerically and by full-
scale tests. In the next section, we proceed with
analyzing cobblestone oscillations due to acoustic
wave resonance.

5.6.2 Acoustic wave resonance in the air cushion

The resonance frequency of about 5 Hz illustrated
in Figure 5.17 is the result of acoustic standing
waves. The interaction with the flexible-bag sys-
tem is important (Steen 1993). An irrotational lin-
ear acoustic flow under adiabatic conditions can
be described by the wave equation (Landau and
Lifshitz 1959)

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
− 1

c2

∂2ϕ

∂t2
= 0 (5.41)

and proper boundary and initial conditions. Here
ϕ is the velocity potential for the flow in the pres-
surized air cushion. The fluid velocity u is given
by ∇ϕ, and c means the speed of sound, which for
gases can be expressed as

c = (∂p/∂ρ)0.5
s . (5.42)

The subscript s means constant entropy, that
is, we can use eq. (5.21) to describe the relation-
ship between pressure and density. This is the
same as an adiabatic relationship. Using eq. (5.21)
with mean pressure equal to atmospheric pres-
sure and mean mass density 1.226 kgm−3 gives
c = 339 ms−1. We must emphasize that eq. (5.21)
is valid for gases and not for a liquid. Because
the speed of sound in water is about 1500 m/s, we
see that using eqs. (5.21) and (5.42) does not lead to
the correct answer. We must for a liquid introduce
the “elasticity of the volume” κ = ρ dp/dρ. The
value of κ for a given liquid varies with the tem-
perature, but only slightly with the pressure. The
speed of sound can be expressed as c2 = κ/ρ0 =
(dp/dρ)ρ0

, where ρ0 is the equilibrium mass den-
sity of the liquid.

We should note that eq. (5.41) gives us a Laplace
equation when c → ∞. A consequence of this is
as follows. Consider a body in infinite fluid. If we
assume incompressible fluid, the flow disturbances
caused by the body will propagate with infinite
velocity, corresponding to c = ∞. This means that
if a body is set into motion, we immediately see
a fluid motion everywhere in the fluid. Consider,
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for instance, irrotational flow past a circular cylin-
der in an infinite incompressible fluid. We then
know the analytic solution. Whatever value of the
coordinate we use in this expression, the velocity
potential will have a value. This is true even far
away. If we had accounted for compressibility, sig-
nals would have taken a finite time to propagate.

We will explain the resonance frequency by a
simplified analysis. We assume one-dimensional
acoustic waves in the longitudinal direction of the
air cushion. We can write the velocity potential of
a standing wave system as

ϕ = α cos(ω t) cos(ω x/c). (5.43)

We can easily verify that eq. (5.43) is a solution of
eq. (5.41). The flow velocity can be written as

u = ∂ϕ

∂x
= −α

(ω

c

)
cos(ω t) sin(ω x/c) (5.44)

and the linearized dynamic pressure as

p = −ρa
∂ϕ

∂t
= ρaωα sin ω t cos(ω x/c). (5.45)

Here ρa is air mass density at static equilibrium.
We see that u = 0 at x = 0, πc/ω, 2πc/ω, and
so on. This means if the two ends of the cushion
correspond to x = 0 and x = nπc/ω, (n = 1, 2, . . .),
we have a resonance condition in the air cushion.
Let us concentrate on n = 1 because this represents
the most important case. It means that

πc
ω

= �,

where � is the length of the cushion. Let us say that
� = 29 m, c = 340 ms−1. We get that the resonance
frequency is

f = ω/2π = 5.9 Hz.

Figure 5.17 indicates that the resonance frequency
should be lower, that is, about 5 Hz. The reason
is interaction with the bag system (Steen 1993).
We note that the spatially varying pressures have
their maximum absolute values at the ends of the
cushion. They are out of phase at the two ends
of the cushion. That means the standing acous-
tic pressure system creates a pitching moment on
the wetdeck of the SES, that is, the acoustic res-
onant waves cause pitching accelerations, result-
ing in vertical accelerations of the vessel that are
largest at one of the ends of the vessel. We should
recall that the uniform pressure resonance causes
a heave acceleration of the vessel.

Simplified response model
We present a simplified response model for
pitch accelerations at acoustic pressure resonance.
There are two unknowns in the following equation
set: the velocity potential ϕ for the motion of the
air in the cushion and the pitch angle η5 as defined
in Figure 7.11. The two equations are

1. Balance of moments following from
Newton’s law

2. The wave equation (5.41) with boundary
conditions

The wave equation plays the same role as the equa-
tions for continuity of air mass and the relation-
ship between pressure and mass density in the uni-
form pressure resonance problem. However, the
wave equation allows for airflow inside the cush-
ion, which is needed in the acoustic resonance
problem.

The following assumptions are made:

� Head sea regular wave excitation with fre-
quency of encounter in the vicinity of the lowest
natural frequency for standing sound waves in
the longitudinal direction

� Hydrodynamic loads on the side hulls are
negligible

� The effect of skirt and bag is represented as rigid
walls (Figure 5.22).

� Air leakage is through louvers at the deck (Fig-
ure 5.22)

We choose a coordinate system (x, y, z), as
shown in Figure 5.22, with an origin at the mean
free surface inside the cushion. The center of grav-
ity has zero x-coordinate. The x-coordinate of the
centers of the louvers and the lift fans are, respec-
tively, xL and xF . The closure of the air cush-
ion at the front and aft end is at x = ±0.5�. The
mean position of the air cushion has rectangular
cross sections with a breadth b, height h b, and
length �.

The velocity potential ϕ for the flow in the com-
pressible cushion can be described by eq. (5.41).
We will integrate this equation over a volume �

with length �x in the air cushion (Figure 5.23). The
boundary of � includes part of the free surface and
the wetdeck. We study first

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
= ∇ · ∇ϕ. (5.46)
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x = 0.5 � x = −0.5 �

AIR CUSHION
x

zhb

xLxF

LOUVER

LIFT FANS

Figure 5.22. Simplified model of an air cushion used in the analysis of acoustic wave resonance.

It follows by the divergence theorem (see
eq. (2.205)) that∫∫∫

�

∇ · ∇ϕ dτ =
∮
S

∇ϕ · n ds, (5.47)

where the surface S encloses the volume � and n
is the surface normal with positive direction out
of �. We study first ∂ϕ/∂n on the free surface SF .
Figure 5.23 illustrates that the incident steady flow
velocity U has a component U∂ζ/∂x in the nor-
mal direction. Here z = ζ represents the free-
surface shape. Further, the horizontal and vertical
velocities ∂ϕ0/∂x and ∂ϕ0/∂z due to the incident
waves must be decomposed in the normal direc-
tion. However, only ∂φ0/∂z contributes according
to linear theory. The result is

∂ϕ

∂n

∣∣∣∣
SF

= U
∂ζ

∂x
− ∂ϕ0

∂z

∣∣∣∣
z=0

. (5.48)

Expressing ζ as ζa sin(ωet − kx) and ∂ϕ0/∂z as
ω0ζa cos(ωet − kx) gives

∂ϕ

∂n
= − ωeζa cos(ωet − kx)

= − ωeζa [cos(ωet) cos(kx) (5.49)

+ sin(ωet) sin(kx)] on SF .

This means that we neglect the effect of the air
cushion on the water flow and use the incident

WET DECK

AIR CUSHION
n n

Ω

U

U
∂ζ
∂x

∂ϕ
∂n

FREE SURFACE
ELEVATION ζ

∆x

= −xη• 5

Figure 5.23. Control volume � with length �x in the air
cushion of an SES. The boundary of � includes part of
the free surface and the wetdeck.

waves to represent ∂ϕ/∂n at the interface between
the air cushion and the water.

At the rigid part of the top of the cushion, that
is, outside the outlet of air from the lift fan and
inlet of air to the louvers, we can write

∂ϕ

∂n
= ∂ϕ

∂z
= −x

dη5

dt
on z = h b. (5.50)

An average ∂ϕ/∂z at the louvers follows by con-
sidering the linearized dynamic part Qd

out of the
air mass flux Qout (see eq. (5.30)). We write AL =
AL0 + �AL and perform a series expansion and
omit the mean part. This gives

Qd
out = 0.61ALO

[
2p0

ρa

]1/2 (
1
2
µL + �AL

ALO

)
.

(5.51)

Here ALO is the mean leakage area and �AL is a
controlled leakage area, which we discuss in sec-
tion 5.6.3. Further, µL p0 is the spatially varying
dynamic pressure at the louver. The air mass flow
rate at the fan lift inlet is described by eq. (5.29).
The linearized dynamic part Qd

in is

Qd
in =

(
∂ Q
∂p

)
0

p0µF , (5.52)

where p0µF is the dynamic pressure at the lift fan.
We consider now the contribution to the right-

hand side of eq. (5.47) from integration along the
vertical surfaces at x and x + �x. These vertical
surfaces extend from z = 0 to hb (see Figure 5.22)
and from y = −0.5b to 0.5b. This means that we
study

I1 =
0.5b∫

−0.5b

dy

hb∫
0

dz
[

∂ϕ

∂x

∣∣∣∣
x+�x

− ∂ϕ

∂x

∣∣∣∣
x

]
.

A Taylor expansion in x of the integrand gives

I1 =
0.5b∫

−0.5b

dy

hb∫
0

dz
∂2ϕ

∂x2
�x. (5.53)
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We assume now that the variations of ϕ in the y-
and z-directions are much smaller than in the x-
direction. We therefore introduce

ϕ̄ = 1
h bb

0.5b∫
−0.5b

dy

hb∫
0

ϕ dz. (5.54)

Eq. (5.53) can then be approximated as

I1 = h bb
∂2ϕ̄

∂x2
�x.

Returning now to eq. (5.41), using the previous
approximations and letting �x → 0 gives

∂2ϕ̄

∂x2
− 1

c2

∂2ϕ̄

∂t2
+ 1

h bb
0.5b∫

−0.5b

dy

[
∂ϕ

∂z

∣∣∣∣
z=h b

+ ∂ϕ

∂n

∣∣∣∣
SF

]
= 0. (5.55)

We now express the solution of eq. (5.55) as

ϕ̄ = β (t) sin
(π

�
x
)

. (5.56)

Here β(t) is an unknown that will follow from solv-
ing the problem. We note that eq. (5.56) satisfies
a rigid wall condition, that is, ∂ϕ̄/∂x = 0 at x =
±0.5�. The dynamic pressure can be expressed by
linearized Bernoulli equation as

p = −ρa
∂ϕ̄

∂t
= −ρa β̇ (t) sin

(π

�
x
)

, (5.57)

where dot is the same as time derivative. This
means that µL in eq. (5.51) is

µL = −ρa β̇ (t) sin
(π

�
xL

)/
p0. (5.58)

Similarly, we can find an expression for the lift
fan coefficient µF . However, we will set xF = 0 in
the following mathematical expressions. This gives
that µF is zero. Another matter is that it is benefi-
cial from a cobblestone oscillation point of view to
have both xF and xL close to the ends of the cush-
ion. This will be more evident later. We substitute
eq. (5.56) into eq. (5.55), multiply the resulting
expression by sin (πx/�), and integrate over the
cushion length. Eq. (5.50) is assumed to be math-
ematically valid over the whole cushion length.
This gives a small difference from that obtained
by allowing for the louvers and the fan lift. How-
ever, physically, we must incorporate the effect of
eqs. (5.51) and (5.52) in addition.

This process involves the integrals
0.5�∫

−0.5�

sin2(πx/�) dx = 0.5� (5.59)

0.5�∫
−0.5�

x sin(πx/�) dx = 2(�/π)2 (5.60)

0.5�∫
−0.5�

cos(kx) sin(πx/�) dx = 0 (5.61)

0.5�∫
−0.5�

sin(kx) sin(πx/�) dx

= 2kcos(0.5k�)
(π/�)2 − k2

. (5.62)

This leads to the following equation:

− 1
c2

β̈(t)
(

�

2

)
− K1β̇(t) −

(π

�

)2 �

2
β(t)

− 1
h b

2
(

�

π

)2

η̇5(t) = K2 sin ωet, (5.63)

where

K1 = ALO

h bb
0.61

[
2ρa

p0

]1/2

0.5 sin2
(πxL

�

)
(5.64)

K2 = ωeζa
2k cos(0.5k�)

h b((π/�)2 − k2)
. (5.65)

When k� = π, we note that cos(0.5k�)/(π − k�) =
0.5.

Then we need to satisfy the balance of moments
following from Newton’s law. The dynamic air-
cushion pressure given by eq. (5.57) gives the fol-
lowing pitch moment on the SES:

F5 = ρa β̇ (t) b

�/2∫
−�/2

x sin
(π

L
x
)

dx

= ρa β̇ (t) 2(�/π)2b.

By neglecting the hydrodynamic loads on the side
hulls, we then have

I55η̈5 = ρa2(�/π)2bβ̇ (t) . (5.66)

Here I55 is the mass moment of inertia of the SES
in pitch. By integrating eq. (5.66) with respect to
time and implicitly assuming a steady-state solu-
tion with frequency equal to the excitation fre-
quency and by substituting into eq. (5.63) we
obtain

�

2c2
β̈(t) + K1β̇(t) + K3β (t) = −K2 sin ωet,

(5.67)
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where

K3 =
(π

�

)2 �

2
+ 4b

h b

(
�

π

)4
ρa

I55
. (5.68)

So we once more have the structure of a mass-
spring system with damping that is excited by inci-
dent wave volume pumping of the air cushion.
Further, the damping source is the air leakage,
as it was for the uniform pressure resonance. If
the x-coordinates of the lifting fans were different
from zero, there would be an additional term in K1.

We note from the damping coefficient K1 given by
eq. (5.64) that maximum damping effect is created
by placing the louvers at either the front or aft end
of the air cushion. The same applies for the fan out-
let. For the uniform pressure resonance, there was
a damping effect from the lift fans. Because the lift
fans are placed at x = 0, there is no effect on the
studied acoustic pressure resonance problem.

More complete treatments of acoustic pres-
sure resonance coupled with uniform pressure
resonance for realistic air cushions and air bags
are found in Steen (1993), Sørensen (1993), and
Ulstein (1995).

5.6.3 Automatic control

In reality, one would use an automatic control sys-
tem to damp out some of the cobblestone effect.
This is done by controlling the airflow out from the
cushion in such a way that it effectively acts as a
damping on the system. In order to do that prop-
erly, one needs a simplified but rational mathemat-
ical method that accounts for the dynamic pressure
variations in the air cushion in combination with
the global heave and pitch accelerations of the ves-
sel. We will illustrate a possible automatic control
system proposed by Sørensen (1993) (Figure 5.24).
It is common jargon to call an automatic control
system such as this a ride control system.

Sørensen used a louver system consisting of
two vent valves in the front of the air cushion.
The opening and closing of the vent valves con-
trol the airflow from the air cushion so that one
gets a damping effect on the system. There are
three pressure sensors in the air cushion and one
accelerometer on the vessel as part of the ride con-
trol system. By properly filtering the signals from
the measurement units and using a mathematical
model for the system behavior, the control sys-
tem can give the correct signals to the louver sys-

PC

ACCELERATION

LOUVER

PRESSURE SENSORS

Figure 5.24. Automatic control system for an SES
(Sørensen 1993).

tem. The placement of the louver system is essen-
tial. For instance, if the louver system is placed
at midships, it will have a negligible effect on the
acoustic resonance mentioned above. The reason
is simply that the acoustic pressure component,
see eq. (5.57), has a node, that is, no amplitude, at
midships, whereas it has its maximum amplitude
at the ends of the cushion.

Let us illustrate some details of a mathematical
model for the ride control in the case of uniform
pressure resonance. We express the linear dynamic
air mass flux out of the louver as in eq. (5.51). We
want to control the time-varying leakage area �AL

of the louver. The proposed feedback controller
may be written as

�AL

ALO
= k1µ + k2

dµ

dt
. (5.69)

This causes a controlled air mass flux out of the
louver that is

Qc = 0.61ALO

(
2p0

ρa

)1/2 (
k1µ + k2

dµ

dt

)
. (5.70)

The constants k1 ≥ 0 and k2 ≥ 0 have to be deter-
mined to maximize damping with due considera-
tion of constraints such as available power, limi-
tations of maximum and minimum leakage area,
rate of change of opening with time, and computer
capacity.

We now introduce eq. (5.70) into the linearized
equations for uniform pressure resonance. Going
through the steps that led to eq. (5.33), we see
that it is the term associated with k1 that leads to
damping. So we set k2 = 0 and get an additional
damping term,

M
p0 Ab

0.61ALOk1

[
2p0

ρa

]1/2 dη3

dt
, (5.71)

on the left-hand side of eq. (5.33). The ratio ξRC

between this damping coefficient and the critical
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damping can, as for eq. (5.35), be expressed as

ξRC =
0.61ALOk1

[
2p0
ρa

]1/2
γ

(
1 + pa

p0

)
2h b Abωn

. (5.72)

By using knowledge about the response of a mass-
spring system with damping (see section 7.1.4),
this damping ratio shows how much the response
can be reduced at resonance. Let us exemplify by
using the same example as in section 5.6.1 and set
ALO = 1 m2. If we, for instance, want ξRC = 0.1,

then eq. (5.72) gives k1 = 31. However, we must
have the constraints of the system in mind. For
instance, using eq. (5.69) determines the maximum
leakage area. This must obviously be beyond a cer-
tain limiting value. The oscillation amplitudes of
�AL, the rate of change with time of �AL, and
saturation elements need to be included in the
controller to force the command-control signals
to be within the physical limitations of the louver
system.

One should notice that for the dynamic uni-
form pressure resonance, the longitudinal loca-
tion of the vent values is of no concern. However,
this matters for acoustic wave resonance (see sec-
tion 5.6.2). We have left it as exercise 5.9.6 to show
how to automatically control the acoustic wave
resonance in the air cushion.

5.7 Added resistance and speed loss in waves

The main cause of the added resistance of an SES
in waves is not the mean second-order nonlin-
ear wave loads on the side hulls, as described in
Chapter 7 for semi-displacement vessels. There are
additional effects for an SES. For instance, there
is also an added resistance due to the oscillatory
cushion pressure. This has been discussed theo-
retically by Doctors (1978). Both previous effects
are caused by wave radiation. However, Moulijn
(2000) has shown experimentally that these effects
are small relative to the effect of sinkage. The lat-
ter is associated with air leakage from the cushion
in waves (Faltinsen et al. 1991a, Moulijn 2000). The
leakage occurs because of relative vertical motions
between the vessel and the waves and causes the
SES to sink. The increased sinkage of the SES
increases the wetted area of the side hulls and
hence changes the still-water viscous resistance
on the hulls. A similar effect occurs for the bow
seals. Because of the change in the excess pres-

sure in the cushion, there also occurs a change in
the still-water wave resistance due to the cushion
pressure. The net effect is an increased resistance
if the speed is constant.

We present the procedure by Faltinsen et al.
(1991a) in some detail. To calculate the air leakage
they used the formula

Qout = 0.61AL

[
2p0

ρa

]1/2

, (5.73)

where Qout = volume flux out of the cushion, AL =
leakage area, p0 = excess pressure in the cushion,
and ρa is the mass density of the air in the cush-
ion at pressure p0 + pa . The first step is to find the
effect of the waves and wave-induced motions on
the leakage area. Faltinsen et al. (1991a) assumed
that this increase occurs only at the skirt. For
simplicity, we consider only the effect of heave
and pitch motions and that the skirt is rigidly
connected to the SES. It is assumed that the
leakage occurs when the relative vertical motion
is larger than d > 0, where d depends on the
skirt configuration and the mean sinkage of the
vessel.

Let us first analyze this problem in regular head
sea waves. The relative vertical motion between
the vessel and the water at the bow is expressed as
ηRa sin ωet. We have exemplified this in Figure 5.25
by plotting ηRa sin(ωet)/d. Leakage occurs when

2

1.5

0.5

−0.5

−1.5

−2

0

−1

0

1

1 2 3 4 5 6
ωet

ωet1 ωet2

sin(ωet)
ηRa
d

Figure 5.25. Effect of relative vertical motion
ηRa sin ωet at the bow on the leakage area under the
bow seal of an SES in incident regular head sea waves
with frequency of encounter ωe . d = vertical distance
needed for the the bow seal to be out of the water by
statically lifting the bow of the vessel. The shaded area
is the basis for estimating mean value of leakage area.
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Figure 5.26. Mean leakage area E(AL) at the bow seal
of an SES over one period of oscillation in regular head
sea waves with frequency of encounter ωe . ηRa sin ωet
is the relative vertical motion in the bow. d = vertical
distance for the bow to be out of the water by statically
lifting the bow of the vessel, b = breadth of the bow seal.

ωet1 < ωet < ωet2, where

ωet1 = sin−1
(

d
ηRa

)
and ωet2 = π − ωet1. (5.74)

Here d/ηRa is ≤ 1. We can then write the mean
leakage area E(AL) over one period of oscillation
as

E(AL) = ηRab
2π

ωe t2∫
ωe t1

(
sin(ωet) − d

ηRa

)
d(ωet)

= ηRab
2π

[
2
√

1 − (d/ηRa)2 + 2
(

d
ηRa

)

× sin−1
(

d
ηRa

)
−

(
d

ηRa

)
π

]
. (5.75)

Here b is the breadth of the bow seal. Eq. (5.75) is
plotted in Figure 5.26 when 0 ≤ d/ηRa ≤ 1. There
is obviously no leakage when d/ηRa ≥ 1.

Let us then consider irregular head sea waves.
We then need a stochastic description of the rel-
ative vertical motions. We can write the expected
value of the dynamic change in the leakage area
at the skirt as

E [AL] = b
{

σR√
2π

exp
(−0.5d2/σ 2

R

)
(5.76)

− 0.5d + 0.5d�

(
d√
2σR

)}
,

where � ( ) is the probability integral (Gradshteyn
and Ryzhik 1965); see Faltinsen et al. 1991a. σR

is the standard deviation of the relative vertical

motion. Eq. (5.76) was derived by assuming a long-
crested irregular sea state and that the amplitudes
of the relative motions are Rayleigh distributed.
It can be generalized to include the effect of other
motion modes and leakage areas. By using the
characteristics for the cushion fans in combina-
tion with eqs. (5.73) and (5.76), one can find the
expected value for the drop in pressure and the
volume flux for constant RPM (revolutions per
minute) of the fans. Constant RPM is assumed
in the following presented examples. However, it
is not necessary to assume this. In practice, one
should aim at keeping the same excess pressure in
the air cushion as in calm water. This depends on
available lifting fan power.

When the pressure drop in the cushion has been
found, one can estimate the sinkage by balanc-
ing the weight of the SES with the vertical forces
caused by the excess pressure in the cushion and
the buoyancy forces on the hulls. The increased
sinkage of the SES changes the still-water viscous
and wave resistance on the side hulls. The change
in the excess pressure in the cushion will also lead
to a change in the still-water wave resistance due
to the cushion pressure. All these changes can be
interpreted as contributions to the added resis-
tance in waves and are included in the predictions.
Figure 4.2 illustrates how the still-water resis-
tance components change with significant wave
height.

The SES can in practice experience a signifi-
cant involuntary speed loss in waves. We distin-
guish between involuntary and voluntary speed
loss. Voluntary speed reduction means that the
shipmaster reduces the ship’s speed, for instance,
because of heavy slamming, water on deck, or
large accelerations. Involuntary speed reduction
is the result of added resistance of the vessel due
to waves, wind and maneuvering and changes in
the efficiency of the propulsion system in waves.
We can illustrate the speed reduction of an SES
by comparing the involuntary speed loss of a 40-m
SES with a 40-m catamaran in waves. These results
are presented in Figure 5.27 as a function of sig-
nificant wave height H1/3 for head sea long-crested
waves. To each value of H1/3 there corresponds sev-
eral realistic values of the mean wave period. The
speed loss will be a function of the mean wave
period. That is the reason for the shaded areas in
the figure. Figure 5.27 illustrates that an SES has
a more significant speed loss in waves than does a
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Figure 5.27. Vessel speed range of a 40-m SES and a
40-m catamaran as a function of significant wave height
in head sea waves. Only involuntary speed loss effects
are shown in these numerical results.

catamaran. As already stated, the important rea-
son for this is the air leakage from the cushion that
occurs in waves. It should be realized that the total
shaft powers for the catamaran and the SES are,
respectively, 8300 kW and 5500 kW. Even allowing
for a 20% to 25% increase in power due to the fans
of the SES, it is seen that the SES uses less power
and keeps a higher speed than does the catamaran
for nearly all sea states of practical interest.

5.8 Seakeeping characteristics

Figure 1.12 shows that in a comparative study
between a similarly sized catamaran and an SES,
the SES has generally the best behavior from a

Table 5.1. Main particulars of an SES

Length overall 40.0 m
Length of waterline 34.8 m
Trim angle 0.82◦

Longitudinal center of
gravity

15.0 m forward stern

Weight 189 tonnes
Cushion support, still

water
83.3%

Cushion excess
pressure, still water

0.508 m water height

Position of bow seal 33.0 m forward stern
Pitch radius of gyration 10.4 m

vertical acceleration point of view in head seas,
except for small sea states, in which cobblestone
oscillation causes problems for the SES.

We present additional numerical seakeeping
results reported by Faltinsen et al. (1991a) for an
SES. The characteristics of the SES are given in
Table 5.1. Waterjet propulsion is used. The skirt
of the SES is assumed to touch the free surface in
still water. No “ride control” for the cobblestone
oscillations is accounted for. Only head sea waves
and wind have been considered. A two-parameter
JONSWAP spectrum, as recommended by ITTC,
is used. The wind field is assumed to be uniform in
space. The wind velocity VW is estimated from the
formula VW = (H1/3g/0.21)1/2, where H1/3 is the
significant wave height.

Table 5.2 presents seakeeping data for the 40 m–
long SES in head seas. For each combination of
H1/3 and T1, involuntary speed reduction, standard
deviations σa of vertical accelerations at the center
of gravity, and standard deviations σR of relative
vertical motions at the waterjet inlet have been
calculated. We note the high involuntary speed
reductions. For instance, for H1/3 = 2 m, T1 = 5 s,
the speed has dropped 11.4 knots because of air
leakage and sinkage. The cushion supports 50.8%
of the vessel weight in this sea state compared with
83.3% in still water.

By comparing σR in Table 5.2 with the submer-
gence d in Table 5.2 of the waterjet inlet rela-
tive to the steady free surface, the exposure of
the waterjet inlet to the free air can be evaluated.
The submergence d was estimated by accounting
for the change in sinkage of the vessel and the
steady free-surface deformation inside the cush-
ion due to increased air leakage from the cushion
in a seaway. The steady free-surface elevation due
to waves was not accounted for. By requiring that
d > 4σR, we see that voluntary speed reduction is
necessary for all sea states presented in Table 5.2.
Even if this may be a too-strict requirement, the
data in Table 5.2 indicate that exposure of the
waterjet inlet to the free air is a possible reason for
the significant engine load fluctuations reported by
Meek-Hansen (1991); see Figure 1.13. These cal-
culations indicate that something has to be done
with the submergence of the waterjet inlet. The
best way may be to use a scoop inlet to the water-
jet. The consequence of this is increased resistance.
For instance, if the inlet is 1 m below the keel, it
means typically a 10% to 15% increase in power.
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Table 5.2. Seakeeping data of a 40 m–long SES (Table 5.1) in head sea long-crested waves described by
a two-parameter JONSWAP spectrum

T1 (s)

H1/3 (m) 3.3 5.0 6.7 8.3 10.0 11.7

44.8 43.0 43.4 44.7 45.5 46.0 Speed (kn)
0.42 0.57 0.52 0.41 0.35 0.30 d (m)

1.0 0.19 g 0.15 g 0.13 g 0.10 g 0.08 g 0.06 g σa

0.22 0.38 0.31 0.21 0.16 0.12 σR (m)

41.5 38.6 38.9 40.8 42.3 43.3 Speed (kn)
0.64 0.93 0.84 0.64 0.52 0.44 d (m)

2.0 0.31 g 0.26 g 0.23 g 0.18 g 0.14 g 0.11 g σa

0.44 0.80 0.66 0.45 0.32 0.25 σR (m)

38.9 35.2 35.1 37.5 39.4 40.8 Speed (kn)
0.83 1.22 1.10 0.86 0.69 0.57 d (m)

3.0 0.39 g 0.36 g 0.31 g 0.24 g 0.19 g 0.15 g σa

0.66 1.22 0.96 0.67 0.50 0.38 σR (m)

30.9 30.8 34.4 36.7 38.4 Speed (kn)
1.45 1.29 1.04 0.85 0.69 d (m)

4.0 0.43 g 0.37 g 0.30 g 0.24 g 0.19 g σa

1.61 1.16 0.88 0.66 0.51 σR (m)

H1/3 = significant wave height, T1 = mean wave period. The shaft power is 2 × 2750 kW in all sea states. Waterjet
propulsion (flush type), diameter outlet: 0.5 m. Design speed, still water: 50 knots. Total efficiency, still water 0.60.
First line: Speed in knots including involuntary speed loss. Second line: Submergence of waterjet inlet relative to
the steady free-surface in the cushion. Third line: Standard deviation of the vertical accelerations at COG. Fourth
line: Standard deviation of relative vertical motions at the waterjet inlet. (Faltinsen et al. 1991a).

Another possibility is an automatic control system
for the propulsion-engine system that accounts for
the possibility of air coming into the waterjet sys-
tem and can minimize the engine power fluctu-
ation. However, it is common to have possibili-
ties to move fluids (water, fuel) in the longitudinal
direction to be able to trim the vessel to avoid air
ingestion in the waterjets.

An SES may experience bow-dive in waves
resulting in an abrupt stop of the vessel. Air lift
fans ought to be placed in the bow region to coun-
teract the bow dive. Further, the bow design may
matter.

Operational problems with wetdeck slamming
may occur both in “on-cushion” and “off-cushion”
conditions. Wetdeck slamming on a catamaran
occurs most often in the bow part, whereas slam-
ming on an SES may happen in the aft part of the
wetdeck.

We can use data such as those in Table 5.2 in
an operational study, that is, find out how much of
the time the vessel can operate in a given opera-
tional area. We then need a scatter diagram show-
ing the occurrence of different combinations of

significant wave height and mean wave period.
Table 3.4 is an example on such a diagram. This
corresponds to long international services, which
is obviously questionable for a 40 m long vessel.
We should ideally know the probability of differ-
ent wave headings and the typical course of the
ship.

We also need criteria for operational limits, such
as those presented in Chapter 1. Then we just go
through the different combinations of sea states
relative to the ship. We can see for each sea state if
the vessel would meet the criteria or not. Each sea
state has a probability of occurrence. For instance,
Table 3.4 shows that probability of occurrence
of 1.5 m < H1/3 < 2.5 m and 3.5 s < T2 < 4.5 s is
2/995. This includes all wave headings. If we do
not have the information about the probability
of occurrence of different wave headings rela-
tive to the ship, we must make our own judg-
ments. It is, for instance, usual in open sea con-
ditions to say that all wave headings have equal
probability.

Then we collect the sea states in which the ship
satisfies the given operational limits and add their
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Figure 5.28. Definitions of area Ab and volume Ab to be
used in eq. (5.2) when the SES has nonvertical surfaces
of the side hulls inside the cushion.

probabilities. This gives an estimated fraction of
the total time the ship can operate.

5.9 Exercises

5.9.1 Cushion support at zero speed

Eq. (5.2) relating the weight of the SES, buoyancy
of the side hulls, and cushion support was based on
the cross section of the SES shown in Figure 5.7
with vertical surfaces of the side-hulls inside the
cushion.

Generalize eq. (5.2) to allow for nonvertical sur-
faces of the side hulls inside the cushion. Assume
zero forward speed.

The answer is that eq. (5.2) is still valid, but with
different definitions of Vb and Ab. If a 2D situation
is considered, as in Figure 5.28, then Vb is defined
by first drawing vertical lines through the inter-
section points between the side hulls and the free
surface inside the cushion. If we consider the left
side hulls, then half of Vb is obtained by considering
the displaced volume below z = 0 and to the left
of the vertical line. Similarly, we obtain the other
half of Vb by considering the right side hull. Ab is
the area of the free surface inside the cushion. You
should explain this.

5.9.2 Steady airflow under an aft-seal air bag

Consider the situation in Figure 5.29 under steady
conditions. There is no wave motion on the free
surface. The higher pressure inside the cushion
than outside the SES causes a flow under the
air bag.
Assume:

� The shape of the air bag is known
� The air is incompressible and inviscid
� The flow can be approximated as one dimen-

sional
� At xb = 0 (see Figure 5.29), there is no flow

pa
h(xb)

pb + pa
p0 + pa

he

hb hc

xe

Xb

Zb

xL

∆h

0

Figure 5.29. Airflow under an aft-seal air bag of an SES
(Steen 1993).

� The flow separates at longitudinal coordinate xe
� There is no contraction of the jet flow escaping

from the air cushion, and the pressure is atmo-
spheric at x = xe

a) By using the steady Bernoulli equation without
gravity and the conservation of fluid mass, show
that the velocity u and pressure p at xb is

u (xb) = he

h (xb)

(
2p0

ρ

)0.5

(5.77)

p (xb) = pa + p0 −
(

he

h (xb)

)2

p0. (5.78)

Here p0 is the excess pressure in the air cushion
and h (xb) (see Figure 5.29) is the vertical distance
between the free surface and the bag at xb. Note
that he/h (0) is implicitly assumed to be zero.

b) Discuss the fact that the flow causes a suction
force on the bag.

c) Suppose that the flow separates at the lowest
point of the bag. Use representative values for p0

and ρ and calculate the ratio between the escape
velocity of the air and speed of sound in air.

d) Discuss whether we should have considered
the air to be compressible and viscous.

(Hint: Use qualitative arguments based on
boundary-layer thickness and air gap for the effect
of viscosity.)

5.9.3 Damping of cobblestone oscillations by T-foils

We want to estimate what influence a T-foil, as
shown in Figure 7.3, has on the uniform pressure
resonance in the air cushion. We express the damp-
ing coefficient due to the foil as

BL
33 = 0.5ρU

dCL

dα
A. (5.79)
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Here dCL/dα is the steady lift slope of the foil,
which is 2π for a foil with infinite aspect ratio. We
set dCL/dα = 3 and the planform area A= 1.5 m2.

a) Introduce this damping effect into the equa-
tions that we derived in section 5.6.1 for the uni-
form pressure resonance.

b) Use the data for the SES presented in the
example in section 5.6.1 and calculate the ratio
of the damping due to the T-foil and the critical
damping.

5.9.4 Wave equation

Derive the wave equation given by eq. (5.41) by
starting out with the equation of continuity

∂ρ

∂t
+ ∇ · (ρ u) = 0 (5.80)

and Euler’s equation without gravity effects

∂u
∂t

+ u · ∇u = − 1
ρ

∇ p. (5.81)

Further, the flow is irrotational so that the fluid
velocity u = ∇φ. The relationship between small
changes in the pressure p′ and small changes in the
mass density ρ ′ is given by the adiabatic relation-
ship

p′ = (∂p/∂ρ)s ρ ′. (5.82)

Here the subscript s means constant entropy.
By linearization of the equations, show that

Euler’s equation gives the linear Bernoulli equa-
tion.

5.9.5 Speed of sound

Show how the speed of sound is a function of the
static excess pressure in the air cushion of an SES.

5.9.6 Cobblestone oscillations with acoustic
resonance

Consider an SES with total mass M = 2 · 105 kg,

cushion length � = 40 m, cushion beam 10 m,

cushion plenum height 2 m, and p0 = 4.022 ·
103 Pa. Set the speed of sound in air equal to 340
ms−1 and mass density of air ρa = 1.23 kgm−3

. Set
pitch radius of gyration to be r55 = 0.25� and note
I55 = Mr 2

55.

Use the mathematical model for head sea regu-
lar waves described in section 5.6.2, with a louver
placed in the front end of the cushion. The fan lifts
are at midships.

a) What is the lowest resonance frequency for
acoustic wave resonance in the air cushion?

b) Set the mean leakage area of the louver equal
to 1 m2. Assume that the ride control system is not
operating.

What is the ratio between damping and critical
damping?

Assume a ship speed U = 25 ms−1. Calcu-
late the amplitude of vertical acceleration at
the front end of the cushion divided by inci-
dent wave amplitude as a function of incident
wavelength, that is, a curve similar to the one
presented in Figure 5.21 for uniform pressure
resonance.
c) Introduce a ride control model, as in eq. (5.69),
in the acoustic model. Express the new equation
for β, that is, modify eq. (5.67).

d) Consider the resonant condition and assume
an incident wave amplitude equal to 0.2 m, and
limit the maximum value of �AL/ALO in eq. (5.69)
to 0.5. How much is it possible to reduce the
pitch accelerations at resonance by the ride control
system?
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6 Hydrofoil Vessels and
Foil Theory

6.1 Introduction

Hydrofoil vessels in foilborne conditions gener-
ally have good seakeeping characteristics, create
small wash, and have small speed loss due to inci-
dent waves. This is particularly true for fully sub-
merged foil systems. Foils are normally designed
for subcavitating conditions. However, the possi-
bility of cavitation is then an important issue. Our
discussion assumes subcavitating foils.

Johnston (1985) pointed out that important
aspects when selecting foil and strut configurations
of fully submerged hydrofoils are:

� Maintenance of directional and roll stability
� Stable recovery when a foil comes out of the

water (broaches)
� Graceful deterioration of performance in severe

seas
� Safety

The designer tries to maximize the foil’s lift-to-
drag ratio and the speed for cavitation inception.
Further, the weight of the strut-foil system must
be minimized with due consideration of structural
strength.

Abramson (1974) discussed relevant structural
loads for monohull hydrofoil vessels. In this
context, important aspects are slamming, hull-
bending moments in foilborne conditions, and
bending of the forward foil and strut during recov-
ery from a forward foil broach. Slamming on the
side hulls of a foil catamaran is not considered
a problem. The reason is large deadrise angles.
Because a monohull hydrofoil vessel typically uses
a planing hull with relatively small deadrise angles,
slamming loads matter. If a foil catamaran is hull-
borne in bad weather, wetdeck slamming must be
considered. The possibility of grounding and hit-
ting of objects like logs against the strut-foil system
must also be considered.

Flutter of foils and struts could cause catas-
trophic failure, but this has never occurred. The
classical flutter scenario is dynamic instability of
combined bending-torsion vibrations of a strut-
foil system. Henry et al. (1959), Besch and Liu
(1972), and Abramson (1974) present theoreti-
cal and experimental studies of flutter of hydro-
foil vessels. Flutter of aircraft is discussed by
Bisplinghoff et al. (1996). The mass ratio, that is,
the ratio of a typical density of structural mate-
rial to the density of the fluid is an important
parameter. Henry et al. (1959) expressed this as
µ = m/(πρb2), where m is the mass per unit span-
wise dimension of the lifting surface, 2b is a rep-
resentative chord length, and ρ is the fluid density
that for water is the order of 1000 times the density
of air. Representative values of µ for hydrofoils
are 0.5 and less, but 50 and higher for airplane
wings. This difference creates a clear advantage
for a hydrofoil vessel relative to an aircraft when
it comes to flutter (Henry et al. 1959).

In the following text, we describe the main
aspects and important physical features of hydro-
foil vessels. Then a detailed description of foil the-
ory will follow. This is a necessary basis to numer-
ically predict the steady and unsteady behaviors
of a hydrofoil vessel in waves and during take-
off and maneuvering. The description starts by
introducing a boundary element method (BEM)
based on source and dipole distributions that can
account for nonlinearities, 3D flow, and interac-
tion between foils and struts, as well as free-surface
effects. The linear theory is presented afterward.
The advantage of a linear theory is that we can
show more easily how the angle of attack, foil cam-
ber, foil flaps, and three-dimensionality of the flow
influence lift and drag of the foil. It is also dis-
cussed how the free surface and foil interaction
affect the steady lift and drag of a foil. The analy-
sis is supported by experimental results. Unsteady
flow conditions due to incident waves are also han-
dled. These are used to calculate heave and pitch
motions of a foilborne hydrofoil vessel in head sea
and following waves.

Foil theory is also relevant in other marine appli-
cations than hydrofoil vessels. Propellers, rudders,
and trim tabs are examples. The keel and sails on
sailboats are lifting surfaces that can be described
by foil theory. Lefandeux (1999) has used surface-
piercing foils in combination with a multihull

165
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Figure 6.1. Fully submerged foil system (Johnston 1985).

sailboat. Inukai et al. (2001) have considered a
sailing catamaran with submerged foils.

6.2 Main particulars of hydrofoil vessels

There are two main categories of hydrofoil vessels.
They have either fully submerged or free-surface
piercing foil systems (see Figures 1.6 and 1.7). An
example of a fully submerged foil system with flaps
is also shown in Figure 6.1. The forward strut is
used for steering and waterjet propulsion is incor-
porated in the aft foil arrangement. The waterjet
has a ram inlet. The internal ducting goes through
the strut, and the water comes out in the air aft of
the vessel (see Figure 2.54). Many of the existing
hydrofoil craft are equipped with flaps. They are
used for the control of the trim and heel and to
counteract wave excitation in a seaway.

Figure 6.2 shows different types of foil config-
urations. If 65% or more of the vessel’s weight is
supported at maximum speed by the forward or by
the aft foils, the foil system is called conventional
or canard, respectively. The canard system is the

Figure 6.2. Foil configurations (Johnston 1985).

most common type for hydrofoil vessels. A con-
ventional system resembles the foil arrangement
of a commercial airplane. Examples of nomen-
clature used for foils are presented in Figure 6.3.
NACA profiles (Abbott and von Doenhoff 1959)
are commonly used as foil sections.

The main dimensions of free surface–piercing
and fully submerged hydrofoil craft of monohull
type are presented in Tables 6.1 and 6.2. The Series
65 hull form is typically used (Holling and Hubble
1974).

Foil catamarans (Figure 6.4) have been built in
Norway and Japan. With a speed of approximately
50 knots, the “Foil Cat 2900” (Svenneby and Min-
saas 1992 and Minsaas 1993) has a couple of fully
submerged inverted T-foils forward and a full-
width foil at the stern. Z propeller drives (Meyer
and Wilkins 1992) are incorporated in the struts
of the aft foil. “Super Shuttle 400” (Rainbow)
represents a Japanese foil catamaran. It has full-
width fully submerged foils, at both the bow and
the stern, and it is equipped with waterjet propul-
sion. The Japanese foil catamaran is of somewhat
lower speed but higher passenger capacity than
the Norwegian one. Both vehicles are run by diesel
engines, and the catamaran hulls are lifted out of
the water completely at operating speeds.

The Foil Cat 2900 has an overall length of
29.25 m, total breadth of 8.36 m, draft of 3.7 m,
maximum draft reduction when lifting of 1.9 m,
span of aft foil of 7.79 m, span of forward foil of
2.50 m, weight of 112 to 120 tonnes, main engine
output of 2 × 2000 kW, and propeller diameter of
1.25 m and can carry up to 160 passengers. Details
about the foil system are shown in Figures 6.4
and 6.12. The aft foil carries about 60% of the
weight in foilborne conditions. The strut of the for-
ward foils act as rudders and can be turned ±25◦.
Each forward foil is equipped with a flap, and the
aft foil with three flaps.

Minsaas (1993) also describes the 190-tonne
Kværner Fjellstrand design FC40, which is run by
gas turbines and uses waterjet propulsion. The ves-
sel can carry more than 400 passengers.

6.3 Physical features

6.3.1 Static equilibrium in foilborne condition

The weight of the vessel is balanced by the
steady lift force from the foil system in foilborne
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Figure 6.3. Foil geometry. The angle of attack of the incident flow velocity is defined relative to the
nose-tail line (see Figure 2.16).

condition. We can write for a submerged horizon-
tal foil system

Mg = ρ

2
CLU2 A. (6.1)

Table 6.1. Main dimensions of free surface–
piercing hydrofoil craft of the monohull type (van
Walree 1999)

Length (hull) 9–40 m
Beam (hull) 3–7 m
Beam (foils) 3–16 m
Displacement 4–200 tonnes
Speed (foilborne) 28–40 knots
Foil system aspect ratio 6–10

Table 6.2. Main dimensions for fully submerged
hydrofoil craft of the monohull type (van Walree
1999)

Length (hull) 11–40 m
Beam (hull) 3.5–6.0 m
Beam (foils) 4.0–6.5 m
Displacement 6–250 tonnes
Speed (foilborne) 36–50 knots
Foil system aspect ratio 4–10

Here M is the mass of the vessel, CL is the steady
lift coefficient, and A is the planform area of the
foil system. The planform area is defined as the
projected area of the foil in the direction of the
lift force for zero angle of attack. The lift coef-
ficient CL is defined by eq. (2.88). A maximum

FOIL CONFIGURATION

BOTTOM VIEW

SIDE VIEW

Figure 6.4. Foil catamaran with fully submerged foils
and tractor propellers (see Figure 2.48).
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achievable CL for a foil is about 1.0, but 20% to
30% is reserved for control forces in connection
with, for instance, trim and maneuvering (Meyer
and Wilkins 1992). Let us set ρ = 1025 kgm−3

and consider a vessel with weight 2 MN and A =
35 m2. If the takeoff speed is U = 12 ms−1, eq. (6.1)
shows that CL must be larger than 0.77 to lift
the hull out of the water. If the cruising speed is
20 ms−1, then CL = 0.28.

Eq. (6.1) can be used to illustrate how the plan-
form area increases with ship size. Let us choose
a hydrofoil vessel with length L1, mass M1, and
planform area A1 as a basis. We then consider a
hydrofoil vessel with a geometrically similar hull
and length L2 > L1. The mass of the vessel must
balance the displaced fluid mass at zero forward
speed. The mass of the foil and strut system will
typically be 10% of the total mass of the vessel.
Even if the foil and strut systems are not geomet-
rically similar for the vessels of length L1 and L2,
as a first approximation, we may set the mass M2 of
the larger vessel equal to M1(L2/L1)3 because the
displaced fluid mass of the hull at zero speed scales
like this. Because cavitation must be avoided, U
and CL must be limited. Increased length means
increased submergence of the foils and higher
ambient pressure at the foils. The higher the ambi-
ent pressure, the higher U can be to avoid cavita-
tion. However, because the hydrostatic pressure
part at the foils is clearly smaller than the atmo-
spheric pressure for practical foil arrangements,
we could roughly say that an upper limit for U
to avoid cavitation is approximately 50 knots for
the vessels of lengths L1 and L2. The limitation of
CL depends on the foil system. Anyway, we must
assume as a first approximation that maximum U
and CL do not depend on the ship’s length. Eq.
(6.1) then gives that the planform area must scale
like the mass of the vessel, that is, the planform
area A2 of the vessel with length L2 is A1(L2/L1)3.

If the aspect ratios of the foils are not changed
with ship length, the span of a foil increases as
(L2/L1)3/2. This means the ratio between the foil
span and the hull beam increases as (L2/L1)1/2,

that is, the foils outgrow the hull. A potential
danger is that the increase of the planform area
with ship length increases the ratio between the
strut-foil weight and the vessel weight. It will
generally increase viscous resistance as well. The
increased weight has negative consequences for
payload, that is, maximum number of passengers
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W
ETTED
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CID

ENCE C
ONTR

OL

FLAP CONTROL

LIFT

FLAP ANGLE, δ = +20
δ = +15
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δ = +5
δ = 0

Figure 6.5. Typical foil lift curves (Johnston 1985).

on commercial vessels. However, it is possible to
design a foil-strut system from a structural strength
point of view so that its weight relative to ves-
sel weight increases only slightly with the vessel
weight (Meyer and Wilkins 1992).

In order to determine the trim angle of the ves-
sel, we need to consider the lift coefficients of the
fore and aft foils separately. CL for an individual
foil depends on many parameters, such as

� Angle of attack α of the incident flow
� Flap angle δ
� Camber
� Thickness-to-chord ratio
� Aspect ratio
� Ratio between foil submergence, h, and maxi-

mum chord length, c
� Submergence Froude number Fnh = U/(gh)0.5

� Interaction from upstream foils
� Cavitation number
� Reynolds number

Other geometrical details of the foil surface also
matter. Further, the fluid-depth Froude number
matters in shallow water (see Chapter 4 and Bres-
lin 1994).

Figure 6.5 shows schematically how the steady
lift force depends on α and δ. When α and δ are
small, the lift is linearly dependent on α and δ. If
the foil has a camber, the lift is non-zero when α

and δ are zero. When α and/or δ are large, cavi-
tation and ventilation occur, depending on speed
and submergence. Figure 6.5 shows a substantial
decrease in lift as a consequence of ventilation.
The magnitude of the lift force with cavitation
depends on the cavitation number. The suction
side of the foil may be partially or fully cavitating.
Partial cavitation may lead to unsteady lift forces.
The flow may also separate from the leading edge
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SL

COG.

LL

LR

SR

φ Γ− φΓ+φ

Figure 6.6. Free surface–piercing forward foil of a
hydrofoil vessel in foilborne condition on a straight
course in calm water. The vessel has a constant heel angle
φ. Lift forces LL and LR act on, respectively, the left- and
right-hand sides of the foil. COG = center of gravity; sL

and sR are submerged spans of, respectively, the left- and
right-hands side of the foil; � is called the dihedral angle
of the foil.

area when α and/or δ are large. This also causes a
reduction in the lift force and an increase in drag.

6.3.2 Active control system

A surface-piercing hydrofoil system in foilborne
condition stabilizes the vessel in heave, roll, and
pitch. This can be understood by means of a quasi-
steady analysis. Consider, for instance, that the
heave motion increases. Here heave is positive
upward. This causes a reduction of the wetted foil
area. Because the lift is proportional to the wet-
ted area, the lift due to the foils decreases. The
weight of the vessel balances the lift in the equi-
librium position. The increased heave implies that
the vessel weight will force the vessel downward.
Another way of saying this is that there is a restor-
ing force in heave bringing the vessel back to the
equilibrium position.

Let us then consider a static roll (heel) angle
(Figure 6.6). As a consequence, the wetted area of
a surface-piercing foil increases on one side and
decreases on the other. The lift force distribution
causes then a roll moment that counteracts the roll
and forces the vessel back to the upright position.
Detailed evaluation of this is given by Hamamoto
et al. (1993). The same type of balance can be seen
by giving the vessel a static pitch angle.

An active control system is commonly used for a
vessel equipped with a fully submerged foil system
to stabilize the heave, roll, and pitch in calm water.
The system is also used in connection with maneu-
vering and to minimize wave-induced vessel accel-
erations and relative vertical motions between the
vessel and the waves. Sensors are used to measure
the position of the vessel. Change of position is
counteracted by the foil flaps. A computer pro-

gram that describes the vessel behavior is needed
as a part of the active control system (ride control
system, see Saito et al. 1991 and van Walree 1999).

Platforming and contouring modes are used
in connection with an active control system
(Figure 6.7). The contouring mode is used in
longer waves to minimize relative vertical motion
between the vessel and the waves and to avoid ven-
tilation and broaching of the foils. The platform
mode is used to minimize vertical accelerations of
the vessel in relatively short waves.

6.3.3 Cavitation

Cavitation on foils designed for subcavitating con-
ditions limits the vessel speed to the order of 50
knots. Cavitation appears when the pressure in the
water is equal to the vapor pressure, that is, close
to zero. The consequence of cavitation is that the
material of the foil (or a propeller) can be quickly
destroyed and the lift capabilities of the foils may
be significantly reduced. Another consequence is
that the drag on the foils increases. Because cav-
itation is accompanied by noise generation, one
can hear onboard the vessel when there is the pos-
sibility of damage due to cavitation. If the vessel
speed is increased substantially beyond 50 knots,
supercavitating foils must be used to avoid cavi-
tation damage. They are characterized by lift-to-
drag ratios and lift coefficients much lower than
those of subcavitating foils. Our discussion is based
on subcavitating foils.

We illustrate the possibility of cavitation on a
foil by studying the calculated pressure distribu-
tion around a two-dimensional foil with a flap (Fig-
ure 6.8) used in a preliminary design of a foil cata-
maran. Camber and thickness distribution are of
the same type as published by Shen and Eppler

PLATFORMING

CONTOURING

Figure 6.7. Platforming and contouring modes used in
connection with an active control system.
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Figure 6.8. Calculated velocity distribution on a two-
dimensional foil with flap. U = incident flow velocity,
UL = local flow velocity. Angle of attack of incident flow
is zero. The foil is sketched in the lower part of the fig-
ure. Flap length–to–chord length ratio = 0.2 (Minsaas,
unpublished).

(1979). The thickness-to-chord ratio is 0.075, and
the flap length–to-chord ratio and the camber-to-
chord ratio are 0.2 and 0.02, respectively. The foil
is shown in the lower part of the figure. The angle
of attack of the free stream relative to the x-axis
is zero, and velocity results are shown for the two
sides of the foil in the case of flap angles 0◦, 2◦ and
4◦. Taking U as the incident flow velocity and UL

as the local flow velocity in Figure 6.8, the total
pressure can be written as

p = pa + ρgh + ρ

2
U2

(
1 −

(
UL

U

)2
)

. (6.2)

Here pa is the atmospheric pressure and h is the
submergence of the foil relative to the free surface
in calm water (Figure 6.9). The effect of the free
surface on UL is not included in Figure 6.8. Let us
say that U = 25 ms−1, that is, 0.5ρU2 ≈ 3.2 times
atmospheric pressure, and consider a flap angle
of 4◦, where (UL/U)2 may be as large as 1.5 on the
suction side of the foil. This means that the foil
should be submerged deeper than approximately
6 m to avoid cavitation. The foils are not so deeply
submerged on the Foil Cat 2900. This illustrates

that the flap angle has to be quite limited and care
has to be taken when designing the foils.

The pressure distribution along the foil should
be relatively flat in order to minimize the possi-
bility of cavitation, that is, there must not be pro-
nounced local pressure minima (suction peaks).
The NACA 16 and 64 series without flaps, for
instance, have this characteristic. A badly designed
foil with a flap will result in a pronounced suction
peak at the flap hinge at moderate flap angles. This
limits the operability. A NACA 16 section with a
flap is an example (Shen and Eppler 1979). The
pressure increase aft of a suction peak, that is,
adverse pressure gradient, may cause flow sepa-
ration with decreased lift-to-drag ratio and flap
effectiveness in providing lift. Shen and Eppler
(1979) used an inverse numerical design proce-
dure for foil sections with a flap to maximize the
critical cavitation speed and the lift-to-drag ratio.
The desired pressure distribution was specified,
and the resulting foil shape was found by a poten-
tial flow code. A boundary-layer calculation that
accounts for laminar flow, transition to turbulence,
and turbulent flow was used to detect flow sepa-
ration. The thickness-to-chord and flap length–to-
chord ratios were constrained to, respectively, 0.09
and 0.2.

Cavitation-free buckets for a given foil are used
to identify the possibility of cavitation. Let us use
the example in Figure 6.8 to illustrate how this can
be calculated. We introduce the pressure coeffi-
cient

Cp = p − p0

0.5ρU2
, (6.3)

U

h

UL

X

Z

Figure 6.9. Steady flow past a 2D foil at a depth h below
the mean free surface. The incident flow velocity is U
and the local tangential flow velocity at the foil surface
is UL.
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Figure 6.10. Cavitation-free buckets of
YS-920 and NACA 66 (MOD) sections
(surface smooth) (Shen 1985).

where p − p0 is 0.5ρU2(1 − (UL/U)2). The ambi-
ent pressure p0 was set equal to pa + ρgh in eq.
(6.2). There corresponds a lift coefficient CL and a
minimum pressure coefficient Cpmin for a given flap
angle. Cavitation will occur at one point on the foil
if the minimum pressure is equal to or lower than
the vapor pressure pv. We can assume that the pre-
dicted pressure distribution on the noncavitating
foil is then still valid. If the minimum pressure is
equal to pv, eq. (6.3) gives

Cpmin = pv − p0

0.5ρU2
. (6.4)

The cavitation number is defined as

σ = p0 − pv

0.5ρU2
. (6.5)

This is the same as minus Cpmin given by eq. (6.4).
We can then define a cavitation inception index σi

as

σi = −Cpmin . (6.6)

By calculating corresponding values between σi

and CL for different flap angles, a boundary curve
can be obtained delimiting the region where cavi-
tation occurs.

Theoretical curves are presented together with
experimental results in Figure 6.10 for the YS-920
and NACA 66 (MOD) foil sections. These foils do
not have flaps, so it is the angle of attack that has
been varied. When σ < ≈0.4, Figure 6.10 shows
that cavitation will occur whatever the angle of
attack. Because σ decreases with increasing U,
there is a maximum vessel speed beyond which
we cannot avoid foil cavitation, whatever the load-
ing on the foil is. Shen and Eppler (1979) have
presented numerically calculated cavitation-free
buckets for foils with a flap. Using curves like those
in Figure 6.10 as a basis, we can define bound-
aries for vessel speed and steady foil loading that
the vessel must operate within to avoid cavita-
tion. Because curves like that are based on steady
flow analysis, we must have a safety margin that
accounts for unsteady wave effects. Figure 6.11
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Figure 6.11. Foil loading-speed envelope. Foil parameters are defined in Figure 6.3 (Johnston 1985).

shows cavitation boundary plots for two different
foil sections. The foil with 0.35 camber will cavi-
tate slightly for the minimum speed and maximum
weight, particularly in a seaway. Using 0.4 camber
improves the performance from a cavitation point
of view. The foil loading is presented in the unit
lbs/ft2; 2116.2 lbs/ft2 is equal to 101.32 kPa.

However, one should note that a limited extent
of leading-edge cavitation can and must usually be
tolerated. This type of cavitation has no unfavor-
able effects. It may even reduce the response of the
foil due to wave-induced angle of attack variations
(van Walree, unpublished). Cavitation originating
at the mid-chord position does have more unfa-
vorable effects and should be avoided.

Proper design to delay cavitation on the aft foil
system requires evaluations of the downwash due
to the forward foil system on the aft one. The
downwash is influenced both by trailing vorticity
(Figure 6.12) and by generation of free-surface
waves (Mørch 1992). Numerical calculations of
downwash are illustrated in Figure 6.13. The cal-
culations were done with a boundary element
method as described in section 6.4. It accounts for
the roll-up of the vortex sheet and free-surface
wave generation. We note that both positive and
negative vertical inflow velocities occur along the
span of the aft foil as a result of the two forward

foils. Sidewash on the struts connected to the aft
foil is also generated. Figure 6.13 shows only the
angle of attack αL due to the downwash on the
aft foil. There would then be a resulting local lift

Aft foil

Forward
foil

TIP
VORTEX

Figure 6.12. Hydrodynamic interaction between the
foils of a foil catamaran. The wake (shear layer) including
roll-up of tip vortices generated by the two upstream low-
aspect–ratio lifting surfaces affects the angle of attack of
the flow at the downstream (aft) foil. The waves gener-
ated by the forward foils also affect the aft foil.
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Figure 6.13. Calculated downwash along the aft foil (AF) due to two small-aspect–ratio forward foils
(FF) for a foil catamaran (see Figure 6.12) at 50 knots. Displacement = 102 tonnes; 60% of lift generated
by aft foil (AF); span AF = 7.8 m; average chord AF = 1.3 m; span FF = 2.5 m; average chord FF =
0.95 m; foil immersion = 1.9 m; distance between midspan of forward foils = 5.45 m; distance from
FF to AF = 17.1 m. Effects of roll-up of the vortex sheet and generation of the free-surface waves are
included (Mørch 1992; see also Mørch and Minsaas 1991).

contribution on the aft foil that is proportional to
αL. The lift is mainly caused by pressure loads, and
as we have seen, the primary concern for cavita-
tion is the pressure on the suction side of the foil.
We can then qualitatively understand why down-
wash is important for cavitation. The results in Fig-
ure 6.13 suggest that the aft foil should be twisted
so that the angle of attack on the aft foil does not
have such large spanwise variations and extreme
values as those shown in Figure 6.13.

The downwash effect on the aft foil is most pro-
nounced if the forward foil system contains a foil
or foils with smaller span than the aft foil, as illus-
trated in Figure 6.12 for a foil catamaran. In this
case, two small-aspect–ratio foils were selected
instead of one high-aspect–ratio foil with a span
equal to the distance between the centerplanes of
the two hulls. The choice is connected with the
possibility of ventilation along one of the two for-
ward struts during maneuvering. When two foils
are used, a probability exists that only one of
the foils is ventilated and loses lift. In contrast,
if a single extended foil is considered, the whole
foil will be ventilated because of ventilation along
one of the struts. Therefore, the use of only one
foil means a much larger loss of lift. Using two
small-aspect–ratio foils implies a clear change in
downwash along the span of the aft foil. Using
winglets on a low-aspect–ratio lifting surface of
the front foil system (see Figure 2.20) reduces

the magnitude of the downwash on the aft foil
system.

Care must also be shown in the design of local
details at the junction between a strut and a foil to
avoid vortex formation and resultant cavitation.

6.3.4 From hullborne to foilborne condition

An important design consideration is sufficient
power and efficiency of the propulsor system to lift
the vessel to foilborne condition. This is of special
concern when waterjet propulsion is used.

Figures 6.14 and 6.15 show typical examples
of the behavior of trim, draft, resistance, and
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Draugth/Length

Figure 6.14. Typical example of draft (excluding foils)
and trim versus speed for monohull hydrofoil vessels
(van Walree 1999).
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Figure 6.15. Typical example of resistance and thrust
versus speed for monohull hydrofoil vessels (van Wal-
ree 1999).

available thrust as a function of vessel speed for
monohull hydrofoil vessels. Positive trim corre-
sponds to bow up. Draft means hull draft, that is, D
in Figure 6.16. This means that the hydrofoil ves-
sel illustrated in Figure 6.14 is foilborne around
26 knots. The trim angle increases from around
0◦ at 10 knots to about 4◦ at 20 knots and then
decreases. High trim angle, speed, and flap angles
are beneficial from a foil-lifting point of view as
long as cavitation is avoided. The propulsor thrust
generally has a vertical and longitudinal compo-
nent (see Figure 6.16), with the main component in
the longitudinal direction. The difference between
thrust and resistance in Figure 6.15 is therefore
approximately equal to (M + A11)ax , where M is
the vessel mass, A11 is added mass in surge, and
ax is the forward acceleration of the vessel. A11 is
small relative to M.

Z

D

T
ε

τ

τ

X

δa δf

Figure 6.16. Definition of variables. T = thrust, τ = trim
angle. δaand δf are flap angles of aft and forward foils
(van Walree 1999).

The propeller thrust line in Figure 6.15 corre-
sponds to a given power setting. It shows that the
propeller thrust decreases as the speed increases.
Both conventional propellers (section 2.10) and
waterjet propulsion (section 2.11) are used. Con-
ventional propellers can be arranged as either trac-
tor propellers on the aft foil (see Figure 6.4) or
as propellers at the stern connected to the engine
with a straight inclined shaft having a long wetted
part in the water similar to the one in Figure 2.1a.
Z-drives (Meyer and Wilkins 1992) are used to
transmit power from the engine to waterjets and
tractor propellers.

We note that there is a resistance hump around
20 knots. The hull is then still in the water.
The resistance on the hull can be estimated as
described in Chapter 2. In addition, we have the
drag on the struts, foils, appendages, and propul-
sion system. The resistance hump in calm water
is important in determining the propulsion power.
One must allow for 20% to 25% margin due to
a maximum increased resistance in operational
sea states. The minimum resistance shown in
Figure 6.15 occurs typically after takeoff.

The results in Figures 6.14 and 6.15 are not
representative of the Norwegian-designed foil
catamarans. Their trim angles are very small, and
there is no resistance hump when the vessels go
from hullborne to foilborne condition. How it is
possible to avoid a resistance hump is illustrated
by Figures 6.17 and 6.18 for a 128.5-tonne foil
catamaran, which is similar to an existing foil
catamaran. Figure 6.17 shows the propulsive
power as a function of vessel speed for different
drafts. The propulsive power means resistance
times speed. The resistance was obtained by
scaling model test results. The foil catamaran with
the superstructure, the demihulls, and the struts,
but without the foils, was tested in the towing
tank at MARINTEK. Because the resistance
of the foils may be affected by the cavitation
number, the foils were separately tested in the
depressurized circulating flow channel with free
surface at the Technical University of Berlin. The
foil system was equipped with flaps that provided
the needed lift to balance the weight of the
hydrofoil vessel at each speed and submergence.
A correct trim moment also had to be ensured.
The total resistance of the foil catamaran was
simply obtained by adding the results from the
two model tanks.
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Figure 6.17. Propulsive power (HP) as a function of vessel speed U of a 128.5-tonne foil catamaran
at different hull draft. The results are obtained by model tests (Minsaas, unpublished).
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Figure 6.18. Minimalization of propulsive power of a
128.5-tonne foil catamaran going from hullborne to foil-
borne condition. Based on the experimental data in
Figure 6.17 (Minsaas, unpublished).

The results in Figure 6.18 were obtained as fol-
lows. For a given speed, a draft that gave the
smallest or nearly the smallest propulsive power
was selected. Because the draft obviously should
decrease or at least not increase with increasing
speed, the propulsive power was not the smallest
for all speeds. The final results in Figure 6.18 show-
ing the propulsive power and draft as a function
of speed demonstrate that it is possible to follow a
strategy in which the foil catamaran does not expe-
rience a resistance hump going from hullborne to
foilborne condition.

One reason a foil catamaran and a monohull
hydrofoil vessel show a different behavior before
takeoff is that a foil catamaran uses slender hulls
whereas the monohull versions use hulls typical
for planing vessels. The trim angles are relatively
high because of these nonslender hulls. This causes
a resistance hump but also delivers more dynamic
lift after the hump, just before takeoff.

The resistance components in foilborne condi-
tion consist of:

� Viscous resistance on foils and struts.
This can be calculated by eqs. (2.89) and (2.90)
for a smooth surface. Nearly zero lift is assumed.
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The effect of surface roughness for turbulent
boundary-layer flow is given by eq. (2.85).

� Induced drag.
The induced drag due to the trailing vortex sheet
of a high-aspect–ratio foil with zero camber and
elliptical loading in infinite fluid is given by eq.
(2.98). The wake effect due to an upstream foil
or strut must be considered.

� Wave resistance of foils and struts.
This is caused both by the lift and by the foil
thickness. The thickness effect of struts in deep
water is discussed in section 4.3.3 (see Figure
4.16). This was based on linear theory and has a
small effect when the Froude number Fnc based
on the chord length is larger than 3. The wave
resistance due to thickness and lift on a single
foil is handled in section 6.8 for deep water.
Koushan (1997) has considered theoretically
and experimentally the effect of tank walls and
finite water depth on the wave resistance of a
foil. The wave effect due to an upstream foil or
strut must also be considered.

� Spray resistance on struts.
Spray resistance was discussed for monohull
vessels in section 2.4. The spray resistance is
caused both by potential flow and viscous flow
effects. Hoerner (1965) simply sets the spray
drag force equal to

RS = 0.12ρU2t2 (6.7)

when Fnc = U/
√

gc > 3. Here t is the thickness of
the strut and c is the chord length.

There are, in addition, drag forces on appenda-
ges (rudders, propeller nacelles, waterjet intakes,
pods) and propeller shafts (van Walree 1999). The
rudders can be handled similarly to struts. Because
the angle between the incident flow and the pro-
peller shaft axis is small, the cross-flow principle
cannot be used to obtain drag forces. This is dis-
cussed in section 10.6 in the context of ship maneu-
vering. We must also consider the air resistance on
the vessel (see section 2.3).

The lift-induced drag on the foils will decrease
with increasing speed in foilborne condition. This
can be explained by first noting that the associ-
ated drag coefficient CD is proportional to the
square of the lift coefficient, that is, C2

L (see eqs.
(2.88) and (2.89) for definitions of CL and CD).
Eq. (6.1) gives the balance between the weight and
the total lift. It means CL must be reduced propor-
tional to U−2 with increasing speed. This implies

that the drag coefficient and the drag associated
with the lift are proportional to U−4 and U−2,

respectively.
The minimum resistance occurring after takeoff

is caused by the lift-induced drag. When the hydro-
foil vessel is at cruising speed, a major resistance
component is caused by viscous resistance on the
foils and on the struts. Because this is affected
by surface roughness, frequent maintenance pro-
cedures to clean the foil and strut surfaces are
needed.

Figure 6.19 shows recommended speed/height
curve for the Foil Cat 2900 as a function of speed.
By height, we mean the minimum vertical distance
from hull bottom to mean free surface. From the
figure, we note that a limit in lifting height exists
beyond which the passive stabilization in heave,
pitch, and roll is insufficient. The ride control sys-
tem then regulates the flap angles at the foils in
such a way that the vessel is stable. Figure 6.19
also shows limitations in lifting height as a func-
tion of significant wave height (H1/3). For instance,
the vessel can achieve the maximum lifting height
at H1/3 < 0.75 m. When H1/3 > 4.0 m, one should
seek sheltered water.

6.3.5 Maneuvering

It is common to let the hydrofoil vessel heel (bank)
in a turn (Figure 6.20). This creates the smallest
transverse forces on the struts. It is common to
use the forward strut as a rudder. However, the
angle of attack of the rudder must be limited, that
is, less than 5◦ to 6◦, to avoid ventilation along the
strut.

Figure 6.21 illustrates forces acting in a coor-
dinated turn with a heel angle φ. Because the
transverse forces on the struts are relatively small,
they are disregarded in the figure. Further, the
lift forces L on the foils are assumed to be acting
through the center of gravity of the vessel. The ves-
sel is assumed to have a constant speed U in calm
water and perform a turn with constant radius R.A
centrifugal force Fc = MU2/R acts on the vessel.
Here M is the vessel mass. The balance of vertical
and transverse forces gives

Lcos φ = Mg (6.8)

Lsin φ = MU2

R
. (6.9)
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Figure 6.19. Speed and possible lifting
height of the foil catamaran “Foil Cat
2900,” with limitations given by the sig-
nificant wave height H1/3 (Svenneby and
Minsaas 1992).

Further,

R� = U, (6.10)

where � is the turn rate in radians per second. The
combination of eqs. (6.8) and (6.9) gives

tan φ = U2

Rg
. (6.11)

Figure 6.20. The PHM hydrofoil vessel by Boeing
(Johnston 1985).

Eliminating R between eqs. (6.10) and (6.11) gives

� = g tan φ

U
. (6.12)

An object onboard will not be accelerated rela-
tive to the vessel during a coordinated turn. Let
us consider a cup of coffee with mass Mc on a
table and decompose the weight and the centrifu-
gal force along the table. This gives components
Mcg sin φ and McU2 cos φ/R acting in opposite
directions along the table. Eq. (6.11) states that
these two components balance each other, that
is, the cup of coffee cannot be accelerated along
the table. Further, the components of the weight
and of the centrifugal force perpendicular to the
table are in the same direction and prevent the cup
of coffee from accelerating perpendicularly to the
table. There is an analogy between hydrofoil ves-
sel and airplane banking in a turn. The latter is
commonly experienced by passengers.

In contrast, a hydrofoil vessel in a flat turn has
φ = 0. The centrifugal force is then likely to over-
come the friction between the cup and the table
and accelerate the cup. Further, a flat turn requires
a transverse force on the struts to balance the cen-
trifugal force on the vessel. If the angle of attack
of the incident flow on the struts becomes more
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Figure 6.21. Hydrofoil coordinated turn with bank
(heel) angle φ (Johnston 1985).

than 5◦ to 6◦, ventilation is likely to occur, with
a subsequent reduction in the transverse force. A
worst-case scenario is that the ventilation pene-
trates to the foil with a significant reduction in
the lift force. Because the transverse force on the
struts is proportional to the angle of attack when
ventilation does not occur, a larger turning radius
must be used in practice for a flat turn than for a
coordinated turn. This is needed to decrease the
centrifugal force. Ventilation of struts is discussed
in section 6.10.

A nonlinear simulation model in six degrees of
rigid-body motion will be discussed for a hydrofoil
vessel in section 10.9.

6.3.6 Seakeeping characteristics

Hydrofoil vessels in general have good seakeeping
behavior, particularly for a fully submerged hydro-
foil craft. This is exemplified for the foil catama-
ran Foil Cat 2900 in Figure 6.22, in which full-scale
measurements of vertical accelerations in differ-
ent sea states are evaluated according to the ISO
criteria (see section 1.1). Comparisons are also
made with a conventional catamaran of similar
length. The operation limit in terms of significant
wave height is much higher for the foil catamaran
than for the conventional catamaran. Passengers

have compared the behavior of a foil catamaran
with a train ride, that is, one can experience hor-
izontal accelerations similar to those on a train.
In section 6.12, we demonstrate the possibility of
large relative vertical motions and pitch in follow-
ing sea. If these are not counteracted by an active
control system, they may lead to foil ventilation
and broaching.

6.4 Nonlinear hydrofoil theory

The following description is limited to potential
flow. An alternative is to use CFD (computational
fluid dynamics) and solve the Navier-Stokes equa-
tions.

6.4.1 2D flow

Two-dimensional flow past a foil in infinite fluid
is first considered (Figure 6.23). This is a good
approximation for the flow past most parts of a
hydrofoil when the following conditions are satis-
fied:

� The aspect ratio  (see Figure 6.3) is high
� The ratio between foil submergence h and chord

length c is larger than ≈4
� There is no wake or downwash because of an

upstream foil that is varying strongly in the span-
wise direction

� There is no cavitation or ventilation

A Cartesian coordinate system (x, y) moving with
the steady forward velocity U of the foil is used.
The forward speed appears, then, as an incident
flow with velocity U along the x-axis. The velocity
vector of the foil in this reference frame is denoted
VB. Vorticity is shed from the trailing edge of the
foil and is present in the thin free shear layer SV.
The vorticity comes from the thin boundary layer
around the foil. Both the boundary layer and the
free shear layer have zero thickness in the figure.
There is potential flow outside the boundary layer
and the free shear layer. If the boundary layer is
thin, a separate boundary layer calculation based
on the potential flow pressure distribution can be
made. This can be used, for instance, to detect flow
separation (Shen and Eppler 1979). An important
aspect is that the potential flow leaves the trail-
ing edge parallel to the foil surface. This is called
the Kutta condition and is consistent with visual
flow observation (Kutta 1910). This is essential in



P1: GDZ
0521845688c06 CB921-Faltinsen 0 521 84568 7 November 4, 2005 1:13

6.4 Nonlinear hydrofoil theory • 179

5.0

Severe discomfort boundaries Fatigue-decreased proficiency boundaries

Biodynamic effects: comfort and fatigue

4.0

3.0

2.0

1.0

0.8

0.6
0.5

0.4

0.3

0.2

0.1
0.1 0.2 0.3 0.4 0.6 1.0 2 3 4 5 6 7 8 10 20

ISO

ISO 2 HRS.

H1/3 = 1.5m

H1/3 = 0.5–1m

H1/3 = 0.5m

H1/3 = 1.5m

H1/3 = 3m
H1/3 = 1.75m

H1/3 = 2–3m

ISO 30 MIN.

V
er

tic
al

 a
cc

el
er

at
io

n 
(m

/s
2 )

ISO 8 HRS.

ISO Heavy

Moderate

Light

Negligible

ISO

1 HRS.

8 HRS.

1 MIN.

Walking
running

Average frequency (Hz)

Body
resonance

Catamaran, speed 35 knots, H1/3 = 1.5m

Foilcat 2900, speed 35–45 knots

Figure 6.22. Comparison of different levels of comfort onboard a foil catamaran (Foil Cat 2900) with
overall length of 29.25 m and onboard a conventional catamaran of similar length at different sea
states. Active control is used for the foil catamaran (Minsaas 1993).

developing lift on the foil. Because the interior
angle of the foil surface at the trailing edge is finite
in Figure 6.23, an unsteady flow has to leave par-
allel to either the upper or lower foil surface. The
argument for this will come later. Which side is
determined by the local flow at the trailing edge.

There is a jump (∂�+/∂s − ∂�−/∂s) in the tan-
gential velocity across the free shear layer SV. Here
� is the velocity potential and + and – refer to the
two sides of the free shear layer (Figure 6.23). This
jump in tangential velocity is equal to the vortic-

U

SB

SV

y

n

x

+
–

Figure 6.23. 2D flow past a foil in infinite fluid. SB =
body surface, SV = surface-enclosing free shear layer
(the subscript V denotes vorticity).

ity across the free shear layer (see discussion after
eqs. (2.95) and (2.96)). Because ∂�/∂s is discon-
tinuous across SV, � is also discontinuous across
SV . We can relate �+ − �− to the circulation �,
which is defined as

� =
∮
C

u · ds. (6.13)

Here u is the fluid velocity vector and integration
is along a closed curve C. The direction followed
when we integrate along C matters. Let us illus-
trate this by applying Stokes’s theorem. At the
same time, this will permit us to show how � is
related to the vorticity ω = ∇ × u. Stokes’s theo-
rem says that∮

C

u · ds =
∫
s

∫
(∇ × u) · n ds. (6.14)

Here S is a surface bounded by C and n is the
normal vector to S. If we walk along C in the
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C

Figure 6.24. Integration direction along C when apply-
ing Stokes’s theorem.

C2

C1

C3

SV
–
+

Figure 6.25. Curves Ci, i = 1,2,3 used to calculate circu-
lation. The arrows indicate that the integration is in the
counterclockwise direction.

integration direction with the head pointing in the
direction of the positive normal to S, the surface
should be on the left-hand side (see Figure 6.24).

Let us exemplify how � is related to �+ − �−

by considering three curves C1, C2, and C3 as illus-
trated in Figure 6.25. The integration is in the
counterclockwise direction. We start with curve
C1, which encloses the foil and part of the free
shear layer SV. We can write

�1 =
∫
C1

∂�

∂s
ds = �− − �+. (6.15)

Further

�2 =
∫
C2

∂�

∂s
ds = �+ − �− (6.16)

and

�3 =
∫
C3

∂�

∂s
ds = 0. (6.17)

So there is zero circulation around a curve enclos-
ing both the foil and the complete free shear layer.
This is also a consequence of Kelvin’s theorem
(Newman 1977) stating that the circulation around
a closed curve C moving with the fluid remains
constant according to potential flow theory.

Similar to the thin boundary layer of Chapter 2,
there is no jump in the pressure across the free
shear layer. Bernoulli’s equation can be used to
express the pressure outside the free shear layer.
Zero pressure jump across the free shear layer can
then be expressed as

∂

∂t
(�+ − �−) + 1

2

[(
∂�+

∂x

)2

−
(

∂�−

∂x

)2

+
(

∂�+

∂y

)2

−
(

∂�−

∂y

)2
]

= 0.

This can be rewritten as

∂

∂t
(�+ − �−) + 1

2

(
∂�+

∂x
+ ∂�−

∂x

)
∂

∂x
(�+ − �−)

(6.18)

+ 1
2

(
∂�+

∂y
+ ∂�−

∂y

)
∂

∂y
(�+ − �−) = 0.

Eq. (6.18) shows that �+ − �− does not change
with time when we move with the velocity

uC = 1
2

[
∂�+

∂x
+ ∂�−

∂x

]
i + 1

2

[
∂�+

∂y
+ ∂�−

∂y

]
j.

(6.19)

Here i and j are unit vectors along the x- and y-
axes. Eq. (6.19) implies that �+ − �− is convected
(advected) with the mean value of the velocity on
the two sides of the free shear layer. We should
note that only the tangential velocity is discontin-
uous across the free shear layer.

Let us apply eq. (6.18) at the trailing edge (T.E.).
The details of the flow at the trailing edge are illus-
trated in Figure 6.26. The apex angle α of the foil
at T.E. is finite. The following analysis is based on
Maskell (1972). As we have already said, the free
shear layer is parallel to either the upper or lower
part of the foil surface at T.E., depending on the
sign of the shed velocity. The free shear layer is
parallel to the lower part of the foil surface at T.E.
in Figure 6.26, and the tangential velocity is UT at
T.E. As a matter of simplicity, we assume that the

Figure 6.26. Details of the unsteady potential flow at the
trailing edge (T.E.) of a foil. SV is the free shear layer.
Finite apex angle α of the foil at the trailing edge.
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foil does not move. This means the fluid has no
normal velocity at T.E.

There is a corner flow at the upper side of the
free shear layer at T.E. Because the corner is a
stagnation point, that is, the velocity is zero at the
corner, eq. (6.18) applied at T.E. gives

∂

∂t
(�+ − �−) − 1

2

(
U−

T

)2 = 0.

Here U−
T is the tangential velocity at the lower

part of the foil surface at T.E. Using eq. (6.15) and
defining � as the circulation around the foil, we
have

d�(t)
dt

+ 1
2

(
U−

T

)2 = 0. (6.20)

If the free shear layer had been parallel to the
upper part of the foil surface at T.E., eq. (6.20)
would be exchanged with

d�(t)
dt

− 1
2

(
U+

T

)2 = 0. (6.21)

Here U+
T is the tangential velocity at the upper

part of the foil surface at T.E. If the apex angle of
the foil at T.E. is zero, we get

d�(t)
dt

+ 1
2

(
U−

T

)2 − 1
2

(
U+

T

)2 = 0. (6.22)

Let us return to eq. (6.20). What does
0.5(U−

T )2represent physically? Well, −U−
T is the

vorticity across the boundary layer at T.E. (see eq.
(2.96)). Further, 0.5U−

T is the convection velocity
of the vorticity. This means that −0.5

(
U−

T

)2
is the

vorticity flux in the boundary layer at T.E. This
states that the vorticity in the free shear layer orig-
inates from the boundary layer along the foil sur-
face. If the free shear layer had not been parallel to
either the upper or lower side of the foil surface at
T.E., there would not have been shed any vorticity
according to the previous analysis.

There are different ways to represent a potential
flow. One way is to start out with Green’s second
identity. We will show this approach. Green’s sec-
ond identity in three dimensions states∫∫∫

�

(
ϕ∇2ψ − ψ∇2ϕ

)
dτ =

∫∫
S

(
ψ

∂ϕ

∂n
− ϕ

∂ψ

∂n

)
ds,

(6.23)

where S is the surface enclosing the fluid volume
�. It is necessary that ϕ and ψ have continuous
derivatives of first and second order in �. The nor-
mal direction n is into the fluid region. The 2D

n

n (x1, y1)

S1

S

Figure 6.27. Integration surfaces used in applying
Green’s second identity. (x1, y1) = singular point of eq.
(6.25).

version of eq. (6.23) is considered in the following
text.

Example 1
If ∇2ϕ = 0 and ∇2ψ = 0 everywhere in the fluid
domain, it follows from eq. (6.23) that∫

S

(
ψ

∂ϕ

∂n
− ϕ

∂ψ

∂n

)
ds = 0. (6.24)

Example 2
If ∇2ϕ = 0 everywhere in the fluid domain,

ψ(x, y; x1, y1) = ln[(x − x1)2 + (y − y1)2]1/2

(6.25)

and the point (x1, y1) is inside the fluid vol-
ume (Figure 6.27), we have to be careful in how
we handle the singular point (x1, y1) in eq. (6.25).
We note that ψ is the velocity potential for a 2D
source of strength 2π with the source at point
(x1, y1). Outside the singular point, ψ satisfies the
Laplace equation. Eq. (6.24) therefore applies if
we integrate over S + S1, that is,∫

S+S1

(
ψ

∂ϕ

∂n
− ϕ

∂ψ

∂n

)
ds = 0,

where S1 is the surface of a circle with small radius
r enclosing the point (x1, y1). Along S1 we can write
∂ψ

∂n = ∂ψ

∂r = 1/r where

r = ((x − x1)2 + (y − y1)2)1/2. (6.26)

As r → 0, this gives

∫
S1

ϕ
∂ψ

∂n
ds = ϕ (x1, y1)

2π∫
0

1
r

rdθ = 2πϕ (x1, y1)

(6.27)



P1: GDZ
0521845688c06 CB921-Faltinsen 0 521 84568 7 November 4, 2005 1:13

182 • Hydrofoil Vessels and Foil Theory

and ∫
S1

∂ϕ

∂n
ψ ds = 0. (6.28)

As a result, we can write the velocity potential for
2D flows as

2πϕ(x1,y1) =
∫
S

(
∂ϕ(s)
∂n

ln r − ϕ(s)
∂

∂n
ln r

)
ds(x,y).

(6.29)

Here S has to be a closed surface. The expression
∂(ln r)/∂n in eq. (6.29) is a dipole in the normal
direction of S. Eq. (6.29) states that we can rep-
resent the velocity potential in a fluid domain by
means of a combined source and dipole distribu-
tion along the surface S enclosing the fluid domain.
However, we need to know the values of ∂ϕ/∂n
and ϕ along S in order to determine the velocity
potential ϕ at (x1, y1) in the fluid domain. Later
we explain how this can be done for our foil prob-
lem. A numerical method based on representing
the fluid flow through a distribution of singularities
(source, dipoles, vortices) along boundary surfaces
is called boundary element method (BEM).

We now apply eq. (6.29) to our foil problem and
write the total velocity potential as

� = Ux + ϕ, (6.30)

where eq. (6.29) is used to express ϕ. S consists
then of the foil surface SB, a control surface S∞ at
infinity, and SV, which contains both sides of the
free shear layer. The contribution from integrating
over S∞ can be shown to be zero (see exercise
6.13.2).

We will rewrite eq. (6.29) by using the body
boundary condition

∂ϕ

∂n
= VB · n − Un1, (6.31)

where VB is the foil velocity and n = (n1, n2). Fur-
ther, by using the condition that the fluid velocity
perpendicular to SV is the same on the two sides
of SV, we have

ϕ(x1, y1) = − 1
2π

∫
SB

ϕ
∂

∂n
ln rds

+ 1
2π

∫
SB

(VB · n − Un1) ln rds

− 1
2π

∫
S+

V

[ϕ+ − ϕ−]
∂

∂n+ ln rdS.

(6.32)
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Figure 6.28. Streamlines due to a vertical 2D dipole in
infinite fluid.

Here + and – refer to the two sides of the free shear
layer. Eq. (6.32) states that the velocity potential
can be written as a distribution of sources and
dipoles over the body surface and a distribution
of dipoles over the free shear layer. This is not the
most common way of expressing the flow when
vorticity is involved. It is more common to use
potential flow vortices than dipoles. However, by
integrating the dipole expression in eq. (6.32) by
parts, it is possible to replace the dipole distribu-
tion by a vortex distribution.

Using potential flow vortices instead of normal
dipoles to represent the flow at the free shear layer
gives a more directly correct physical picture of
the flow. Let us explain this by examining the flow
associated with a dipole. Streamlines due to a ver-
tical 2D dipole are shown in Figure 6.28. Imag-
ine that the vertical direction in Figure 6.28 cor-
responds to the normal direction of S+

V . This flow
picture does not highlight any jump in the tangen-
tial velocity across SV at the singular position of
the dipole.

Let us then consider a potential flow vortex. The
velocity potential can be expressed as

�

2π
tan−1

(
y1 − y
x1 − x

)
, (6.33)

where (x, y) are the coordinates of the vortex cen-
ter and � is the circulation of the vortex. Inte-
grating eq. (6.33) in the counterclockwise direc-
tion corresponds to positive �. Polar coordinates
(r, θ) are introduced so that x1 − x = r cos θ and
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y1 − y = r sin θ , that is,

θ = tan−1

(
y1 − y
x1 − x

)
. (6.34)

Eq. (6.33) leads only to a fluid velocity Vθ in the
θ -direction. This can be expressed as

Vθ = �

2πr
. (6.35)

If now (x, y) is a point on SV, eq. (6.35) gives the
difference in the velocity direction on the two sides
of SV at the singularity point of the vortex. This is
more consistent with the condition that there is a
jump in tangential velocity across SV.

In order to show that the normal dipole distri-
bution can be replaced by a vortex distribution in
eq. (6.32), we must note first that

∂

∂y
ln r = − ∂θ

∂x
. (6.36)

Further, we consider as a preliminary example the
following normal dipole distribution along the x-
axis from x = a to b:

b∫
a

∂

∂y
ln

√
(x − x1)2 + (y − y1)2

∣∣∣∣
y=0

× [ϕ+(x) − ϕ−(x)]dx. (6.37)

Introducing eq. (6.36) into eq. (6.37) and using par-
tial integration, we obtain

− [ϕ+ − ϕ−]θ
∣∣b

a +
b∫

a

θ

[
∂ϕ+

∂x
− ∂ϕ−

∂x

]
dx. (6.38)

This expression consists of a vortex at x=a and one
at b plus a vortex distribution from x = a to b along
the x-axis. So we have illustrated the equivalence
between a normal dipole distribution and a vortex
distribution.

If we want to show that the normal dipole dis-
tribution in eq. (??) can be replaced by a vortex
distribution, we must replace the coordinate sys-
tem (x, y) with the coordinate system (n, s) and
then follow a procedure using partial integration
similar to that applied above.

Let us now return to how we determine the
velocity potential by using eq. (6.32). The problem
is solved as an initial-value problem. The integral
over S+

V as well as the position of S+
V at each time

instant is determined by using the following:

a) �+ − �− at the free shear layer SV is
convected with the velocity uC given by

eq. (6.19). The expressions for the veloci-
ties on the two sides of the free shear layer
are obtained by differentiating eq. (6.32) for
ϕ (x1, y1) with respect to x1 and y1 and adding
the incident flow velocity.

b) �+ − �− is continuous at the trailing edge.
c) SV is parallel with either the upper or lower

part of SB at the trailing edge. This depends
on the local flow at the trailing edge.

We then let (x1, y1) coincide with point (x, y)
on SB in eq. (6.32). This gives an integral equation
that determines ϕ on SB. Then we know ϕ every-
where in the fluid by means of eq. (6.32). The pres-
sure follows by Bernoulli’s equation. The force on
the foil can either be found by integrating pres-
sure loads or by an alternative formula presented
by Faltinsen and Pettersen (F&P; 1983).

The solution procedure requires a numerical
approximation. In the F&P case, SV and SB are
divided into a number of straight-line segments.
ϕ+ − ϕ− is assumed to be linearly varying over
each straight-line segment of S+

V . Further, ϕ and
(VB · n − Un1) are assumed constant over each
straight-line segment of SB. When setting up the
equation system for ϕ on SB, (x1, y1) in eq. (6.32)
is taken equal to the midpoint of each straight-
line segment on SB. However, it is necessary to
enforce the Kutta condition at the trailing edge.
For doing this, a linear condition is set up following
from continuity of �+ − �− at the trailing edge. In
order to have N equations with N unknown values
for the velocity potential associated with each seg-
ment on SB, the body boundary condition was not
enforced at the midpoint of one specific segment.
For this purpose, an element close to the trailing
edge was selected. The resulting linear equation
system is solved at each time step by inverting
a coefficient matrix. For the time integration, an
Euler method is used, showing good stability. The
reader is referred to F&P for further details.

We will present some of the numerical results
by F&P. The first case is the so-called Wagner
problem. This can be analytically solved (Wagner
1925 and Newman 1977). At time t = 0, a small
angle of attack α is given to a flat plate and kept
constant with time. Because the procedure out-
lined above does not work for a plate with zero
thickness, this was circumvented by introducing a
small foil thickness. The maximum value was only
1% of the foil chord length c. Results for the lift
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Figure 6.29. Comparison of the lift coefficient CL

between the analytical Wagner solution and the numer-
ical method by Faltinsen and Pettersen (1983).

coefficient CL = L/(0.5ρU2c), where L is the 2D
lift force, are presented in Figure 6.29 as a func-
tion of nondimensional time Ut/c. The value of CL

at t → ∞ is CL(t = ∞) = 2πα. Figure 6.29 shows
that even after the foil has traveled four times the
chord length, the lift is less than 90% of the steady
lift at t → ∞. The difference is because during the
transient phase, the vorticity in the free shear layer
causes a downwash at the foil. This reduces the
effective angle of attack. The vorticity shed from
the foil decreases with time and finally becomes
negligible. The shed vorticity during this time is
later convected far away from the foil. It is at this
stage that the lift on the foil is close to the steady
value. The Wagner solution is linearly dependent
on α. If α is not small, there is in reality, a nonlinear
relation between the lift and α. Further, the flow
may also separate from the area around the lead-
ing edge for large α. This is associated with stalling,
that is, reduction in mean lift with increasing α.

If a heaving foil is considered, the heave veloc-
ity divided by the incident flow velocity U is simi-
lar to an angle of attack. F&P studied the nonlin-
ear behavior of a harmonically heaving foil with
forward velocity. This problem was earlier stud-
ied by Giesing (1968), who found good qualitative
agreement with experimental pictures of the wake.
Giesing used discrete vortices to represent the free
shear layer, and in one extreme case, the wake has
a “mushroom” configuration. F&P’s results for the
same situations Giesing studied are considered in
the following. The airfoil is a NACA 0015 (Abbott
and von Doenhoff 1959). F&P used 30 elements
to represent the foil numerically. The chord length
of the foil and the incident flow along the longitu-

dinal axis of the airfoil were chosen as 10 m and
1 ms−1, respectively.

The case presented in Figure 6.30 corresponds
to circular frequency of heave oscillation ω = 1.7
rad/s. The maximum angle of attack was 17.8◦.
The time step was 0.05 s. The picture of the wake
after 175 time steps is presented in Figure 6.30. It
appears as if there is a discontinuity in the slope
of the free shear layer at the trailing edge (T.E.).
However, if a detailed view of the flow in the vicin-
ity of T.E. had been shown, it would be evident that
the flow is consistent with Figure 6.26. We see very
clearly a mushroom configuration in the wake, and
the free shear layer details are very complicated.
The result in Figure 6.30 agrees qualitatively with
Giesing’s experimental pictures of the wake.

6.4.2 3D flow

The theoretical and numerical procedure outlined
above can be generalized to 3D flows. Let us limit
ourselves to infinite fluid. We start with eq. (6.23)
and choose

ψ = 1
R

, (6.39)

where

R = ((x1 − x)2 + (y1 − y)2 + (z1 − z)2)1/2. (6.40)

Here (x1, y1, z1) is inside the fluid volume. This
means a 3D source in infinite fluid is used instead
of a 2D source. Generalizing the derivation for 2D
flow gives

ϕ(x1, y1, z1) = 1
4π

∫
SB

∫ (
ϕ

∂

∂n

(
1
R

)
− 1

R
∂ϕ

∂n

)
dS

+ 1
4π

∫∫
S+

V

(ϕ+ − ϕ−)
∂

∂n+

(
1
R

)
dS.

(6.41)

Figure 6.30. Wake profile for a harmonically heaving
NACA 0015 airfoil. ωc/U = 17. (Faltinsen and Pettersen
1983).
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Eq. (6.18) can be easily generalized to 3D flow
showing that ϕ+ − ϕ− is convected with the mean
value of the velocity on the two sides of the free
shear layer. A Kutta condition is also needed to
solve the problem. A method like this was used by
Skomedal (1985) for a 3D foil in infinite fluid. It
is commonly applied in the analysis of propulsors
and is capable of handling arbitrary blade, hub, and
duct geometries; general inflows; and the presence
of blade sheet cavitation (Kinnas 1996).

Cavitation and free-surface effects can be
included by letting the bounding surface for the
fluid volume include the cavity surface and the
free surface (Bal et al. 2001). Boundary condi-
tions on the free and cavity surfaces are, of course,
needed to solve the problem. Because a source in
infinite fluid is used, a method like this is denoted
by a Rankine source method. The free surface has
to be truncated to avoid an infinite number of
unknowns. This may be done by either a hybrid
method in which an analytical solution form is
used in the far field of the foil or by a numeri-
cal beach, which has an effect similar to that of
a wave beach in a model tank. The purpose is to
avoid unphysical reflected waves from the outer
boundary of the truncated free surface.

It was easy to show in the 2D case how a dipole
description of a vortex sheet could be expressed
in terms of a vortex distribution. It is more cum-
bersome to show the equivalence in the 3D case.
We start out with a more general representation of
the velocity due to the vorticityω in a volume �. If
the fluid is incompressible, the velocity u outside
� can be expressed as (Batchelor 1967)

u (x1, y1, z1) = ∇ × 1
4π

∫∫
�

∫
ω(x, y, z)

R
d�.

(6.42)

Here ∇ = i ∂

∂x1
+ j ∂

∂y1
+ k ∂

∂z1
and i, j, k are unit

vectors along the x1-, y1-, and z1-axes, respec-
tively. We can express ω in eq. (6.42) as

ω = ∇ × u = i
(

∂w

∂y
− ∂v

∂z

)

+ j
(

∂u
∂z

− ∂w

∂x

)
+ k

(
∂v

∂x
− ∂u

∂y

)
, (6.43)

where u = (u, v, w). Let us now consider a thin
free shear layer in the xy-plane. Consistent with
a thin free shear layer (see similar eq. (2.95) of

Chapter 2), the vorticity ω can be approximated
as

ω = −i
∂v

∂z
+ j

∂u
∂z

. (6.44)

Integrating ω across the free shear layer gives

0+∫
0−

ω dz = −i(v+ − v−) + j(u+ − u−).

= −i
∂

∂y
(ϕ+ − ϕ−) + j

∂

∂x
(ϕ+ − ϕ−)

(6.45)

This means

u = ∇ × 1
4π

∫
SV

∫
1
R

(
−i

∂

∂y
(ϕ+ − ϕ−)

+ j
∂

∂x
(ϕ+ − ϕ−)

)
dx dy, (6.46)

where

∇ × i
R

= j
∂

∂z1

(
1
R

)
− k

∂

∂y1

(
1
R

)
(6.47)

∇ × j
R

= −i
∂

∂z1

(
1
R

)
+ k

∂

∂x1

(
1
R

)
(6.48)

R =
(

(x1 − x)2 + (y1 − y)2 + z2
1

)1/2
. (6.49)

If eq. (6.41) is used to represent this vortex sheet,
the velocity potential due to the vortex sheet can
be expressed as

ϕ (x1, y1, z1) = 1
4π

∫ ∫
Sv

(ϕ+ − ϕ−)
∂

∂z

(
1
R

)
dx dy.

(6.50)
We will not show the details of the equivalence

between eqs. (6.46) and (6.50), and refer instead
to exercise 6.13.4, in which one has to derive
the details in a special case. Eq. (6.42) is instead
applied to a vortex line. This leads to Biot-Savart’s
law.

We consider first a vortex tube as in Figure 6.31
and let the cross-sectional area δa go to zero. The
vorticity is a vector along the unit vector s tangent
to the vortex line. The magnitude ω of the vortic-
ity times δa is equal to the circulation � around
the vortex line (see eq. (6.13)). � is a constant
along a vortex line. This can be shown by consider-
ing a closed curve consisting of C1, C2, C3, C4 (see
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δa

C1

C4

C2

C3
S

Γ

Figure 6.31. The left figure shows a vortex tube with circulation �. The right drawing shows a closed
curve C1 + C2 + C3 + C4 used in proving that the circulation � is constant along a vortex line.

Figure 6.31). Here C1 and C3 are in cross-sectional
planes of the vortex line. This closed curve does
not enclose vorticity. The circulation around the
closed curve is therefore zero. Because C2 and C4

coincide and the velocity is integrated in opposite
directions along C2 and C4, the contributions to
the circulation from C2 and C4 cancel each other.
This means the contributions from C1 and C3 must
also cancel each other. By noting that we integrate
along C1 and C3 in opposite directions, it follows
that the circulation � is a constant along a vortex
line. A consequence is that a vortex line cannot
end in the fluid.

From eq. (6.42), it follows that the velocity
induced by a vortex line is

u(x1, y1, z1) = �

4π

∮
∇ ×

( s
R

)
dl, (6.51)

where the ∇-operator involves differentiation
with respect to x1, y1, and z1. The detailed differ-
entiation gives

u(x1, y1, z1) = �

4π

∮
s × R

R3
dl, (6.52)

where

R = (x1 − x) i + (y1 − y) j + (z1 − z) k. (6.53)

Eq. (6.52) is Biot-Savart’s law.
Consider as a special case an infinitely long

straight vortex line along the x-axis. This means
s = i, y = 0, and z = 0. We choose x1 = 0, z1 = 0,
that is, R = −xi + y1 j (Figure 6.32). This gives
s × R = y1k or that there is only a velocity com-
ponent w along the z-axis. This can be expressed
as

w = �

4π

∞∫
−∞

y1dx(
x2 + y2

1

)3/2

= �

4πy1

[
x(

x2 + y2
1

)1/2

]∞

−∞
= �

2πy1
,

which is the same velocity as that induced by a 2D
vortex. This means a 2D vortex is the same as an
infinitely long straight 3D vortex line.

Biot-Savart’s law is, for instance, used in con-
nection with vortex-lattice methods for propellers
(Kerwin and Lee 1978) and for linear steady
flow past 3D foils. The principle is illustrated in
Figure 6.33. The foil is divided into panels. A horse-
shoe vortex with strength �n is associated with
each panel. The vortex consists of three connected
straight lines. Two of the lines (the trailing vor-
tices) go to infinity downstream and are parallel to
the incident flow. The third line connects the two

P(0, y1, 0)

R

y1

x1
dI =
dx

Γ

Figure 6.32. Quantities used in calculating velocity at P
induced by an infinitely long straight vortex line along
the x1-axis.

VORTEX MIDPOINT
 LIFTING VORTEX (AT 1/4 CHORD) BOUNDARY POINT

(AT 3/4 CHORD)

TRAILING
VORTEXES

Y

X

U

Figure 6.33. Division of surface into panels and location
of vortices and control points in a vortex-lattice method
(Feifel 1981).
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trailing vortices at a position that is �/4 from the
front of the panel. Here � is the length of the panel
in the incident flow direction. The horseshoe vor-
tices from each panel are superimposed, and the
body boundary condition is satisfied on each panel
at a control point 3�/4 from the front of the panel.
The induced velocity from each horseshoe vortex
at the control points is calculated by Biot-Savart’s
law. By satisfying the boundary conditions at the
foil, we get an equation system that determines the
unknown �n. Further details and generalizations
in connection with hydrofoil vessels are presented
by van Walree (1999).

6.5 2D steady flow past a foil in infinite fluid. Forces

Two-dimensional steady flow past a foil in infinite
fluid is considered. This means the free shear layer
SV in Figure 6.23 has been convected to infinity
relative to the foil during a transient time period.
We use a coordinate system (x, y) as in Figure 6.23
so that the forward speed U of the foil appears
as an incident flow along the x-axis. Because the
flow is steady, the foil does not move relative to
the xy-coordinate system.

Expressions for lift and drag forces on the foil
are derived based on potential flow theory and by
using conservation of fluid momentum (see sec-
tion 2.12.4). The fluid volume enclosed by the foil
surface SB and the surface SR of a circle with the
center inside the foil and with large radius R is
considered (Figure 6.34).

U

SB

SR

y

x

R

θ

θ

θ
cosθ

sinθ
uθcosθ

–uθsinθ

uθ

n

Figure 6.34. Control surfaces SB and SR used in express-
ing lift and drag forces on a 2D foil in infinite fluid by
conservation of fluid momentum.

y

s

n

x

Figure 6.35. Coordinate systems.

If we are close to the foil, the flow caused by
the foil can be represented by a distribution of
sources, sinks, and vortices over the body surface
SB as described in the previous section. However,
if we are far away from the foil, we do not see
the details of the foil. As a first approximation,
the flow due to the foil can then be represented in
terms of a vortex with the center inside the foil.
This means that the velocity potential at SR is

� = Ux + ϕ = Ux + �

2π
θ + O

(
1
R

)
. (6.54)

Here O ( ) means the order of magnitude and �

is the circulation around the foil. The angle θ is
defined in Figure 6.34. We will show that there
cannot be a source (sink) term (Q/2π) log R in
eq. (6.54). The source strength Q represents the
fluid mass flux through SR caused by the foil. This
can be expressed as

Q =
∫
SB

∂ϕ

∂n
ds (6.55)

by using conservation of fluid mass. Here ϕ is the
velocity potential due to the body. The normal
derivative of ϕ follows from the body boundary
condition, that is, ∂ϕ/∂n = −Un1, where n1 is the
x-component of the outward normal vector to SB.

If we introduce a curvilinear coordinate s along the
foil surface (Figure 6.35) and express the x and y
coordinates of the foil surface as a function of s,
we can express n1 as −dy/ds. This means

Q = U
∫
SB

dy
ds

ds = U
∫
SB

dy. (6.56)

Because the integration is along a closed curve,
that is, the start and end values of y are the same,
Q is zero.

We start by examining conservation of fluid
momentum in the y-direction. Because first
approximations of the vertical fluid velocity v
and of the normal velocity are, respectively,
� cos θ/ (2π R) and U cos θ at SR, the y-component
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of the momentum flux at SR is

Jy = ρ

2π∫
0

�

2π R
cos θU cos θ R dθ + O

(
1
R

)
. (6.57)

The y-component of the hydrodynamic force act-
ing on the control volume at boundary SR is

Fy = −
2π∫

0

p sin θ R dθ, (6.58)

where the pressure p follows from Bernoulli’s
equation. Expressing the horizontal fluid velocity
as U + u and neglecting gravity, we have

p = −ρ

2

[
(U + u)2 + v2

]
+ ρ

2
U2 + pa

= −ρUu − ρ

2
(u2 + v2) + pa . (6.59)

Here pa is the ambient pressure. A first approxi-
mation of u at SR is −� sin θ/ (2π R). This means

Fy = ρU

2π∫
0

(
− �

2π R
sin θ

)
sin θ R dθ + O

(
1
R

)
.

(6.60)
There is no momentum flux through SB. Further,
the y-component of the force acting on the fluid at
SB is minus the lift force L acting on the foil. This
gives

Jy = Fy − L,

that is,

− L = ρU
�

2π

2π∫
0

(cos2 θ + sin2
θ)dθ + O

(
1
R

)
.

(6.61)

Letting R → ∞ results in the well-known Kutta-
Joukowski formula

L = −ρU�. (6.62)

This formula and that the drag is zero are much
more easily derived mathematically using com-
plex potentials and the Blasius theorem (Milne-
Thomson 1996). We should note that positive cir-
culation � is in the counterclockwise direction. �

is negative and the lift force positive for the flow
situation in Figure 6.34. Another way of seeing this
qualitatively is that negative � implies an increase
in fluid velocity on the top of the foil relative to
the bottom of the foil. Because increasing fluid
velocity means decreasing pressure, the lift force
is positive.

The drag force D on the foil follows from con-
servation of fluid momentum in the x-direction.

A first approximation of the x-component of the
fluid velocity at SR is U − � sin θ/ (2π R). The x-
component of the momentum flux at SR is then

Jx = ρ

2π∫
0

(
U − �

2π R
sin θ

)
U cos θ R dθ + O

(
1
R

)
.

= O
(

1
R

)

The x-component of the hydrodynamic force act-
ing on SR is

Fx = ρ

2π∫
0

(
− �

2π R
sin θ

)
U cos θ R dθ + O

(
1
R

)
.

= O
(

1
R

)

Conservation of fluid momentum implies

Jx = Fx − D.

It follows that the drag force D is zero by letting
R → ∞. The hydrodynamic force acting on a 2D
foil in steady flow and in infinite fluid is therefore
perpendicular to the incident flow velocity accord-
ing to potential flow theory. If a flat plate with
an angle of attack relative to the incident flow is
considered, this may sound contradictory. Because
pressure loads act perpendicularly to a body sur-
face, one may be tempted to say that the force acts
perpendicularly to the flat plate instead of perpen-
dicularly to the incident flow velocity. However,
detailed analysis shows that the very large pres-
sure force acting on a very small area at the leading
edge causes a finite suction force. The magnitude
of this suction force explains why the total hydro-
dynamic force is perpendicular to the incident flow
velocity.

If viscous effects are considered, there is a drag
force. This can, for instance, be derived by con-
servation of fluid momentum similar to what was
done in section 2.9 for the viscous flow past a 2D
strut with zero angle of angle.

6.6 2D linear steady flow past a foil in infinite fluid

Linear steady flow past a foil in infinite fluid is
considered. Linearity means that the fluid veloc-
ity |∇ϕ| due to the foil is much smaller than U and
that only linear terms in ϕ are kept in the formula-
tion of the boundary-value problem. Linearization
implies that an analytical solution can be found
for general hydrofoil shapes in an infinite fluid.
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x = –0.5c
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Figure 6.36. Linearization of boundary value problem
of 2D steady flow past a foil in infinite fluid. (a) Defines
the foil geometry; (b) illustrates how body boundary con-
ditions on the foil through linearization are transferred
to a cut along the x-axis from x = −c/2 to x = c/2. c =
chord length.

The lift slope dL/dα, where L is the lift and α is
the angle of attack, is constant according to lin-
ear theory. To how large an α that linear theory
applies depends, for instance, on Reynolds num-
ber, cavitation number, ventilation, and the foil
shape. The linear theory may be applicable up to
13◦ to 17◦ for a 2D foil with turbulent boundary
layers in infinite fluid (see Figure 2.17). However,
this depends on when separation at the leading
edge occurs. A laminar boundary layer flow sepa-
rates more easily than a turbulent boundary layer
flow. Leading-edge flow separation causes the lift
to decrease with increasing α (stalling). A linear
theory cannot describe cavitation inception. How-
ever, linear theory is used in describing flow due
to cavitating foils (Newman 1977). We assume a
noncavitating foil.

We start by linearizing the body boundary con-
dition on the foil. The upper and lower parts of the
foil surface are denoted y = yu(x) and y = yl(x),
respectively (see Figure 6.36a).

The exact body boundary condition on y =
yu(x) is

∂ϕ

∂n
= −Un1, (6.63)

where n1 is the x-component of the outward nor-
mal vector n = (n1, n2) to the foil surface. We
can write ∂ϕ/∂n = n1∂ϕ/∂x + n2∂ϕ/∂y. Because
n1 � n2 on the most part of the foil surface, we
write

∂ϕ

∂n
≈ ∂ϕ

∂y
on y = yu(x).

This is not a good approximation at the nose of
the foil. The consequence is a singularity in the
analytical solution at the nose of the foil. Because
n1 ≈ −∂yu/∂x, it follows that

∂ϕ

∂y
= Uyu

′(x) on y = yu(x).

Here the symbol ′ means derivative.
The next step is to Taylor expand this boundary

condition about y = 0+, that is,

∂ϕ

∂y
= ∂ϕ

∂y

∣∣∣∣
y=0+

+ yu
∂2ϕ

∂y2

∣∣∣∣
y=0+

+ · · · ,

−c/2 < x < c/2.

Because yu is small, we get the following linearized
body boundary condition for the upper part of the
foil surface:

∂ϕ

∂y
= Uyu

′(x) on y = 0+, − c/2 < x < c/2.

(6.64)

Similarly, for the lower part of the foil surface, we
get

∂ϕ

∂y
= Uyl

′(x) on y = 0−, − c/2 < x < c/2.

(6.65)

These linearized body boundary conditions are
illustrated in Figure 6.36b.

The next step is to divide the flow into two parts
that are, respectively, antisymmetric and symmet-
ric about the x-axis. We then define the mean-
camber line of the foil

η (x) = 0.5[yu (x) + yl(x)] (6.66)

and express yu as η (x) + a(x) and yl as η (x) −
a(x). This means eqs. (6.64) and (6.65) become

∂ϕ

∂y
= U[η′(x) + a′(x)] on y = 0+,

−c/2 < x < c/2 (6.67)

∂ϕ

∂y
= U [η′(x) − a′(x)] on y = 0−,

−c/2 < x < c/2, (6.68)

respectively. We introduce then the decomposi-
tion ϕ = ϕ0 + ϕe so that

∂ϕ0

∂y
= Uη′(x) on y = 0, − c/2 < x < c/2

(6.69)

∂ϕe

∂y
=

{
+Ua′(x) on y = 0+, − c/2 < x < c/2
−Ua′(x) on y = 0−, − c/2 < x < c/2

.

(6.70)
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U

U

x = –0.5c x = 0.5c

x = –0.5c x = 0.5c

y

x

y

x

a)

b)

Figure 6.37. The linearized boundary value problem for
2D steady flow past a foil in infinite fluid can be repre-
sented as the sum of vortex distribution (a) and source
distribution (b) along a cut of the x-axis from x = −c/2
to x = c/2. c = chord length.

We note that this is consistent with eqs. (6.67) and
(6.68). Eq. (6.69) says that the vertical fluid veloc-
ity is continuous across the cut −c/2 < x < c/2. A
distribution of vortices along the cut will satisfy
this properly (Figure 6.37a). This flow is antisym-
metric about the x-axis. Eq. (6.70) says that the
vertical flow velocity has the same magnitude, but
opposite directions on the two sides of the cut. This
expresses that the flow is either pushed outward or
attracted inward by the foil. A source distribution
along the cut can be used to represent this part of
the flow (Figure 6.37b). Actually, there must be a
distribution of sources and sinks so that the net
source strength Q is zero as shown in section 6.5.

The flow associated with the source distribution
is symmetric about the x-axis and does not cause
a vertical force. It is the vortex distribution that
causes a lift force on the foil. We will concentrate
on this part of the flow. The velocity potential can
be expressed as

ϕ0 = 1
2π

0.5c∫
−0.5c

γ (ξ)tan−1 y
x − ξ

dξ . (6.71)

Here γ (ξ) dξ is the circulation of a vortex with cen-
ter in y = 0 and x = ξ . The x- and y-components
of the fluid velocity due to the foil are then

u = ∂ϕ0

∂x
= − 1

2π

0.5c∫
−0.5c

γ (ξ)
y

(x − ξ)2 + y2
dξ

(6.72)

v = ∂ϕ0

∂y
= 1

2π

0.5c∫
−0.5c

γ (ξ)
x − ξ

(x − ξ)2 + y2
dξ.

(6.73)

By using eqs. (6.69) and (6.73), it now follows that

1
2π

PV

0.5c∫
−0.5c

γ (ξ)
x − ξ

dξ = Uη′(x) − c/2 < x < c/2.

(6.74)
Here PV

∫
means principal value integral. This is

defined by the limiting process

lim
ε→0


 x−ε∫

−0.5c

+
0.5c∫

x+ε


 γ (ξ)

x − ξ
dξ.

It is necessary to impose the Kutta condition
at the trailing edge in order for eq. (6.74) to
have a unique solution. This was discussed in the
unsteady case in section 6.4 (see eq. (6.22)). How-
ever, there is no vorticity shed into a free shear
layer in the steady case. This means U−

T = U+
T in

eq. (6.22). Here U±
T = U + u±

T , where u±
T follows

by evaluating eq. (6.72) at y = 0± at the trailing
edge.

Eq. (6.72) gives

u = ∓γ (x)
2

on y = 0±, − c/2 < x < c/2. (6.75)

So it is only the local vortex strength that con-
tributes to the horizontal velocity at the cut. This
can be understood by the flow picture caused by
the vortex distribution in Figure 6.37. The vortices
with centers different from x will only cause a ver-
tical velocity at x. This means that we can write

u (x, ±ε) = ∓γ (x)
2π

0.5c∫
−0.5c

εdξ[
(x − ξ)2 + ε2

]

= ∓γ (x)
2π

tan−1

(
ξ − x

ε

)∣∣∣∣
0.5c

−0.5c

,

where ε is small. Letting ε → 0 gives eq. (6.75).
Because we require that U−

T = U+
T at the trailing

edge and U±
T = U + u±

T , eq. (6.75) gives

γ (c/2) = 0. (6.76)

This is the mathematical formulation of the Kutta
condition for this problem.

Newman (1977) and Breslin and Andersen
(1994) showed how we generally can solve the sin-
gular integral equation for γ given by eq. (6.74).
Because C((c/2)2 − x2)−0.5, where C is any con-
stant, satisfies eq. (6.74) with the right-hand–side
of the eq. (6.74) equal to zero, it is not sufficient to
find a particular solution for eq. (6.74). The Kutta
condition is needed to make the solution unique.
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An approach in which the solution form of γ is
guessed follows below. There is some rationality
behind the representation of γ . However, know-
ing the answer certainly helps. The first step is to
make the substitution

x = −(c/2) cosX , ξ = −(c/2) cos θ, (6.77)

where χ and θ vary between 0 and π . The assumed
representation of γ is

γ (ξ) = 2U

{
a0

1 + cos θ

sin θ
+

∞∑
n=1

an sin nθ

}
. (6.78)

This vortex density is consistent with the Kutta
condition, that is, γ is zero at θ = π or ξ = c/2. If
a0 �= 0, then γ is infinite at the leading edge, that
is, at θ = 0 or ξ = −c/2. It will turn out that the
singular term in eq. (6.78) represents the complete
solution for a flat plate with an angle of attack.
Eq. (6.74) can now be expressed as

1
π

PV

π∫
0

{
a0 (1 + cos θ) +

∞∑
n=1

an sin nθ · sin θ

}
cos θ − cos χ

dθ

= η′ (x) . (6.79)

The trigonometric identity

sin nθ · sin θ = 1
2

[cos(n − 1)θ − cos(n + 1)θ ]

(6.80)

is then introduced in eq. (6.79). This will in
eq. (6.79) require the evaluation of the Glauert
integrals (Newman 1977), that is, that

PV

π∫
0

cos nθ dθ

cos θ − cos χ
= π

sin nχ

sin χ
. (6.81)

It means by using trigonometric identities that

PV

π∫
0

sin nθ sin θ

cos θ − cos χ
dθ

= 1
2


PV

π∫
0

cos(n − 1)θ
cos θ − cos χ

dθ

−PV

π∫
0

cos(n + 1)θ
cos θ − cos χ

dθ




= π

2

[
sin(n − 1)χ − sin(n + 1)χ

sin χ

]
= −π cos nχ (6.82)

Eq. (6.79) then becomes

a0 −
∞∑

n=1

an cos nχ = η′(x). (6.83)

This is just a Fourier cosine series representation of
η′(x). Because we can always represent η′(x) like
that, the assumed solution form of γ is consistent
with both the Kutta condition and a Fourier series
representation of η′(x). It follows by multiplying
eq. (6.83) with cos nχ, n = 0, . . . , and integrating
from 0 to π that

a0 = 1
π

π∫
0

η′(x)dχ,

(6.84)

an = − 2
π

π∫
0

η′(x) cos nχ dχ

where x is −0.5c cos χ.

When γ (x) is obtained, we can find the lin-
earized pressure p on the foil. This follows from
eq. (6.59) by noting that −0.5ρ(u2 + v2) is non-
linear. Because the ambient pressure pa does not
contribute to integrated loads on the foil, we dis-
regard pa. This gives p = −ρUu or that

p± = ±ρU
γ (x)

2
. (6.85)

The lift force on the foil is then

L = −ρU

c/2∫
−c/2

γ (ξ) dξ ≡ −ρU�. (6.86)

This is consistent with eq. (6.62). Using eqs. (6.77),
(6.78), and (6.84) gives

L = −ρU

π∫
0

γ 0.5c sin θ dθ,

(6.87)
= −2ρU2π(a0 + 0.5a1)0.5c

that is,

L = −2ρU2
( c

2

) π∫
0

dη

dξ
(1 − cos θ) dθ.

We now use eq. (6.77) once more and that dξ =
c/2 sin θdθ =

√
(c/2)2 − ξ 2dθ . This implies

L = −2ρU2

c/2∫
−c/2

dη

dξ

[
c/2 + ξ

c/2 − ξ

]1/2

dξ . (6.88)
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The hydrodynamic moment on the foil about x = 0
can be expressed as

M = −ρU

c/2∫
−c/2

γ (ξ)ξ dξ (6.89)

by means of eq. (6.85). This can be rewritten in a
similar way as for the lift, that is,

M = ρU (c/2)2

π∫
0

γ cos θ sin θ dθ

= ρ2U2
( c

2

)2
· π

2

(
a0 + 1

2
a2

)
. (6.90)

Introducing eq. (6.84) now gives

M = 2ρU2

c/2∫
−c/2

dη

dξ
[(c/2)2 − ξ 2]1/2 dξ. (6.91)

The center of pressure, xcp is the ratio xcp =
M/L, that is, the ratio between the hydrodynamic
moment M about x = 0 and the lift force L.

6.6.1 Flat plate

A flat plate with angle of attack α is considered,
that is, dη/dξ = −α in eqs. (6.88) and (6.91). The
integrals are evaluated by introducing a new vari-
able θ so that

ξ = 0.5c sin θ. (6.92)

This gives

L = 2ρU2α

π/2∫
−π/2

c/2 + (c/2) sin θ

[(c/2)2 − (c/2)2 sin2
θ ]1/2

× (c/2) cos θ dθ

or

L = ρU2cπα. (6.93)

We could, of course, also use the transformation
given by eq. (6.92) to facilitate the integration. The
lift coefficient is

CL = L
0.5ρU2c

= 2πα. (6.94)

The moment M can be expressed as

M = −2ρU2α (0.5c)2

0.5π∫
−0.5π

cos2 θ dθ
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Figure 6.38. Linear pressure distribution on the top
(suction) and bottom (pressure) sides of a flat plate with
a positive angle of attack α. c = chord length. Ambient
pressure is not included.

or

M = −0.25ρU2c2πα. (6.95)

The moment coefficient is then

CM = M
0.5ρU2c2

= −π

2
α. (6.96)

This gives that the center of pressure is 0.75c from
the trailing edge.

The vortex distribution can be found by eqs.
(6.78) and (6.84). It follows from eq. (6.84) that
a0 = −α and an = 0 for n ≥ 1. Eq. (6.78) with x as
a variable instead of ξ gives then that

γ = −2Uα
1 + cos χ

sin χ
= −2Uα

0.5c − x√
(0.5c)2 − x2

,

that is,

γ (x) = −2αU
[

0.5c − x
0.5c + x

]1/2

. (6.97)

We can then use eq. (6.85) to express the pressure
on the top and bottom of the foil, that is,

p±

0.5ρU2α
= ∓2

[
0.5c − x
0.5c + x

]1/2

. (6.98)

This is illustrated in Figure 6.38. The pressure
is infinite at the leading edge. However, the lin-
earized solution is a good approximation of the
pressure distribution away from the close vicinity
of the leading edge. The flow can be corrected and
made finite at the leading edge (Lighthill 1951).
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The pressure given by eq. (6.98) is integrably sin-
gular at x = −c/2, so the forces and moments are
finite as we have already seen by eqs. (6.93) and
(6.95).

6.6.2 Foil with angle of attack and camber

The camber ηf (x) of a foil section is measured rela-
tive to the nose-tail line (see Figure 6.3). The maxi-
mum f of ηf (x) is called the physical camber. If we
represent the camber by a parabola and the foil
has an angle of attack α relative to the nose-tail
line, we can express the mean line of the foil as

η = −αx + f ·
(

1 −
( x

0.5c

)2
)

. (6.99)

Because the problem is linear, the effect of the
angle of attack α and of the camber can be handled
separately. We therefore set α equal to zero first.
Using eq. (6.88) gives the lift force as

L = 16ρU2 f
c2

0.5c∫
−0.5c

ξ

[
0.5c + ξ

0.5c − ξ

]1/2

dξ.

Introducing the θ -variable by eq. (6.92), we have

L = 4ρU2 f

0.5π∫
−0.5π

sin θ(1 + sin θ) dθ

= 2ρU2 f π.

The lift coefficient is then

CL = L
0.5ρU2c

= 4π
f
c

. (6.100)

This means, for instance, that a small camber ratio
f/c = 0.2/4π = 0.0159 gives a lift coefficient as
large as 0.2 when the angle of attack is zero.
Accounting for both the angle of attack α and cam-
ber gives then

L = ρU2cπ (α + 2 f/c) , (6.101)

where eq. (6.93) has been used for the angle of
attack effect. This means zero lift occurs when
α = α0 = −2 f/c. A parabolic camber will not con-
tribute to the moment. Further, the pressure due
to the parabolic camber will be finite everywhere
along the foil.

6.6.3 Ideal angle of attack and angle of attack
with zero lift

An angle of attack is called ideal if the linear theory
predicts finite pressure at the leading edge. This
is also called shockless entry. The constant a0 in
eq. (6.84) is zero at the ideal angle of attack αi .
This leads to a vortex distribution (see eq. (6.78))
and a pressure distribution (see eq. (6.85)) that are
finite everywhere. Because large negative pressure
implies the possibility of cavitation, the ideal angle
of attack is important in minimizing the risk for
cavitation inception. If we express the mean line
of the foil as η = −αx + ηf (x), then eq. (6.84) gives

αi = 1
π

π∫
0

η′
f (x)dχ (6.102)

for a foil in infinite fluid. Here x = −0.5c cos χ .
The ideal angle of attack is therefore zero for a
foil with a camber that is even in x. The previous
case with a parabolic camber is an example of that.

The angle of attack α0 that causes zero lift fol-
lows from eqs. (6.87) and (6.84), that is,

α0 = 1
π

π∫
0

η′
f (x) (1 − cos χ) dχ. (6.103)

The linear lift coefficient can then be expressed as

CL = 2π(α − α0). (6.104)

We saw in Section 6.6.2 that α0 = −2 f/c for a foil
with parabolic camber.

Let us consider as another example the mean
line of the NACA 08 (modified) section (Abbott
and von Doenhoff 1959). This is commonly used
in the design of conventional propellers. The num-
ber 08 means that the vortex density γ is con-
stant from the leading edge downstream over a dis-
tance 0.8 times the chord length. Using eqs. (6.102)
and (6.103) gives αi = 1.40◦ and α0 = −7.72◦. The
lift coefficient at the ideal angle of attack is
2π (1.4 + 7.72) (π/180) = 1.

6.6.4 Weissinger’s “quarter-three-quarter-chord”
approximation

According to Weissinger’s (1942) theory, the cir-
culation � around a 2D foil in steady motion in
infinite fluid can be determined by placing a vor-
tex with strength � at one quarter of a chord length
from the leading edge and satisfying the boundary
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Figure 6.39. Foil with a flap of length rc and angle αf .

condition at three quarters of a chord length
from the leading edge. If this is applied to a foil
with angle of attack and camber as described by
eq. (6.99), it means that

�

2π0.5c
= −U(α + 2 f/c).

Using the Kutta-Joukowski formula for the lift,
that is, eq. (6.62), gives the same result as eq.
(6.101).

6.6.5 Foil with flap

The foil with flap illustrated in Figure 6.39 is con-
sidered. The camber is zero. The flap has an angle
of attack α f and a length rc, where c is the chord
length including the flap. The other part of the foil
has a zero angle of attack. Using eq. (6.88) to cal-
culate the lift gives

L = 2ρU2α f

0.5c∫
0.5c−rc

[
0.5c + ξ

0.5c − ξ

]1/2

dξ. (6.105)

We introduce θ as an integration variable by
means of eq. (6.92). When ξ = 0.5c − rc, the cor-
responding angle θ is 0.5π − θ f , that is, 0.5c −
rc = 0.5c sin(0.5π − θ f ) or

r = 0.5 (1 − cos θ f ) . (6.106)

Eq. (6.105) can then be expressed as

L = ρU2α f c

0.5π∫
0.5π−θ f

(1 + sin θ) dθ

= ρU2α f c (θ f + sin θ f ) . (6.107)

It follows from eq. (6.106) that r ≈ 0.25θ2
f for

small r. Eq. (6.107) gives then

L ≈ 4ρU2cr 1/2α f . (6.108)

We can introduce an efficiency coefficient η f that
expresses the foil capability to provide lift relative
to a flat plate with an angle of attack α f . Using eqs.
(6.93) and (6.107) gives

η f = ρU2α f c (θ f + sin θ f )
ρU2α f cπ

= θ f + sin θ f

π
.

(6.109)

Applying the asymptotic formula for small r, that
is, eq. (6.108), we obtain

η f = 4
π

r 1/2 for small r. (6.110)

Eqs. (6.109) and (6.110) are plotted in Figure 6.40
showing that eq. (6.110) is a reasonable approxi-
mation for r < ≈0.2. Further, using, for instance,
r = 0.15 gives, respectively, η f = 0.48 and 0.49 for
the exact and asymptotic formula. This illustrates
that a flap is an efficient means of generating lift.
It is not possible to use Weissinger’s “quarter-
three-quarter-chord” approximation to describe
the effect of a flap. This would lead, for instance,
to zero lift force when the flap length is less than
one quarter of the chord length.

Using eq. (6.91) to calculate the hydrodynamic
moment about x = 0 gives

M = −2ρU2α f

0.5c∫
0.5c−rc

((0.5c)2 − ξ 2)1/2dξ .

Once more introducing θ as an integration vari-
able, we get

M = −0.5ρU2α f c2

0.5π∫
0.5π−θ f

cos2 θ dθ (6.111)

= −0.25ρU2α f c2 (θ f − 0.5 sin 2θ f ) .

Assuming θ f is small and relating θ f to r gives

θ f − 0.5 sin 2θ f ≈ θ f − 0.5

(
2θ f − (2θ f )3

6

)

= 42

3
r 3/2,

1.2

1
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Figure 6.40. Flap efficiency ηf as a function of the ratio r
between flap length and chord length.
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Figure 6.41. Projections of the foil surface SB and vortex
sheet SV on the xy-plane. These are used in the solution
of the 3D linearized problem.

that is,

M = −4
3
ρU2c2r 3/2α f . (6.112)

The center of pressure xCP is then

xCP = M
L

= −rc
3

. (6.113)

Because rc is assumed small, xCP is close to x = 0.
It implies that we cannot simply handle the flap
as an independent appended foil to the rest of the
foil. The center of pressure would then be 0.75rc
from the trailing edge of an uncambered flap.

6.7 3D linear steady flow past a foil in infinite fluid

Eq. (6.41) is a representation of the velocity poten-
tial ϕ for 3D nonlinear flow past a foil in infinite
fluid. The problem will be linearized similarly to
that in the 2D case. This is illustrated in Figure 6.41,
in which the vortex sheet SV and the foil surface
SB have been projected on the xy-plane.

The foil has a span s and a local chord length
c(y). The incident flow velocity U is along the pos-
itive x-axis. We will change the notation in eq.
(6.41) so that the integration variable (x, y, z) is
replaced by (ξ, η, ζ ) and the field point (x1, y1, z1)
is exchanged with (x, y, z). We call IW the lin-
earized integral over S+

V in eq. (6.41). This can be
written as

IW = z
4π

0.5s∫
−0.5s

dη

xE∫
0.5c

[ϕ+ − ϕ−]dξ

[(x − ξ)2 + (y − η)2 + z2]3/2
.

(6.114)
Here xE corresponds to the x-coordinate of the
longitudinal extent of the vortex sheet in the

downstream direction. This is assumed indepen-
dent of y.

The linearized zero pressure jump condition
over the vortex sheet follows from eq. (6.18) by
neglecting the time-dependent part, setting the
convection velocity uc given by eq. (6.19) equal
to Ui, and transferring eq. (6.18) to z = 0. This
means

∂

∂x
(ϕ+ − ϕ−) = 0 on z = 0 on SV . (6.115)

[ϕ+ − ϕ−] in eq. (6.114) can then be replaced
with its value at the trailing edge (T.E.). Further,
in steady conditions, the vortex sheet extends to
xE = ∞. This gives

IW = z
4π

0.5s∫
−0.5s

dη[ϕ+ − ϕ−]T.E.

×
∞∫

0.5c

dξ

[(x − ξ)2 + (y − η)2 + z2]3/2

= z
4π

0.5s∫
−0.5s

dη
[ϕ+ − ϕ−]T.E.

[(y − η)2 + z2]

×
{

1 + x − 0.5c(η)
[(x − 0.5c(η))2 + (y − η)2 + z2]1/2

}
.

(6.116)

6.7.1 Prandtl’s lifting line theory

We now consider Prandtl’s lifting line theory. This
has been presented, for instance, by Newman
(1977) but a different approach will be followed
here. Prandtl’s lifting line theory assumes a high-
aspect–ratio foil, that is, the span length is much
larger than the maximum chord length. Lifting line
theory is also used in the analysis of propellers
(Breslin and Andersen 1994). However, because
the shed vorticity behind a propeller is not located
in a flat plane, as in the following analysis, the pro-
cedure becomes more complicated. However, the
principle behind the analysis for a propeller is the
same as described below.

We introduce far-field and near-field descrip-
tions of the flow around the foil. The details of
the transverse foil dimensions are not seen in the
far-field view. The foil appears as a straight line
along the y-axis between y = −0.5s and 0.5s (Fig-
ure 6.42). The consequence is that in the far-field
description of IW, we can set c(η) = 0 in eq. (6.116).
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U z

(0, 0.5s, 0)

(0, –0.5s, 0)

y

x

SV

Figure 6.42. Far-field view of a high-aspect–ratio foil.
This means we do not see the details of the transverse
dimensions of the foil. Otherwise, the explanations are
as in Figure 6.41. The foil appears to be a straight line in
the y-axis between y = −0.5 s and 0.5 s.

The details of the transverse dimensions of the
foil are seen in the near-field description. The flow
is locally two-dimensional in the transverse cross-
sectional xz-plane (Figure 6.43). The effect of the
far-field description is a vertical inflow velocity wi

that changes the angle of attack of the incident
flow. One should note the fact that the calculated
wi is negative; therefore, the induced velocity is
downward in Figure 6.43. This reduces the angle of
attack. The far-field version of eq. (6.116) is used to
calculate wi . This means both x and c are set equal
to zero in eq. (6.116). IW can be re-expressed by
using partial integration and noting that

d
dη

tan−1

(
z

y − η

)
= z

(y − η)2 + z2
. (6.117)

Using condition ϕ+ − ϕ− = 0 for y = ±0.5s, we
have

IW = − 1
4π

0.5s∫
−0.5s

d
dη

[ϕ+ − ϕ−]T.E.tan−1 z
y − η

dη

for x = c = 0. (6.118)

The induced vertical velocity wi is then obtained
by differentiating eq. (6.118) with respect to z and
setting z = 0. Further, [ϕ+ − ϕ−]T.E. can be related
to the circulation �(y) around the foil in the 2D
flow description in Figure 6.43 (see eq. (6.15) and
Figure 6.25). This gives

wi = 1
4π

PV

0.5s∫
−0.5s

d�

dη

dη

y − η
. (6.119)

There is a circulation �2D around the foil when
wi is zero. However, wi causes an angle of attack
αi = wi/U of the incident flow, and this changes
the circulation around the foil. Using eqs. (6.62)
and (6.93) gives the change in circulation due to αi

as −Ucπαi . This gives the following equation:

�(y) = �2D(y) − πc(y)wi ;

that is, noting signs, we write

�(y) = �2D(y) + 1
4

c(y)PV
(6.120)

×
0.5s∫

−0.5s

d�(η)
dη

dη

η − y
, − 0.5s < y < 0.5s.

Eq. (6.120) can be rewritten by introducing the
new variables θ and θ ′ defined as

y = s
2

cos θ (6.121)

and

η = s
2

cos θ ′. (6.122)

This means that y = ± s
2 corresponds to θ = 0 and

θ = π, respectively. � can be expressed as the fol-
lowing Fourier series:

� = 2Us
∞∑

n=1

an sin nθ. (6.123)

Because � is zero for θ = 0 and π , Fourier series
terms with cos nθ cannot be included. Introducing
the Fourier series representation gives

PV

0.5s∫
−0.5s

d�(η)
dη

dη

η − y

(6.124)

= −4U
∞∑

n=1

nan PV

π∫
0

cos nθ ′dθ ′

cos θ ′ − cos θ
.

U
wiαi

x = –0.5c

x = 0.5cx

z

Figure 6.43. Near-field view of the steady flow past a
high-aspect–ratio foil in infinite fluid. The far-field 3D
flow described by Figure 6.42 causes a vertical inflow
velocity wi that changes the angle of attack of the incident
flow. Note that the calculated wi is negative.
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The Glauert integrals appearing in eq. (6.44) can
be evaluated by eq. (6.81). Eq. (6.121) can then be
expressed as

∞∑
n=1

an sin nθ = 1
2Us

�2D

(
1
2

s cos θ

)

(6.125)

− π

2s
c
(

1
2

s cos θ

) ∞∑
n=1

nan
sin nθ

sin θ
,0 < θ < π.

A linear equation system with N unknowns an

follows by satisfying eq. (6.125) for N different
θ -values. However, an analytical solution can be
found if an uncambered lifting surface with ellip-
tical planform is considered. In this case,

c = c0 sin θ, (6.126)

where c0 is the chord at midspan. Further,

�2D = −Ucπα, (6.127)

where α is the geometrical angle of attack. Using
eq. (6.125) then gives

a1 = −παc0

2s

(
1 + πc0

2s

)−1
. (6.128)

This can be re-expressed in terms of the aspect
ratio  = s2/A, where A= 0.25πc0s is the pro-
jected area of the elliptical foil on the xy-plane.
This gives a1 = −2α/( + 2). The lift force L on
the foil is then

L = −ρU

s/2∫
−s/2

�(y)dy

= ρU2Us
2α

 + 2
· s

2

π∫
0

sin2
θ dθ. (6.129)

= ρU2s2 απ

 + 2

The lift coefficient CL is defined as L/(0.5ρU2 A),
where A= s2/, that is,

CL = 2πα

(1 + 2/)
, (6.130)

where  = 4s/πc0. Eq. (6.130) is consistent with
the 2D result 2πα when  → ∞. However, when
 → 0, the result πα is inconsistent with low-
aspect–ratio theory, the value predicted by eq.
(6.130) being twice the correct value. However,
generally speaking, eq. (6.130) gives a good indi-
cation of 3D effects. Lifting line theory gives con-
servative estimates, and by using it, the relative

U z

x
SB

SV

SC

(x, –s/2, 0)

(x, s/2, 0)

Figure 6.44. Control volume used in expressing the drag
on a foil by conservation of fluid momentum.

error is 5% at = 8, 10% at = 4, and 20% at
= 2.

In 1942, the German aerodynamicist H. B.
Helmbold modified eq. (6.130) to give improved
predictions for low-aspect–ratio straight wings
(Anderson 2001). The expression is

CL = 
2πα

2 + √
2 + 4

. (6.131)

When  → 0, we get CL = 0.5πα. This is con-
sistent with low-aspect–ratio theory (see sec-
tion 10.3.1). Søding (1982) presented the formula

CL =  ( + 1)

( + 2)2 2πα, (6.132)

which agrees better with the 3D results than Helm-
bold’s formula does.

Kuchemann (1978) presents the following mod-
ification to Helmbold’s equation for swept wings:

CL = 
2πα cos γ√

2 + 4 cos2 γ + 2 cos γ
. (6.133)

Here γ means the sweep angle of the wing at the
half–chord line (see Figure 6.3, in which the sweep
angle is defined at the quarter–chord line).

6.7.2 Drag force

Drag force on the foil is derived by using conserva-
tion of fluid momentum. A fluid volume � exterior
to the foil surface and the trailing vortex sheet is
considered. � is bounded far away from the foil
by the surfaces of a box with sides that are parallel
to either the xy-, xz-, or yz-plane (Figure 6.44).

Eq. (6.116) will be used to evaluate the fluid
velocity due to the vortex sheet. At the control
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surface Sc that is perpendicular to the vortex sheet
far downstream of the foil, we can write

IW = z
2π

0.5s∫
−0.5s

dη
[ϕ+ − ϕ−]T.E.

[(y − η)2 + z2]

for x − c/2 → +∞.

This can be rewritten in a way similar to that used
for eq. (6.119), that is,

IW = 1
2π

0.5s∫
−0.5s

d�

dη
tan−1 z

y − η
dη

for x − c/2 → +∞. (6.134)

Here we have used � = (ϕ− − ϕ+)T.E.. This shows
that the flow due to the vortex sheet is two-
dimensional in the yz-plane at Sc, which means that
the longitudinal velocity is U at Sc. The momentum
flux through the surface enclosing the control vol-
ume is therefore zero. The longitudinal pressure
force acting on Sc is

ρ

2

∫
Sc

∫ [(
∂ϕ

∂y

)2

+
(

∂ϕ

∂z

)2
]

dy dz,

where ϕ is the same as that used in the expression
of IW. The only additional longitudinal force acting
on the control volume is the force opposite the
drag force D on the foil. This means

D = ρ

2

∫
Sc

∫ [(
∂ϕ

∂y

)2

+
(

∂ϕ

∂z

)2
]

dy dz. (6.135)

This can be rewritten using the divergence theo-
rem and by noting that ∇ϕ · ∇ϕ = ∇ · (ϕ∇ϕ). By
using the fact that ∂ϕ/∂z = ±∂ϕ/∂n is continuous
across the vortex sheet, the result is

D = ρ

2

∮
ϕ

∂ϕ

∂n
dl = −1

2
ρ

0.5s∫
−0.5s

(ϕ+ − ϕ−)
∂ϕ

∂z
dy.

(6.136)

The vertical velocity ∂ϕ/∂z in eq. (6.136) follows
by differentiating IW given by eq. (6.134) with
respect to z and then setting z = 0. This gives

D = ρ

4π

0.5s∫
−0.5s

dy�(y)PV

0.5s∫
−0.5s

d�

dη

dη

y − η
. (6.137)

An uncambered lifting surface with elliptical
planform is now considered. This means � =
2Usa1 sin θ , where a1 is given by eq. (6.128). Fur-
ther, θ is defined by eq. (6.121). Using eqs. (6.81)

and (6.124) gives then

D = ρ

4π

0.5s∫
−0.5s

dy�(y)π4Ua1

= ρUa1

π∫
0

2Usa1 sin θ
s
2

sin θ dθ

= ρU2a2
1s2 π

2

The corresponding drag coefficient is

CD = D
0.5ρU2 A

= πa2
1 .

a1 can be expressed as −2α/ ( + 2), so

CD = 4πα2

( + 2)2 = C2
L

π
(6.138)

for an uncambered lifting surface with ellipti-
cal planform. Letting  → ∞, this gives CD = 0,

which is consistent with 2D results for a foil in infi-
nite fluid.

The same result for the drag force can be
obtained by using the Kutta-Joukowski formula
for 2D flow. We consider, then, 2D flow as in
Figure 6.43 and calculate αi = wi/U, where wi is
given by eq. (6.119). Here � = 2Usa1 sin θ ′, where
a1 = −2α/ ( + 2) and θ ′ is defined by eq. (6.122).
This leads to αi = −2α/ ( + 2), which is constant
along the span of the foil. There is then an inci-
dent velocity with an angle αi relative to the x-
axis. The magnitude of the incident velocity can
be approximated as U. According to the Kutta-
Joukowski formula, the force acts perpendicularly
to the inflow direction. The force magnitude can
be approximated with the lift force L. The force
acting along the x-axis is −Lαi . Because αi is nega-
tive, this is a drag force D. If αi had been positive, it
would have led to a thrust force. Using eq. (6.129)
for the lift force gives

D = ρU2s2 απ

 + 2
2α

 + 2

and

CD = 4πα2

( + 2)2 .

This is the same result as eq. (6.138).
These results can be generalized to include

the foil camber and a flap. The 2D results
with parabolic camber showed that CL = 2π

[α − α0 + η f α f ]. Here α0 = −2 f/c is the camber
effect when the mean line of the foil is expressed
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h/c = 0.5
h/c = 1.0
h/c = 2.0
h/c = 5.0

Fnh
2.0

0.00

0.25

0.50

0.75

1.00
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CL(h/c)/CL(h/c = ∞)

Figure 6.45. Free-surface effects on steady lift for an
uncambered 2D thin foil at an angle of attack. CL =
lift coefficient, h = foil submergence, c = chord length,
Fnh = Froude number with h as length parameter
(Hough and Moran 1969).

as in eq. (6.99). Further, α f is the flap angle (see
Figure 6.39) and ηf is the flap efficiency (see
eq. (6.109)). The two-dimensional circulation �2D

in eq. (6.120) is then −Ucπ (α − α0 + η f α f ). If
α − α0 + η f α f does not vary along the foil span,
eqs. (6.130) and (6.138) for CL and CD can be gen-
eralized by replacing α with α − α0 + η f α f .

6.8 Steady free-surface effects on a foil

6.8.1 2D flow

We assume 2D steady flow and consider a thin
flat foil at a submergence h below the mean free
surface. Infinite water depth is assumed. The lin-
earized lift force can be expressed as in eq. (6.86).
However, the circulation � is influenced by the
presence of the free surface. Figure 6.45 shows
numerically predicted lift coefficient CL as a func-
tion of submergence Froude number

Fnh = U√
gh

(6.139)

for different values of h/c. These calculations are
based on a linear body boundary condition and
the linear free-surface condition

U2 ∂2ϕ

∂x2
+ g

∂ϕ

∂z
= 0 on z = 0,

where ϕ is the velocity potential due to the foil.
This is a free-surface condition similar to the one
used for the Green function G in eq. (4.27). The
presence of the free surface causes generally lower

CL than for infinite fluid. An exception is small
Froude numbers. The interesting Froude numbers
will, in practice, be high. Consider, for instance,
U = 15 ms−1, c = 1 m and h = 2 m. This gives
Fnh = 3.4 and about a 12% reduction in lift due
to free-surface effects. However, Figure 6.45 shows
that the influence of the free surface can be even
higher for smaller submergences. The results are
partly influenced by foil-generated free-surface
waves. According to linear theory, these waves
have a wavelength (see Chapter 4)

λ = 2π

g
U2. (6.140)

We know from linear wave theory that there is a
negligible flow at a depth λ from the free surface.
We can therefore say that an object at a larger
depth than λ from the free surface causes neg-
ligible free-surface waves. This means that free-
surface waves are generated when

Fnh > ≈ 1√
2π

≈0.4. (6.141)

Consequently, Figure 6.45 shows large variations
in CL with increasing values of Fnh up to approx-
imately 10/

√
h/c or U/

√
gc ≈10. When Fnh >

10/
√

h/c, CL is nearly independent of Fnh. The
same results can then be predicted by neglecting
gravity and using the dynamic free-surface condi-
tion ϕ = 0, where ϕ is the velocity potential due
to the foil. This is often referred to as the biplane
approximation and implies that the fluid velocity
due to the foil is vertical at the free surface. The
case is discussed more, later in the text.

When the Froude number is very small, the
free surface acts like a rigid wall. The problem is
then similar to a lifting wing close to the ground.
The wing-in-ground (WIG) effect causes the lift to
increase with decreasing distance of the foil from
the ground. The results in Figure 6.45 show this.
A WIG vehicle, as presented in Figure 1.11, takes
advantage of this effect.

The behavior when Fnh → 0 or Fnh > 10/
√

h/c
follows by a simple analysis based on Weissinger’s
quarter-three-quarter-chord approximation (see
section 6.6.4). We start out with Fnh → 0 and rep-
resent the flow due to the foil by two vortices
with opposite circulations �. One vortex has a
center in the foil at a distance c/4 from the lead-
ing edge. The other vortex has a center at the
image point about the mean free surface (see Fig-
ure 6.46). Note that we have used the opposite
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Figure 6.46. Approximate flow around a foil near the
ground. Also representative for submerged foil near the
free surface when the Froude number is asymptotically
small.

circulation direction relative to the previous defi-
nition. The reason is that the sign of the circulation
used in Figure 6.46 gives a direct illustration that
the flow velocity increases on the suction side of
the foil. Because the two vortices have opposite
signs, the rigid free-surface condition is satisfied.
According to the Weissinger approximation, the
body boundary condition has to be satisfied only
at one point, that is, at a distance 3c/4 from the
leading edge. The image vortex effectively causes
an increase in the angle of attack at this point. This
means a higher CL-value. The closer the image vor-
tex, the higher CL. We have earlier shown that
the Weissinger approximation is appropriate for
steady flow around a 2D foil with angle of attack
and parabolic camber in infinite fluid. However, it
does not apply to a foil with a flap. Let us examine
whether it can account for the free-surface effect
when Fnh → 0 for a foil with angle of attack and
camber. The body boundary condition gives

�

πc
− 0.5c�

2π(4h2 + 0.25c2)
= U(α + 2 f/c), (6.142)

where α and f are defined by eq. (6.99). Solving
eq. (6.142) for � and using the Kutta-Joukowski
formula (see eq. (6.62)), we can evaluate the lift
on the foil. The result of the analysis is that the lift
coefficient can be written as

CL

(
h
c

)
= CL

(
h
c

= ∞
) [

1 + 1
16

(
c
h

)2
]

when Fnh → 0. (6.143)

Eq. (6.143) shows the correct trend that the lift
increases strongly for small h/c-values, but the infi-
nite predicted lift for h/c = 0 must obviously be
wrong. The ratio between CL and its infinite fluid

value in the case of the lowest Fnh-value in Fig-
ure 6.45 is, respectively, 1.1 and 1.05 for h/c = 1.0
and 2.0. The corresponding values by using eq.
(6.143) are 1.06 and 1.02.

When Fnh > 10/
√

h/c, the only difference in
the analysis is that the two vortices have the same
sign (Figure 6.47). This ensures that the dynamic
free-surface condition ϕ = 0 is satisfied. The anal-
ysis gives

CL

(
h
c

)
= CL

(
h
c

= ∞
)

·
[

1 + 16(h/c)2

2 + 16(h/c)2

]

when Fnh > 10/
√

h/c. (6.144)

This illustrates that CL decreases with decreas-
ing distance of the foil from the free surface. Eq.
(6.144) predicts CL/CL(h/c = ∞) equal to 0.83
and 0.94 for, respectively, h/c = 0.5 and 1.0. This
agrees reasonably with Figure 6.45. When h/c = 0,

eq. (6.144) gives CL/CL(h/c = ∞) = 0.5. This is
consistent with linear theory for a planing foil on
the free surface. In reality, cavitation and ventila-
tion may happen to a foil at high Froude number
very close to the free surface (see discussion asso-
ciated with eq. (6.2)). This may cause a significant
reduction of the lift. CL of a supercavitating thin
flat foil in infinite fluid is 0.5πα, whereas the corre-
sponding value with no cavitation and ventilation
is 2πα.

Kochin et al. (1964) have given expressions for
the wave resistance. By using linear theory, we can
divide the flow into a thickness and lifting problem,
which can be solved by using, respectively, source
(sink) and vortex distributions along the foil (see
Figure 6.37). Both effects cause wave resistance.
We consider first the lifting problem. The wave
resistance can be expressed as

RW� = ρg�2

U2
exp

(−2/Fn2
h

)
. (6.145)

Figure 6.47. Approximate flow around a foil below the
free surface when the Froude number is very high.
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Figure 6.48. Wave resistance due to lift effects on a 2D
foil with submergence h and chord length c, expressed
in terms of drag coefficient CDW� as a function of sub-
mergence Froude number Fnh. CL is the lift coefficient
for the foil.

This means

CDW� = RW�

0.5ρU2c
= g�2

0.5U4c
exp

(−2/Fn2
h

)
.

(6.146)

We introduce now the lift coefficient CL =
L/

(
0.5ρU2c

)
and evaluate the lift force L by

eq. (6.86). This means

C2
L = �2

0.25U2c2
. (6.147)

Combining eqs. (6.146) and (6.147) gives

CDW�

C2
L

= 0.5
Fn2

h

(
c
h

)
exp

(−2/Fn2
h

)
. (6.148)

This expression is plotted in Figure 6.48. The max-
imum value of CDW�/C2

L occurs at Fnh = √
2 and

is equal to 0.25e−1c/h = 0.092c/h.
The thickness of a foil also causes a wave resis-

tance component RWS. This is similar to what we
described in Chapter 4 for ships. Kochin et al.
(1964) have presented a formula for a 2D foil with
elliptical cross section and without lift. The for-
mula is

RWS = π2ρgt2 c + t
c − t

e−2/Fn2
h J 2

1

×

 c

2h
1

Fn2
h

(
1 −

(
t
c

)2
)1/2


 . (6.149)

Here, t is the thickness of the foil and J1 is the
Bessel function of the first kind and order one

(Abramowitz and Stegun 1964). Eq. (6.149) is pre-
sented in Figure 6.49 as a function of submergence
Froude number Fnh for difference ratios between
the submergence h and the chord length c. The cal-
culations are done for t/c = 0.075, but RWS/ρgt2

is not very sensitive to t/c.
In order to quantify the importance of RWS, we

have compared it with the viscous resistance RV

obtained by using eq. (2.90). The chord length and
the submergence were both chosen as 1 m, that
is, h/c = 1. In the calculations, the foil thickness
is 0.075 m and the kinematic viscosity coefficient is
1.35 × 10−6 m2s−1. The ratio (RWS + RV) /RV is
1.026 for U = 5 ms−1 and decreases rapidly with
increasing U. This indicates that wave resistance
due to thickness effect is small. The same is not
true for wave resistance due to lift effects. It is
not rigorous to separate the wave resistance due
thickness and lifting effects even if we can separate
the flow due to thickness and lifting effects. The
reason is that the wave resistance can be related
to the square of the downstream wave amplitude
generated by the foil. This gives interaction terms.
However, in the following text, we will assume that
the wave resistance due to lifting effects dominates
and neglect the thickness effect.

A consequence of wave resistance RW is that the
foil generates steady regular waves with amplitude
A far downstream of the foil. By using energy con-
servation (Newman 1977), it can be shown that

RW = ρg
4

A2. (6.150)
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Figure 6.49. Wave resistance RWS due to the thickness
effect of a 2D foil with elliptical cross section at sub-
mergence h. c = chord length, t = foil thickness, t/c =
0.075.
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6.8.2 3D flow

The free surface will affect the 3D steady flow
around a foil. The free-surface effect on the lift
has been presented earlier for 2D steady flow (see
Figure 6.45).

Eqs. (6.143) and (6.144) can be combined with
the lifting line theory to account for the free sur-
face when Fnh → 0 and Fnh → ∞. If high Froude
number is considered, �2D given by eq. (6.127)
can be generalized to −Ucπα(1 + 16(h/c)2)/
(2 + 16(h/c)2). This implies that CL of an elliptical
planform also satisfies eq. (6.144). This gives that
CL/CL(h/c = 4) is 0.67, 0.84, and 0.95 for, respec-
tively, h/c = 0.25, 0.5, and1.0. This is in reasonable
agreement with the experimental and theoretical
results by van Walree (1999) for large Fnh. He
studied a rectangular foil with aspect ratio 6; how-
ever, his small Fnh results do not agree so well
with the asymptotic results for an elliptical plan-
form when Fnh → 0.

The formula for the drag coefficient CD of a hor-
izontal foil with elliptic loading based on poten-
tial flow has been presented by Breslin (1957).
Linearized free-surface conditions are assumed.
When the Froude number is asymptotically large,
we can write

CD

C2
L

= 1
π

+ σ (λ)
π

, Fnh → ∞, (6.151)

where

σ (λ) = 1 − 4
π

λ
√

1 + λ2

[
K

(
1√

1 + λ2

)

−E
(

1√
1 + λ2

)]
(6.152)

and λ = 2h/s, with s as the foil span. Here K and
E are complete elliptic integrals of the first and
second kind. The aspect ratio  for an elliptical
foil can be expressed as

 = 4
π

s
co

, (6.153)

where co is maximum chord length. We can derive
eq. (6.151) for the drag force by conservation of
fluid momentum and by following a procedure
similar to the one in section 6.7.2 for a foil in infi-
nite fluid. The upper surface of the control volume
will coincide with the mean free surface. The drag
force D can be expressed as in eq. (6.135). The
difference now is that the vertical control surfaces
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IMAGE
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z
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Γ ϕ = 0

ϕ = 0

a

b

IMAGE
FOIL

Figure 6.50. High Froude number flow around a 3D foil.
(a) The solution is represented in terms of an image flow
above the free surface. (b) Representation of the vor-
tex sheet and the image vortex sheet in the yz-plane far
downstream the foil.

extend only up to the mean free surface. By using
the divergence theorem as in eq. (6.136), it follows
that

D = −1
2
ρ

0.5s∫
−0.5s

(ϕ+ − ϕ−)
∂ϕ

∂z
dy, (6.154)

where ∂ϕ/∂z is the vertical fluid velocity at the
intersection between SC and the vortex sheet
behind the foil. The difference is now in the way
∂ϕ/∂z is evaluated. We can express a solution for
∂ϕ/∂zby imagining that the flow around the foil at
high Froude number is the same as the flow around
the foil and an image foil above the free surface.
The image foil causes a vortex sheet with the same
vorticity as in the vortex sheet behind the foil (see
Figure 6.50). This image system ensures that the
high Froude number free-surface condition ϕ = 0
on the mean free surface is satisfied. Here ϕ is the
velocity potential caused by the foil. This is similar
to the 2D case shown in Figure 6.47.

∂ϕ/∂z in eq. (6.154) consists of two parts. The
first part is the result of the vortex sheet behind
the foil. The expression is the same as that used
in eq. (6.137). The second contribution comes
from the image vortex sheet above the mean free
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surface. This can be expressed as the vertical veloc-
ity induced by a two-dimensional distribution of
vortices along the image vortex sheet, that is, sim-
ilar to the evaluation of ∂ϕ/∂z from eq. (6.134).
We get

wi2 = 1
2π

0.5s∫
−0.5s

d�

dη

y − η

(y − η)2 + 4h2
dη. (6.155)

We introduce now an elliptical circulation distri-
bution along the span of the foil, that is,

� = �0

(
1 −

(
2η

s

)2
)1/2

. (6.156)

If a high-aspect–ratio plane foil is considered,
Prandtl’s lifting theory (see section 6.7.1) shows
that an elliptical planform implies an elliptical cir-
culation distribution. However, eq. (6.156) is also
possible to achieve with other planforms. By inte-
grating eq. (6.155) by parts we find that

wi2 = − �0

2π

0.5s∫
−0.5s

(
1 −

(
2η

s

)2
)1/2

× (y − η)2 − 4h2

[(y − η)2 + 4h2]2
dη. (6.157)

Introducing y = y1
s
2 and η = y2

s
2 gives

wi2 = − �0

πs

1∫
−1

(
1 − y2

2

)1/2

[
(y1 − y2)2 − 16h2

s2

]
[
(y1 − y2)2 + 16h2

s2

]2 dy2.

(6.158)
By inserting ∂ϕ/∂z into eq. (6.154), we have

D = ρ

4π

0.5s∫
−0.5s

dy�(y)PV

0.5s∫
−0.5s

d�

dη

dη

y − η
.

+D2 (6.159)

The first term leads to the expression for the drag
in infinite fluid (see eq. (6.138)) and is the first term
on the right-hand side of eq. (6.151). The second
term, D2, is the result of the image vortex sheet
and can be expressed as

D2 = ρ

2

0.5s∫
−0.5s

�(y)wi2 (y) dy

= ρs
4

�0

1∫
−1

(
1 − y2

1

)1/2
wi2 (y1) dy1 (6.160)

= ρ�2
0
π

8
σ,

where

σ = − 2
π2

1∫
−1

dy1
(
1 − y2

1

)1/2

×
1∫

−1

[
(y1 − y2)2 − 16h2

s2

] (
1 − y2

2

)1/2

[
(y1 − y2)2 + 16h2

s2

]2 dy2.

(6.161)

D2 can be expressed in terms of the lift, which is

L = −ρU�0

s/2∫
−s/2

(
1 −

(
2y
s

)2
)1/2

dy = −ρU�0
πs
4

(6.162)
for elliptical loading. The lift coefficient is

CL = L
0.5ρU2 A

= −π

2
�0s
U A

. (6.163)

The drag coefficient associated with D2 is

CD2 = D2

0.5ρU2 A
= ρ�2

0
π

8 σ

0.5ρU2 A
. (6.164)

Using eq. (6.163) to express �0/U gives

CD2

C2
L

= σ

π
. (6.165)

This means the same as the second term in
eq. (6.151) if σ given by eq. (6.161) is the same as
eq. (6.152). To show this equivalence analytically
is not trivial. However, numerical calculations give
the same answer from the two expressions.

When the Froude number goes to zero, we can
follow a similar analysis as for infinite Froude num-
ber. However, the circulation around the image
foil and the vorticity in the image vortex sheet must
now be opposite the circulation around the foil and
to the vorticity in the vortex sheet, respectively, in
order to satisfy the rigid free-surface condition.
The analogue case for 2D flow was illustrated in
Figure 6.48. The analysis gives that

CD

C2
L

= 1
π

− σ (λ)
π

, Fnh → 0 (6.166)

when the Froude number is asymptotically small.
Eqs. (6.151) and (6.166) are presented in Fig-

ure 6.51 as a function of h/c when the aspect ratio is
6. The asymptotic value for h/c → ∞ is 0.053. We
note that decreasing h/c increases CD in the infi-
nite Froude number case. The opposite trend hap-
pens in the low Froude number case. The results
for infinite Froude number are in good agreement
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Figure 6.51. Theoretical drag coefficient CD for a hor-
izontal foil with elliptical loading as a function of ratio
between submergence h and maximum chord length c at
infinite and zero Froude numbers. The aspect ratio is 6.

with the results by van Walree (1999) even if those
results are for a rectangular foil.

Breslin’s formula for CD for any Froude number
is

CD

C2
L

= 1
π

− σ (λ)
π

+ 8
π

×
π/2∫
0

J 2
1

(
0.5νs sec2 θ sin θ

)
e−2νh sec2 θ

sin2
θ cos θ

dθ.

(6.167)

Here J1 is a Bessel function of the first kind andν =
g/U2. Eq. (6.167) accounts for both transverse and
divergent waves and is based on using the linear
free-surface condition given by eq. (4.27) for the
flow caused by foil.

Results for aspect ratio 6 and different h/c-
values are presented in Figure 6.52. These results
are in reasonable agreement with the experimen-
tal and numerical results for a rectangular foil with
the same aspect ratio as the one presented by van
Walree (1999). One exception is for the largest
CD/C2

L-values occurring at h/c = 0.25. Because
the foil is then close to the free surface, nonlin-
ear free-surface effects may matter. An important
contribution to the peak values of CD/C2

L pre-
sented in Figure 6.52 is the result of transverse
waves. This is illustrated in Figure 6.53 for the
elliptical foil at h/c = 1.0 by separating the con-

h/c = 0.25
h/c = 0.5
h/c = 1.0
h/c = 2.0
h/c = 4.0

0
0 1 2 3 4 5 6 7 8 9 10

Fnh

0.05

0.1

0.15

0.2

0.25

0.3

CD/CL
2

Figure 6.52. Drag coefficient CD of a horizontal foil with
elliptical loading, submergence h, and maximum chord
length c presented as a function of submergence Froude
number Fnh. Aspect ratio = 6.

tribution from transverse waves. This is estimated
by integrating from 0 to sin−1(1/

√
3) in the inte-

gral in eq. (6.167). We note that the effect of the
transverse waves is small when Fnh > ≈4.0. The
effect of the divergent waves will then contribute.
However, the results are quite close to the drag
at infinite Froude number when Fnh > ≈4.0. The
latter does not include wave effects. The 2D results
presented in Figure 6.48 contain only the effect of
transverse waves and, to a large extent, can explain

0.09

0.1
CD/C2

L

CD total
CD transverse waves

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

h/c = 1.0,  � = 6

0 1 2 3 4 5 6 7 8 9 10
Fnh

Asymptote CD/C2
L = 0.03848

Asymptote CD/C2
L = 0.06763

Figure 6.53. Drag coefficient CD of a horizontal foil with
elliptical loading at submergence (h) to maximum chord
length (c) ratio 1 presented as a function of submergence
Froude number Fnh. Aspect ratio = 6. The contribution
to CD from transverse waves is illustrated.
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z
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x

Figure 6.54. Tandem arrangement of two foils with
equal submergence h.

how CD/C2
L depends on Fnh and h/c in the vicinity

of maximum CD/C2
L.

6.9 Foil interaction

The wake and the free-surface waves generated
by a foil affect the inflow and thereby the lift
and drag on a downstream foil. This was stud-
ied numerically by, for instance, Andrewartha and
Doctors (2001). Mørch (1992) studied foil interac-
tion experimentally and numerically for a hydro-
foil catamaran. His numerical studies included the
combined effect of divergent waves and roll-up
of far-field vortex sheets behind upstream foils at
high Froude numbers. A nonlinear 2.5D analysis
was used. Because the 2.5D method assumes that
the flow variations are smaller in the inflow direc-
tion than in a plane perpendicular to the inflow
velocity, the method can be applied only to the
wake at a distance that is larger than at least the
maximum chord length. Mørch (1992) assumed an
elliptical circulation distribution as a starting con-
dition. This is a function of the loading on the for-
ward foil.

Nakatake et al. (2003) examined two identical
rectangular hydrofoils in a tandem arrangement
(Figure 6.54). The foil cross section is a NACA
0012 profile (Abbott and von Doenhoff 1959). The
aspect ratio  is 5 and the angle of attack of the
two foils is 5◦. The ratios between the stagger p
and the chord length c were p/c = 2.5, 6.0, and 10.
The submergence h of each foil was equal to c.
Experimental and theoretical results for lift coef-
ficients were presented as a function of Froude
number Fn = U/

√
gc for the fore and aft foil.

Nakatake et al. (2003) also presented drag results.
However, the experimental chord length was only
0.06 m. Using a kinematic viscosity coefficient
ν = 1.35 · 10−6 m2s−1 and a Froude number range
from 0.5 to 5 means that the Reynolds number
Rn = Uc/ν varies from 1.7 · 104 to 1.7 · 105. The

boundary-layer flow is then likely to be laminar
in the whole Reynolds number range for the fore
foil. However, the inflow to the aft foil is turbu-
lent because of the wake of the fore foil, affect-
ing the transition to turbulence. This means eqs.
(2.90) and (2.4) for turbulent flow cannot be used
to estimate the viscous drag force. The Blasius
solution given by eq. (2.5) is a better basis to find
viscous drag force on the foil. An additional uncer-
tainty is that drag forces on the struts were also
included in the measurements. In principle, there
is also an influence of the viscosity on the lift; how-
ever, in this case, the effect is of secondary impor-
tance. One should be very careful with model
tests at such low Reynolds numbers. Laminar sep-
aration may lead to an irregular lift coefficient
as function of incidence (van Walree and Luth
2000).

CL of the aft foil shows a large influence of p/c.
There is a strong variation with Froude number
for Fn in the vicinity of 1. This is caused by the
waves generated by the upstream foil that change
the angle of attack and thereby the lift force on
the aft foil. We analyze this problem as a 2D flow.
This means only transverse waves are considered.
Let us take a vortex with circulation � at x = 0
and z = −h. The wave effect caused by this vortex
is an idealization of the lifting effect. We disre-
gard the thickness effect of the foil on the wave
field.

According to Kochin et al. (1964), the steady
downstream wave elevation in the far field can be
expressed as

ζ = 2�

U
e−νh sin νx, (6.168)

where ν = g/U2. By using eq. (6.150), we see
that this is consistent with eq. (6.145). Accord-
ing to our definition of positive �, the linear lift
force L is equal to −ρU�. Using the fact that the
lift coefficient CL is equal to L/

(
0.5ρU2c

)
shows

eq. (6.168) can be expressed as

ζ = −CLce−gh/U2
sin(gx/U2). (6.169)

The linearized kinematic free-surface condition
states that (see eq. (4.52b))

∂ϕ

∂z

∣∣∣∣
z=0

= U
∂ζ

∂x
= −UCLc

g
U2

e−gh/U2
cos(gx/U2).

(6.170)
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Using the exponential decay of ∂ϕ/∂z with z as
described in Table 3.1 and using ν = g/U2 instead
of k = ω2/g, we obtain

∂ϕ

∂z

∣∣∣∣
z=−h

= ∂ϕ

∂z

∣∣∣∣
z=0

e−gh/U2
, that is,

∂ϕ

∂z

∣∣∣∣
z=−h

= −UCLFn−2e−2
/

Fn2
h cos

(
1

Fn2

x
c

)
,

(6.171)

where Fn = U/ (gc)0.5 and Fnh = U/ (gh)0.5
. This

means Fn will be equal to Fnh in our case.
The effect of the transverse waves generated by
the upstream foil on the angle of attack αi for the
downstream foil can then be approximated as

αi = ∂ϕ/∂z|z=−h

U
= −CLFn−2e−2/Fn2

h cos
(

1
Fn2

x
c

)
.

(6.172)
The cosine function in eq. (6.172) causes an

oscillatory dependence on x. For instance, if the
foils at p/c equal to 2.5 and 6.0 are considered,
then the cosine functions are cos

(
2.5/Fn2

)
and

cos
(
6.0/Fn2

)
. If the difference between 6.0/Fn2

and 2.5/Fn2 is π , then αi has the opposite sign
for these two foils. This means that αi for the foils
at p/c equal to 2.5 and 6.0 is 180◦ out of phase
when π Fn2 = 3.5 or Fn = 1.06. Further, αi on the
foils at p/c equal to 2.5 and 10.0 is 180◦ out of
phase when π Fn2 = 7.5 or Fn = 1.55. When Fn
increases, the phase difference in αi between the
aft foils becomes smaller. We have estimated lift
coefficient CL2 on the aft foil by setting the lift
coefficient CL for the forward foil equal to 0.35 for
all Froude numbers and setting for the aft foil

CL2 = 0.35 + 2παi .

The results are presented in Figure 6.55 as a
function of Fn for p/c equal to 2.0, 6.0, and 10.
The theoretical estimates and the experiments by
Nakatake et al. (2003) are in qualitative agree-
ment. However, the experimental results show
larger differences among the different p/c val-
ues for large Froude numbers. Important contri-
butions are caused by 3D flow effects that are
partly associated with divergent waves. This is
indirectly illustrated by Figure 6.53. Anyway, the
results in Figure 6.55 help in explaining qualita-
tively the oscillatory behavior of the lift forces
on the aft foils as a function of Fn as well as the
phase difference in lift between foils located as
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0.3
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0

–0.1
0.5 1 1.5 2 2.5 3 3.5 4
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p/c = 2.5

p/c = 6

p/c =10

CL2

Figure 6.55. Estimate of lift coefficient CL2 on the aft
foil as a function of Froude number Fn at different
stagger-to–chord length ratios p/c (see Figure 6.54). The
effect of transverse waves generated by the upstream foil
at the position of the aft foil is accounted for.

p/c equal to 2.5, 6, and 10. Because part of the
drag coefficient CD is related to wave resistance
and part is the result of lift effect and is related to
CL, there is a similarity in the behavior of CL and
CD.

3D flow effects in the wake
When Fn > ≈4, the previously described results
by Nakatake et al. (2003) show that CL of the aft
foil is clearly lower than that of the fore foil at high
Froude numbers. On the aft foil, an important rea-
son is the 3D effect of the wake from the fore foil.
This effect is evaluated for an elliptical planform
by first neglecting the effect of the free surface. If
we are far downstream of the fore foil, eq. (6.116)
gives eq. (6.134). Using that wi = ∂ Iw/∂z leads to
a vertical velocity,

wi = 1
2π

PV

0.5s∫
−0.5s

d�

dη

dη

y − η
= − 4Uα

 + 2
(6.173)

for a point on free shear layer S+
V . We have

here used that � = 2Usa1 sin θ ′, where a1 = −2α/

( + 2) and θ ′ is defined by eq. (6.122). The
detailed calculations are similar as those for eq.
(6.119). Eq. (6.173) means that wi/U = −4α/7 for
an aspect ratio  = 5. Let us consider two foils
with the same dimensions and angles of attack,
and the aft foil is in the far field of the free shear
layer of the fore foil. The lift force on the aft foil
is only 3/7 of the lift force on the fore foil. This
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Figure 6.56. Downwash velocity wi in the far-field wake
of an elliptical planform with aspect ratio , angle of
attack α, and span s in infinite fluid. The foil is located
between y = −s/2 and y = s/2.

result is independent of p/c. However, the results
by Nakatake et al. (2003) show the dependence on
p/c for large Fn. An investigation of this requires
that the finite cross-sectional dimensions of the foil
and the full three-dimensional dependence of wi

are accounted for.
In general, an aft foil does not have the same

dimensions as a fore foil (see Figures 6.2 and 6.12).
Let us assume that the aft foil has a larger span than
the fore foil. We need then to calculate wi outside
the wake of the fore foil. If the submergence of the
two foils is the same, for |y| > s/2 we can write

wi

U
= 4α

π ( + 2)

π∫
0

cos θ

2y/s − cos θ
dθ

= 4α

 + 2

[
|y∗|√

y∗2 − 1
− 1

]
, (6.174)

where y∗ = 2y/s and s is the span of the upstream
foil. The derivation of eq. (6.174) is similar as for
eq. (6.173). However, because |y| > s/2, we do not
have a principal value integral and the Glauert
integrals given by eq. (6.81) are not needed. The
integral in eq. (6.174) can be found using integral
tables.

Eqs. (6.173) and (6.174) are illustrated in Fig-
ure 6.56, which shows that wi is singular at |y| =
s/2 and is positive and nonconstant for |y| > s/2.
The singular nature does not occur in reality. The
vortex sheet rolls up in the vicinity of |y| = s/2 and
tip vortices like those in Figure 6.12 occur. If a strip

theory approach for the aft foil is used, according
to eq. (6.174), a cross section with |y| > s/2 will get
an increased lift because of the wake of the fore
foil. Because the increased lift may lead to cavita-
tion, this is not necessarily beneficial. In order to
minimize the magnitude and spanwise variation of
the angle of attack, it is beneficial to use a twisted
aft foil that is adapted to a typical spanwise inflow.
The upward wake velocity predicted by eq. (6.174)
is the reason nature has taught geese to fly in V-
form.

The free-surface effect on the vertical velocity
in the far-field wake at high Froude number can be
accounted for by adding eq. (6.158) to the results
in Figure 6.56. We set �0 = −c0παU, where c0 is
the maximum chord length, into eq. (6.158). This
means only the angle of attack α is accounted for
in calculating the circulation of the upstream foil.
Using also that the aspect ratio  of an ellipti-
cal foil is s/ (0.25πc0) gives the vertical induced
velocity due to the image vortex sheet presented
in Figure 6.57. We should note that the normali-
zation of wi is different in Figures 6.56 and 6.57.

Roll-up of vortex sheets
The previous analysis neglects the roll-up of vor-
tex sheets, which has been numerically studied by
Krasny (1987) in the far-field wake of an ellip-
tically loaded foil in infinite fluid. The velocity
potential due to the vortex sheet satisfies, then, the
2D Laplace equation in planes perpendicular to

2

1.5

1

0.5

0

–0.5

–1
–1 –0.5 0 0.5 1 1.5 2–1.5–2

h/s = 0.0125

h/s = 0.025

h/s = 0.05

h/s = 0.1

2y/s

wiΛ
4Uα

Figure 6.57. Vertical induced velocity wi due to an
image vortex sheet in the far-field wake of an ellipti-
cal planform with submergence h, aspect ratio , angle
of attack α, and span s. The foil is located between y =
−s/2 and y = s/2. Adding these results together with
the results in Figure 6.56 gives a total description of the
vertical velocity in the far-field wake at a high Froude
number.
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the incident flow direction. A similar assumption
was made in the drag force analysis in section 6.7.2.
We can then use a 2.5D (2D+t) method to analyze
the roll-up of the vortex sheet. Mørch (1992) fur-
ther developed the analysis to include free-surface
effects, which was the basis of the results presented
in Figure 6.13. All these effects change the vertical
position of the free shear layer downstream.

We have up until now assumed that the trail-
ing vortex sheet is infinitely thin. However, turbu-
lence in the free shear layer causes diffusion of the
vorticity. The trailing vortex sheet then has a finite
thickness that increases with downstream distance
from the foil. This requires a numerical analysis
based on the Navier-Stokes equations. However,
we will not pursue such analysis here.

6.10 Ventilation and steady free-surface
effects on a strut

The steady free-surface effects on a strut without
lifting effects were discussed in section 4.3.3. The
effect of the angle of attack on the side force coeffi-
cient is illustrated numerically and experimentally
for a strut with aspect ratio 0.5 in Figure 6.58. The
angle of attack is 4.6◦, and no ventilation occurred
in the experiments. A more representative aspect
ratio of struts on hydrofoil vessels is 1. Further,
the strut is connected with a foil, which influences

0.3

0.2

0.1

0.4 0.8 1.2 1.6 2.0 2.4
Fn

CL

Kaiho (1977)

Limit value for Fn = ∞ 

Experiments of van den Brug et al. ((1971)

Figure 6.58. Side-force coefficient on yawed strut as a
function of length Froude number Fn. Aspect ratio =
0.5; tan α = 0.08, where α is the angle of attack (Ogilvie
1978).

Hydrofoil image

Hydrofoil
(Leading edge)

Image vortex

Vortex

Quarter
chord

h

Figure 6.59. Horseshoe vortex system that satisfies the
infinite–Froude number, free-surface condition for a
surface-piercing strut (Wadlin 1958).

the flow. As an example, if we consider a speed of
20 ms−1 and a chord length of 1.5 m, the length
Froude number is 5.2. Figure 6.58 suggests then
that an infinite Froude number free-surface con-
dition can be used, that is, there is a small effect of
free-surface wave generation on the side force.

Ventilation means that air enters from the atmo-
sphere to low-pressure areas on the strut. It occurs
typically at angles of attack ψ higher than 4◦ to
6◦ for a strut on a hydrofoil vessel in foilborne
condition. However, this depends on the Froude
number. Ventilation causes a significant drop in
the transverse force on the strut and in the lift on
a foil attached to the strut. Hysteresis is associated
with ventilation, which means that ψ may have to
be lowered significantly to restore nonventilated
conditions. Examples on factors influencing venti-
lation are

� Flow separation from the leading-edge area
� Cavitation
� Aeration of the trailing vortex developed at the

lower tip of the strut (Figure 6.59)

Flow separation from the leading-edge area
depends on the leading-edge curvature and the
boundary-layer condition upstream of the sepa-
ration line. A laminar boundary layer separates
more easily than a turbulent boundary layer. This
means model tests may suffer from scale effects if
turbulence stimulators are not used. Further, the
model tests must be done at the same cavitation
and Froude numbers as those in full scale.
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Based on experimental results for struts, Breslin
(1958) proposed

CL ≥ 5
Fn2

h

(6.175)

as a condition for full ventilation when the sub-
mergence Froude number Fnh = U/ (gh)0.5 ≥ 3.
Here CL = F2/0.5ρU2 A, where F2 is the trans-
verse force and A is the projected area of the strut.
Eq. (6.175) illustrates that ventilation is strongly
dependent on Fnh, that is, the smaller Fnh is, the
larger the angle of attack can be to avoid ventila-
tion.

Eq. (6.175) states that the upper bound F2/A
for nonventilated flow is 2.5ρgh when Fnh > 3.
Here F2/A is the average pressure difference
between the pressure and suction sides of the strut.
It is natural that the level of the suction pres-
sure influences the occurrence of ventilation. The
detailed pressure distribution must matter. If the
suction pressure has a pronounced minimum at the
leading edge, the ventilation is expected to start at
the leading edge.

Figure 6.60 shows model test results for a front
strut-foil system (see Figure 2.20) used as a rud-
der on a foil catamaran. Similar results are pre-
sented by Minsaas (1993). The side force coef-
ficient CL is presented as a function of the yaw
angle ψ both at atmospheric air condition and at
the cavitation number σ = 0.349 corresponding
to the full-scale condition. The cavitation num-
ber is defined as σ = (pa + ρgh − pv)/(0.5ρU2).
Here pa and pv are, respectively, atmospheric and
vapor pressures. The pitch angle is 2.7◦ and the
submergence Froude number Fnh is 5.96, corre-
sponding to a full-scale speed of 50 knots. The drop
in the absolute value of CL with either increas-
ing positive ψ-values or decreasing negative ψ-
values is an indication of the start of ventilation.
This occurs, for instance, atψ ≈ 4◦ whenσ = 0.349
and at ψ = 6◦ at atmospheric air conditions. If we
use eq. (6.175), this gives CL = 0.14 as the upper
bound for nonventilated conditions. This agrees
with the results for σ = 0.349, but it is a conserva-
tive estimate for ventilation during model tests at
atmospheric conditions.

A consequence of the ventilation at the strut
is that air penetrates to the foil and causes a sig-
nificant drop in the lift force on the foil. This drop
occurred at ψ approximately equal to ±6◦. The lift

CL

–12–10 –6 –4 –2 0 2 4 6 8 10 12

σ = 0.349

σ = atm
–0.30

–0.15

0

0.15

0.30

Yaw angle : ψ (deg.) 

ψ

Figure 6.60. Model test results of a front strut-foil system
(see Figure 2.20) used as a rudder on a foil catamaran.
The side force coefficient CL is presented as a function of
the yaw angle ψ , both at atmospheric air condition (+)
and at the cavitation number σ = 0.349 corresponding to
full-scale conditions (o). The submergence Froude num-
ber Fnh is 5.96, corresponding to a full-scale speed of
50 knots. The pitch angle is 2.7◦ (Minsaas, unpublished).

force on the ventilated foil was the order of 50%
of the nonventilated lift.

6.11 Unsteady linear flow past a foil in infinite fluid

6.11.1 2D flow

We consider a 2D foil in infinite fluid and use
a coordinate system (x, y) following the constant
forward speed U of the foil. The forward speed
appears, then, as an incident flow along the pos-
itive x-axis. The foil has an unsteady translatory
and rotational velocity. In addition, there can be an
incident (ambient) unsteady velocity, for instance,
due to ocean waves.

The problem is linearized, and only the lifting
problem is considered. It has already been shown
how to linearize the body boundary conditions in
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the steady-flow case which led to eq. (6.69). How-
ever, this condition must be modified by account-
ing for the relative vertical velocity VR(x, t)
between the foil and the incident flow. The lin-
earized body boundary condition for the unsteady
lifting problem becomes

∂ϕ

∂y
= VR(x, t) + Uη′(x, t) on

y = 0, − c/2 < x < c/2. (6.176)

The total velocity potential is Ux + ϕ.
Boundary conditions on the free shear layer

downstream from the trailing edge must also be
accounted for. This was discussed in the nonlinear
case in section 6.4. Requiring a zero pressure jump
across the free shear layer leads to eq. (6.18). Lin-
earization implies that linear terms in ϕ are kept in
Bernoulli’s equation and that the boundary con-
ditions are transferred to y = 0 for x > c/2. The
trailing edge corresponds to x = c/2 in the lin-
earized formulation of the boundary-value prob-
lem. Eq. (6.18) can then be simplified as

∂

∂t
(ϕ+ − ϕ−) + U

∂

∂x
(ϕ+ − ϕ−) = 0

on y = 0 for c/2 < x < c/2 + Ut. (6.177)

Here t = 0 corresponds to initial time. The effect
of the free shear layer can be represented in terms
of a vortex distribution with density γ (x, t). Dif-
ferentiating eq. (6.177) with respect to x and using
eq. (6.75) give

∂γ

∂t
+ U

∂γ

∂x
= 0 on y = 0, c/2 < x < c/2 + Ut,

(6.178)

that is,

γ (x, t) = γ (x − Ut). (6.179)

This can be confirmed by substituting eq. (6.179)
into eq. (6.178). The body boundary condition
expressed by eq. (6.74) for the steady-flow case
can now be generalized to

1
2π

PV

c/2∫
−c/2

γ (ξ, t) dξ

x − ξ
+ 1

2π

c/2+Ut∫
c/2

γ (ξ − Ut) dξ

x − ξ

= VR(x, t) + Uη′(x, t) (6.180)

on y = 0, − c/2 < x < c/2. The Kutta condition
on x = c/2 requiring that γ is finite is needed
to solve this equation (see Newman 1977 and
Bisplinghoff et al. 1996 for further details).

When γ is found, the linear vertical force L on
the foil follows from Bernoulli’s equation, that is,

L = ρ

0.5c∫
−0.5c

(
∂

∂t
(ϕ+ − ϕ−) + U

∂

∂x
(ϕ+ − ϕ−)

)
dx,

(6.181)
where the superscripts + and – refer to y = 0+ and
y = 0−, respectively. Eq. (6.181) can be rewritten
in terms of γ by using eq. (6.75) and noting that

c/2∫
−c/2

∂

∂t
(ϕ+ − ϕ−) dx

= (x − c/2)
∂

∂t
(ϕ+ − ϕ−)

∣∣∣∣
c/2

−c/2

−
c/2∫

−c/2

(x − c/2)
∂

∂t

(
∂ϕ+

∂x
− ∂ϕ−

∂x

)
dx

=
c/2∫

−c/2

(x − c/2)
∂γ

∂t
dx

Here we have used ϕ+ = ϕ− at x = −c/2. This
means

L = ρ

c/2∫
−c/2

[
(x − c/2)

∂γ

∂t
− Uγ

]
dx. (6.182)

The Wagner (1925) solution results presented in
Figure 6.29 follow from an analysis such as this,
which assumes a transient flow. We will now con-
sider steady-state conditions.

6.11.2 2D flat foil oscillating harmonically
in heave and pitch

The steady-state solution for a flat foil that is har-
monically oscillating in heave and pitch is consid-
ered. The vertical motion (heave) of the center of
the foil is expressed as

h(t) = Re{h0eiωt }. (6.183)

Further, the pitch angle δ is given as

δ(t) = Re{δ0eiωt }. (6.184)

Here h0 and δ0 are complex numbers and i is
the complex unit. The vertical motion of the
mean-camber line is then expressed as η = h − δx.
Eq. (6.176) can be expressed as
∂ϕ

∂y
= ḣ − δ̇x − Uδ on y = 0, − c/2 < x < c/2.

(6.185)
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Here dot means time derivative. From eq. (6.179)
and because of the harmonic time dependence of
the flow, it follows that the vortex density in the
wake has the mathematical form

γ = Re
{
γ0ei(ωt− ω

U x)
}

. (6.186)

So the vortex density propagates as a sinusoidal
wave with phase speed U along the x-axis. The
wave number is ω/U, which gives a wavelength of
2πU/ω.

A complete solution was found by Theodorsen
(1935). The details are also given by Bisplinghoff
et al. (1996) and Newman (1977). It follows that

L = −ρ0.25πc2(ḧ − Uδ̇) − ρπUcC(kf )

× (ḣ − Uδ − 0.25cδ̇), (6.187)

where

kf = ωc
2U

(6.188)

is the reduced frequency. Further,

C(kf ) = F(kf ) + iG(kf ) = H(2)
1 (kf )

H(2)
1 (kf ) + i H(2)

0 (kf )
.

(6.189)

Here F and G are the real and imaginary parts
of C(kf). H(2)

n are Hankel functions (Abramowitz
and Stegun 1964), which can be expressed in terms
of Bessel functions of the first and second kinds,
that is,

H(2)
n = Jn − iYn. (6.190)

C (kf ) is called the Theodorsen function in mem-
ory of the person who first derived the lift force
expression. When ω is zero, C (kf ) is equal to one.
Eq. (6.187) gives then that the lift force is equal
to ρπcU2δ, which is consistent with the linear
steady result for a 2D flat plate in infinite fluid (see
eq. (6.93)).

Both h and δ in eq. (6.187) should be expressed
as complex quantities. It is the real part of the
expression for L that has physical meaning. Let us
elaborate more on that and consider heave only.
We express h = h0 cos ωt , where h0 is a real ampli-
tude. This means ḣ = −ωh0 sin ωt . The real part of
the term C(kf )ḣ in eq. (6.187) becomes

Re
{
(F(kf ) + iG(kf )) iωh0 (cos ωt + i sin ωt)

}
= −F(kf )ωh0 sin ωt − G(kf )ωh0 cos ωt

= F(kf )ḣ − ωG(kf )h

U

V
–h

•α

Figure 6.61. Quasi-steady analysis of a heaving foil. ḣ is
the heave velocity.

This means that the lift force with δ = 0 is

L = −ρ0.25πc2ḧ+ρπUcωG(kf )h−ρπUcF(k)ḣ.

(6.191)
When ω → 0, L → −ρUcπ ḣ. This can be explai-
ned by a quasi-steady analysis of a heaving hor-
izontal flat, thin foil that moves with a forward
speed. There is an incident flow velocity U par-
allel to the foil and an incident flow velocity −ḣ
perpendicular to the foil (Figure 6.61). This means
that there is an ambient flow velocity

V = (U2 + (ḣ)2)
1
2 ≈ U

with an instantaneous angle of attack

α = −ḣ/U (6.192)

relative to the foil. Here we have implic-
itly assumed small α-values. If a quasi-steady
approach is used, eq. (6.93) can be directly applied.
This gives a two-dimensional vertical force:

L = −ρUcπ ḣ. (6.193)

When ω → ∞, the lift force is dominated by the
acceleration term −ρ0.25πc2ḧ of eq. (6.191).
The term in phase with the velocity ḣ
approaches −0.5ρUπcḣ when ω → ∞.

An interesting consequence of the quasi-steady
analysis is illustrated by Figure 6.62. It was shown
in section 6.5 that the steady lift force L is perpen-
dicular to the incident flow velocity. Because the
incident flow direction changes, the direction of
the lift force changes. However, there will always
be a component of L with the same sign in the
longitudinal direction of the foil. This force com-
ponent acts as a thrust (T) on the foil. Horizontal
foils on a ship can therefore act as a propulsion
unit in waves. We must, of course, have in mind

V

V
L

T Time
instant 

t1

Time
instant

t2

L

T

Figure 6.62. Thrust force T on a foil occurring as a con-
sequence of quasi-steady 2D potential flow analysis of a
heaving foil.
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Figure 6.63. Modulus of the heave lift-coefficient defi-
ned in eq. (6.194) for a wing of elliptical planform of
aspect ratio  = 4 as a function of the reduced frequency
made nondimensional by the wing span s. (- - - - - -) strip
theory, (–––) unified theory, (•) numerical solution of
Lee (1977) using a vortex-lattice method (Sclavounos
1987).

the presence of viscous drag forcse, that potential
flow effects may cause drag due to the free vortex
systems in 3D flow, and free-surface effects.

6.11.3 3D flow

When it comes to unsteady flow effects due to
continuously shed vorticity, the general tendency
is that the higher the frequency of oscillation,
the smaller the 3D effect (Sclavounos 1987). We
present some of Sclavounos’s results and then
define a lift coefficient

C∗
L = La

0.5ρU Aḣa
, (6.194)

where La and ḣa mean amplitudes of L and ḣ,
respectively. Further, A is the projected area of
the foil on the plane of the incident flow. The
results are presented in Figure 6.63 together with
numerical results by Lee (1977) and strip theory
based on eq. (6.191). Sclavounos’s (1987) results
are referred to as unified theory, which assumes a
high-aspect–ratio foil, that is, similar to Prandtl’s
lifting line theory. When ω → 0, the results con-
verge to Prandtl’s results. This can be seen by first

re-expressing eq. (6.130) as

C∗
L = 2π

 + 2
. (6.195)

We have then used that α in eq. (6.130) is ḣa/U for
our problem and the fact that CL used in eq. (6.130)
is related to C∗

L as CL = C∗
Lḣa/U. This gives C∗

L =
4.19 for = 4 and is in agreement with Figure 6.63
for ω = 0. The results in Figure 6.63 agree with
strip theory results when 0.5ωs/U > ≈4. Here
s means the wingspan. We can relate ω to a
wavelength λ of the vorticity waves propagating
along the vortex sheet. This can be found from
eq. (6.186) and expressed as λ = 2πU/ω, which
means 0.5ωs/U >≈4 corresponds to λ/s <≈π/4.
There is a parallel to these results in ship motion
theory in waves in which strip theory is a high-
frequency (small-wavelength) theory.

6.12 Wave-induced motions in foilborne conditions

A hydrofoil vessel in foilborne conditions gener-
ally has good seakeeping characteristics compared
with semi-displacement vessels. This is illustrated
in Figure 6.22 by comparing vertical accelerations
of a hydrofoil catamaran and a conventional cata-
maran. We try to explain this by considering a
monohull hydrofoil vessel with a fully submerged
foil system in regular head sea waves in deep water.
The vessel in foilborne conditions is illustrated in
Figure 6.64. The forward and aft foils are assumed
to have the same rectangular planform area and
high-aspect ratios. A coordinate system (x, y, z)
moving with the forward speed U of the vessel
is used. The x-coordinate of the center of gravity
(COG) is zero, and z = 0 corresponds to the mean
free-surface level. z is positive upward. The geo-
metrical centers of the two foils have coordinates
(±0.5Lf , 0, −h) .

x = 0.5 Lf
z = –h

x = –0.5 Lf
z = –h

x

z

Figure 6.64. A hydrofoil vessel with submerged foils
that have geometrical centers at (±0.5Lf , 0, −h), shown
together with pods and struts.
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A complete analysis would require use of a
numerical method as described in section 6.4.
However, the analysis is simplified by neglecting
the hydrodynamic interaction between the foils.
We saw in section 6.9 that this matters for the
steady hydrodynamic loads on the aft foil. Further,
the interaction with the free surface will not be
complete in the analysis. A strip theory approach
using the 2D unsteady analysis in section 6.11.2 is
followed. This implies that the 2D results are mul-
tiplied with the foil span s to obtain 3D results.
The hydrodynamic loads on the pods shown in Fig-
ure 6.64 are neglected.

The linear heave motion η3 of the COG and
the linear pitch motion η5 of the vessel are ana-
lyzed. Linear response means that η3 and η5 are
proportional to the incident wave amplitude ζa .
The vertical motion of the vessel is then expressed
as η3 − xη5.

A basis for describing η3 and η5 is Newton’s sec-
ond law. This means

M
d2η3

dt2
=

∑
F3 j . (6.196)

Here M is the vessel mass and the right-hand side is
the sum of vertical linear unsteady hydrodynamic
forces acting on the hydrofoil vessel in foilborne
condition.

In addition, by considering pitch moments
about the COG, it follows that

I55
d2η5

dt2
=

∑
F5 j , (6.197)

where I55 = Mr 2
55 is the moment of inertia in pitch

about the COG and r55 is the radius of gyration in
pitch. The right-hand side of eq. (6.197) is the sum
of linear unsteady hydrodynamic pitch moments
about the COG.

Steady-state oscillations are assumed. That
means the hydrodynamic loads oscillate with the
frequency of encounter of the incident waves.

We start by describing the incident waves by
transforming the results presented in Table 3.1 to
the coordinate system moving with the forward
velocity U of the vessel. We show how this can be
done in Chapter 5 (see eqs. (5.19) and (5.27)). This
means that there is a vertical incident fluid velocity
that can be expressed as

w = ω0ζaekz cos(ωet − kx), (6.198)

where the circular frequency of encounter ωe is
related to the circular frequency of the waves ω0

by

ωe = ω0 + ω2
0U/g. (6.199)

Further, k = ω2
0/g = 2π/λ, where λ is the wave-

length. We now introduce complex notation and
express eq. (6.198) as

w = ω0ζaekze−ikx+iωe t . (6.200)

In all complex expressions such as this, it is implic-
itly understood that it is the real part that has phys-
ical meaning. The incident waves cause two types
of hydrodynamic forces on the foil. The first is
called Froude-Kriloff force, which represents the
effect of integrating the loads due to the linear
hydrodynamic pressure pD in the incident waves,
that is, due to

pD = ρgζaekz sin(ωet − kx). (6.201)

If the incident wavelength is long relative to the
chord length c of a foil, the resulting vertical force
on the foil with geometric center at x = ±L/2 and
z = −h is

F F K
3 = −ρ�ω2

0ζae−kh sin(ωet ∓ kL/2). (6.202)

Here � is the displaced volume of the foil. Eq.
(6.202) can be proven by means of Gauss’ theo-
rem. We start out formally expressing

F F K
3 = −

∫
SB

∫
pDn3dS, (6.203)

where SB is the body surface of the considered foil
and n3 is the z-component of the normal vector n to
SB. The positive normal direction is into the fluid
domain. Gauss’ theorem (see eq. (2.205)) implies
that ∫

SB

∫
pDn3dS =

∫∫∫
�

∂pD

∂z
dτ . (6.204)

The derivative ∂pD/∂z can be approximated as
a constant in � by using the long-wavelength
assumption. Then eq. (6.202) now follows by set-
ting ∂pD/∂z outside the integral in eq. (6.204) and
using eq. (6.201) to obtain ∂pD/∂z in the geomet-
rical center of the foil. Having now obtained F F K

3 ,
we will neglect it. The reason is that this term is
small relative to other terms to be derived below.
A more physical way to see that the Froude-Kriloff
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force is not important is to note that pD is practi-
cally the same on the upper/lower side of the foil.

The second effect associated with the incident
waves is brought about because the normal com-
ponent of the incident wave velocity has to be
counteracted at the foil surface. This causes a pres-
sure field and flow in the water. The analysis is
done by introducing a diffraction potential ϕD sat-
isfying the Laplace equation so that

∂ϕD

∂n
= −∂ϕ0

∂n
on S. (6.205)

Here ϕ0 means the incident wave potential. By
using the same linearization procedure as the one
we followed in section 6.6 and by considering only
the lifting problem, we can replace eq. (6.205) by

∂ϕD

∂z
= −w on − 0.5c ± 0.5Lf ≤ x ≤ 0.5c

± 0.5Lf , z = −h. (6.206)

Here ± corresponds to which foil we are consid-
ering. Further, c is the chord length, which will be
constant along the span in the case of a rectangu-
lar planform. Once more, we use the fact that the
wavelength λ of the incident waves is much longer
than the chord length. This means w in eq. (6.206)
is evaluated at z = −h and x = ±0.5Lf . An indica-
tion of how large the wavelength λ ought to be rel-
ative to the chord length can be found by averaging
w over the chord length. If, for instance, λ/c = 5,
this averaged w is 0.94 times the value obtained by
evaluating w at the midpoint of the foil. There is
a parallel to this in the calculations of wave loads
on offshore structures. If we consider as an exam-
ple a vertical circular cylinder with diameter D, it
is generally agreed that a similar long-wavelength
approximation of the wave load calculations can
be used if λ/D > 5 (Faltinsen 1990).

Assuming 2D flow in the xz-plane implies that
the ϕD problem with the long-wavelength approx-
imation is the same as the heaving problem con-
sidered in section 6.11.2. Another coordinate sys-
tem was used then, that is, the y-coordinate was
vertically upward. The consequence is that we can
account for the effect of the diffraction potential
on the 2D unsteady vertical hydrodynamic forces
by expressing ḣ in eq. (6.187) as

ḣ = iωeη̄3eiωe t − xiωeη̄5eiωe t − ω0ζae−kh

×(cos kx − i sin kx) eiωe t , (6.207)

where x = ±0.5Lf , depending on which foil we
consider. Further, η̄3 and η̄5 are the complex ampli-
tudes of heave and pitch, respectively. The angle
δ in eq. (6.187) is the same as η5. Adding together
the vertical force on the two foils then gives the
following vertical hydrodynamic force:

F HD
3 = −ρ0.5πc2s

(−ω2
e η̄3 − Uiωeη̄5 − iω0ωeζae−kh

× cos(0.5kLf )) eiωe t − 2ρπUcC (kf )

× s
(
iωeη̄3 − Uη̄5 − 0.25ciωeη̄5 − ω0ζae−kh

× cos(0.5kLf )) eiωe t, (6.208)

where kf = 0.5ωec/U.

Through a similar analysis, we can derive the lin-
ear unsteady hydrodynamic pitch moment on the
vessel. The contribution from one foil is approx-
imated as −xLs, where x = ±0.5Lf . Here L is
given by eq. (6.187). The corresponding total pitch
moment is then

F HD
5 = −ρ0.5πc2s

[−0.25L2
f ω

2
e η̄5

+ 0.5Lf ωeω0ζae−kh sin (0.5kLf )
]

eiωe t

− 2ρπUcC (kf ) s
[
0.25L2

f iωeη̄5

− 0.5Lf ω0ζae−khi sin (0.5kLf )
]

eiωe t .

(6.209)

This approach does not account for a complete
interaction with the free surface. Let us now return
to eqs. (6.196) and (6.197). We set F HD

3 and F HD
5

equal to
∑

F3 j and
∑

!F5 j , respectively. Dividing
by the common factor exp(iωet) and rearranging
the terms so that the unknowns appear on the left-
hand side of the two equations, gives

[ − ω2
e [M + ρ0.5πc2s] + 2ρπUcC(kf )siωe]η̄3

− [
ρ0.5πc2sUiωe + 2ρπUcC (kf )

× s [U + 0.25ciωe]] η̄5

= [
ρ0.5πc2siωe + 2ρπUcC (kf ) s] ω0ζae−kh

× cos (0.5kLf ) (6.210)

[ − ω2
e

(
I55 + ρ0.5πc2s 0.25L2

f

)
+ 2ρπUcC (kf ) s0.25L2

f iωe
]
η̄5

= − [
ρ0.5πc2sωe − 2ρπUcC (kf ) si

]
× 0.5Lf ω0ζae−kh sin (0.5kLf ) (6.211)

From eq. (6.211), we note that pitch is uncoupled
from heave. This is a consequence of the symmetry
of the foil system. However, eq. (6.210) shows that
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heave is influenced by pitch. We can then first solve
eq. (6.211) for pitch and use eq. (6.210) to find
heave afterward.

An asymptotic solution for small ωe can be
derived. Acceleration terms will be neglected. This
means that the mass terms on the left-hand sides
of eqs. (6.196) and (6.197) are neglected. Further,
hydrodynamic terms proportional to heave, pitch,
and incident wave accelerations are disregarded.
An analysis of this provides simplified explana-
tions of what causes the hydrofoil vessel to oscil-
late in heave and pitch in incident waves with
long wavelengths. It also leads to simple expres-
sions for heave and pitch as a function of the inci-
dent waves. Only hydrodynamic forces due to lift
effects are considered. Because ωe is small, a quasi-
steady approach is followed. This means the linear
unsteady lift force on one foil is expressed as

L = 0.5ρU2 A
dCL

dα
α, (6.212)

where A is the planform area of the foil, dCL/dα

is the slope of the steady lift coefficient CL for
the foil, and α is the unsteady angle of attack.
If we consider a 2D flat and thin foil in infinite
fluid, dCL/dα is 2π . The angle of attack α can be
expressed as

α = η5 − η̇3

U
+ x

η̇5

U
+ ω0ζa

U
e−kh

× (cos kx − i sin kx) eiωe t , (6.213)

where x = ±0.5Lf . This is consistent with the
quasi-steady analysis of a foil illustrated in Fig-
ure 6.61. We note that the pitch angle and the ver-
tical velocities due to heave, pitch, and incident
waves contribute to the unsteady angle of attack
α. One should recognize that this quasi-steady
approach does not include the steady lift forces
that balance the weight of the vessel and cause
zero pitch moment about the center of gravity.

Assuming that dCL/dα and A are the same for
the two foils and requiring that the total quasi-
steady lift force on the foils is zero, we get

Uη̄5 − iωeη̄3 + ω0ζae−kh cos (0.5kLf ) = 0. (6.214)

Here η̄ j means the complex amplitude, that is,
η j = η̄ j eiωe t , j = 3, and 5. Requiring also that the
total quasi-steady pitch moment on the foils is zero
results in

η̄5 = 2
Lf

ω0

ωe
ζae−kh sin (0.5kLf ) . (6.215)

Substituting this into eq. (6.214) gives

η̄3 = −i
ω0

ωe
ζae−kh

[
2U

ωe Lf
sin (0.5kLf ) + cos (0.5kLf )

]
. (6.216)

We note that both η̄3 and η̄5 are independent
of dCL/dα. The first term in the brackets in eq.
(6.216) is the result of pitch. The equation illus-
trates that coupling with pitch increases the heave
amplitude. An important reason heave and pitch
are relatively small in head seas is the factor ω0/ωe

in eqs. (6.215) and (6.216), which is less than one
at forward speed. Eqs. (6.215) and (6.216) show
that heave and pitch are 90◦ out of phase when
the frequency of encounter is small.

An important response variable is the wave-
induced vertical acceleration of the vessel whose
amplitude at a longitudinal coordinate x can be
expressed as

a3 = ω2
e |η̄3 − xη̄5| . (6.217)

However, a practical evaluation of the vertical
accelerations requires that an irregular sea state is
considered. If long-crested waves are assumed, a
wave spectrum S(ω0) will describe the energy con-
tent of the waves as a function of ω0 for a given sig-
nificant wave height H1/3 and mean wave period
T1. This is explained in section 3.3. How we can
obtain the standard deviation σa3 of the vertical
acceleration in long-crested head sea waves in a
short-term sea state is described in section 7.4.1.
The result is simply

σ 2
a3 =

∞∫
0

(
ω2

e |η̄3 − xη̄5|
ζa

)2

S(ω0)dω0. (6.218)

Another important response variable is the rel-
ative vertical motion between the waves and the
vessel. This variable measures the possibility of
foil ventilation, broaching, and slamming. We now
consider regular waves and start by expressing the
incident wave elevation ζ. This must be done with
a phasing that is consistent with the vertical inci-
dent velocity given by eq. (6.198). This means

ζ = ζa sin (ωet − kx) . (6.219)

The complex representation is

ζ = −iζae−ikxeiωe t . (6.220)
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The amplitude ηRa of the relative vertical motions
at a longitudinal position x is then

ηRa = ∣∣η̄3 − xη̄5 + iζae−ikx
∣∣ . (6.221)

The standard deviation σηR of relative vertical
motion in long-crested head sea waves in a sea
state can be expressed as

σ 2
ηR

=
∞∫

0

(∣∣η̄3 − xη̄5 + iζae−ikx
∣∣

ζa

)2

S(ω0)dω0.

(6.222)

Following sea
We will demonstrate that heave, pitch, and relative
vertical motions may be large in following seas
when the frequency of encounter ωe is small and no
active control is used. We consider regular incident
waves and generalize the quasi-steady approach
for head seas that leads to eqs. (6.215) and (6.216)
for the complex amplitudes of the pitch and heave.

The incident wave elevation ζ and vertical inci-
dent fluid velocity w in following seas can be
expressed as

ζ = −iζa (cos kx + i sin kx) eiωe t (6.223)

w = ω0ζae−kh (cos kx + i sin kx) eiωe t , (6.224)

where

ωe = ω0 − ω2
0U/g. (6.225)

The expression for η̄3 and η̄5 can be obtained by
noting that a difference in w for head and follow-
ing sea is a result of the term cos kx − i sin kx for
head seas (see eq. (6.200)) and cos kx + i sin kx for
following seas. So we just change the sign of the
sin (0.5kLf )-terms in eqs. (6.215) and (6.216) to
obtain the following expressions

η̄5 = − 2
Lf

ω0

ωe
ζae−kh sin (0.5kLf ) (6.226)

η̄3 = −i
ω0

ωe
ζae−kh

×
[
− 2U

ωe Lf
sin (0.5kLf ) + cos (0.5kLf )

]
(6.227)

Table 6.3. Main parameters used in seakeeping
analysis of a hydrofoil vessel with a fully
submerged and symmetric foil system in foilborne
condition (see Figure 6.64)

Symbol

Vessel mass/mass density of
water

M/ρ 185.0 m3

Foil span s 12.0 m
Chord length of foil c 1.5 m
Foil submergence h 1.5 m
Distance between fore and aft

foil
Lf 25.0 m

Radius of gyration in pitch r55 0.25 Lf

for η̄5 and η̄3 in following sea. The amplitude of ver-
tical acceleration can be obtained by eq. (6.217),
whereas the amplitude of relative vertical motions
is

ηRa = ∣∣η̄3 − xη̄5 + iζaeikx
∣∣ . (6.228)

Standard deviation of vertical accelerations and
relative vertical motions in a sea state can be
obtained similarly to that for head seas.

Eqs. (6.226) and (6.227) show that heave
and pitch are proportional to ω0/ωe. Because
eq. (6.225) shows that ωe may be zero for fol-
lowing seas, infinite vertical motions theoretically
may occur. However, this has to be counteracted
by an active control system. If we had been able
to record the vertical incident wave velocities at
the two foils, by using independently controlled
flaps at the front and aft foil, we could create lift
forces on the two foils that counteract the angle-
of-attack effect of the vertical incident wave veloc-
ities and minimize the wave excitation. However,
a procedure like that is not practical. The flap
commands are instead based on measurements of
vertical accelerations, pitch, and relative vertical
motions by means of accelerometers, gyros, and
height sensors. A contouring mode, as illustrated
in Figure 6.7 is selected for long wavelengths.

6.12.1 Case study of vertical motions and
accelerations in head and following waves

Let us consider a hydrofoil vessel in a foilborne
condition with main parameters as presented in
Table 6.3. The vessel speed is 25 ms−1.
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Figure 6.65. Heave amplitude η3a and pitch amplitude
η5a in regular head sea waves of a hydrofoil vessel with a
fully submerged foil system in foilborne condition. ζa =
incident wave amplitude, λ = incident wavelength, Lf =
longitudinal distance between the geometric centers of
the fore and aft foils. Vessel speed = 25 ms−1. No active
control is applied. Vessel data are given in Table 6.3.

The transfer function of heave, that is, the
heave amplitude η3a = |η̄3| divided by the inci-
dent wave amplitude ζa is presented together with
η5a Lf /ζa in Figure 6.65 as a function of the ratio
between the incident wavelength λ and Lf . Here
η5a means |η̄5|. We note that the quasi-steady
approximation given by eqs. (6.215) and (6.216)
is a good approximation in the considered wave-
length range. The values are small compared with
the corresponding values for a semi-displacement
vessel (see Figures 7.29 and 7.30). This confirms
the good seakeeping behavior in head sea of a
hydrofoil vessel with a submerged foil system in
foilborne condition. There are two important rea-
sons why a semi-displacement vessel has worse
seakeeping behavior than a hydrofoil vessel in
head seas. One reason is that resonant vertical
motions with relatively small damping are excited
for a semi-displacement vessel. This does not occur
for a hydrofoil vessel. Further, the wave excitation
heave force and pitch moments are larger for a
semi-displacement vessel than for a hydrofoil ves-
sel. An important reason is the significance of the
Froude-Kriloff loads.

The numerical and experimental results by
Falck (1991) for a foil catamaran without active
control show a behavior similar to that of the heave
and pitch results in Figure 6.65. Falck’s numerical
method is a generalization of Sclavounos’s (1987)

unsteady lifting line theory. Strut-foil interactions
and free-surface effects are accounted for. The
free-surface condition is the high–Froude number,
linear free-surface condition ϕ = 0 on z = 0 (see
Figure 6.50), where ϕ is the velocity potential due
to the hydrofoil vessel.

When λ/Lf is smaller than the values consid-
ered in Figure 6.65, the quasi-steady approxima-
tion of the equations of motion is no longer ade-
quate to describe the seakeeping behavior of the
vessel. This matters, for instance, in calculating the
vertical accelerations of the vessel in realistic sea
states. The mass inertia terms of the vessel must
then be considered, whereas hydrodynamic loads
proportional to the acceleration of the vessel are
still of secondary importance.

Figure 6.66 shows calculated standard devia-
tion σa3 of vertical accelerations of the vessel at
x = 0 and ± 0.5Lf in irregular long-crested head
sea waves for mean wave periods T2 between 3 and
10 s. However, the approximation of ḣ (see eq.
6.207) by evaluating the vertical incident wave
velocity w at the mean position of a foil becomes
inaccurate for small wave periods or wavelengths,
that is, when the wavelength is smaller than
approximately five times the chord length. The
effect of the incident waves should then be eval-
uated by the Sears function (Newman 1977).
The inadequacy of our theoretical model for the

2.5
σa3/H1/3(m/s2/m)

2

1.5

1

0.5

0
3 4 5 6 7 8 9 10

x = +0.5Lf

x = –0.5Lf

x = 0

T2(s)

Figure 6.66. Standard deviation σa3 of vertical accel-
eration of a hydrofoil vessel in foilborne condition at
x = 0, ±0.5Lf in long-crested irregular head sea waves
described by a Pierson-Moskowitz wave spectrum.
H1/3 = significant wave height, T2 = mean wave period.
Vessel speed = 25 ms−1. No active control is applied.
Vessel data are given in Table 6.3.
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smaller wavelengths is the reason we do not
present results for mean wave periods smaller
than T2 = 3 s in Figure 6.66. However, because
waves below 3 s are associated with small sig-
nificant wave heights, they are of little practical
significance.

The results in Figure 6.66 are in qualita-
tive agreement with numerical and experimental
results by Falck (1991) for a foil catamaran without
active control in irregular head sea waves. How-
ever, because the vessels are not the same and the
mean wave periods and wave spectra were not
specified, quantitative comparisons are not pos-
sible. Eq. (6.218) with a Pierson-Moskowitz wave
spectrum (see eq. (3.55)) has been used in our cal-
culations. The calculated values should be related
to operability-limiting criteria for vertical accel-
erations, as, for instance, presented in Table 1.1.
A commonly used criterion is σa3 = 0.2 g at the
center of gravity. There are, of course, other wave
headings and response variables, such as relative
vertical motion at the foils, that must be consid-
ered. If we consider only head sea and vertical
accelerations, then Figure 6.66 directly determines
what the maximum operational H1/3 is for a given
T2 in head sea when the vessel speed is 25 ms−1.
By having information about the occurrence of
different combinations of H1/3 and T2, we can then
directly calculate the percentage of time that the
ship can operate. However, we should realize that
the results are dependent on the use of active con-
trol. For instance, the operational limit for the Jet-
foil by Kawasaki is larger than H1/3 = 3.5 m. The
longer the mean wave period is, the higher the
limiting value for H1/3. The results presented in
Figure 6.66 lead to lower operational limits. For
instance, if we use σa3 = 2 ms−2 at x = 0 as a cri-
terion for operational limits, this shows that the
vessel can operate up to H1/3 = 2 m for T2 = 4 s.
The results in Figure 6.66 also show that the oper-
ational limit increases with T2.

The full-scale values of vertical accelerations
presented in Figure 6.22 are lower than the calcu-
lated values in Figure 6.66. However, because the
ISO criteria (see Chapter 1) have been used, the
presented values in Figure 6.22 have to be lower
than the standard deviation. Further, active con-
trol has been used for the foil catamaran whereas
this is neglected in our theoretical calculations.
This has an important effect. Another matter that
influences the results is that Figure 6.22 does not
indicate what the wave headings are.

4.5

4

3.5

3

2.5
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1.5

1
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0
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

η3a/ζa

ηRa/ζa at x = ±0.5Lf

η5aLf/ζa

λ/Lf

Figure 6.67. Heave amplitude η3a , pitch amplitude η5a ,
and amplitude ηRa of relative vertical motions at x =
±Lf as a function of ratio between incident wavelength
λ and longitudinal distance Lf between fore and aft foils
in regular following waves. ζa = incident wave amplitude.
The hydrofoil is in foilborne condition with a speed of
25 ms−1. No active control is applied. Vessel data are
given in Table 6.3.

Saito et al. (1991) theoretically studied the effect
of a control system on the vertical accelerations
and relative vertical motions at the bow of the
Jetfoil-115 in regular waves. The results show in
general a clear difference between platforming
and contouring modes. For instance, the platform-
ing mode clearly gives smaller vertical accelera-
tions in head sea waves. However, no result with-
out active control was presented. If we compare
vertical accelerations in regular head sea waves
for our hydrofoil vessel without active control with
their results, our results are clearly larger. This is
an indirect way of saying that active control mat-
ters.

Figure 6.67 shows calculated heave amplitude
(η3a), pitch amplitude (η5a), and relative verti-
cal motion amplitude (ηRa) at x = ±0.5Lf in reg-
ular following waves. The low-frequency formu-
las given by eqs. (6.226), (6.227), and (6.228)
have been used. Comparing Figure 6.65 and Fig-
ure 6.67 shows that vertical motions are clearly
larger in following waves than in head sea waves. If
results had been presented for higher λ/Lf -values
than those in Figure 6.67, the vertical motion
would continue to increase because of decreas-
ing frequency of encounter ωe until λ/Lf = 16.01
when ωe = 0. The theoretical model predicts, then,
infinite heave and pitch amplitudes. However,
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Figure 6.68. Foil-strut intersection.

this long wavelength may not be of practical
concern.

Automatic control has to be used in practice
whenωe is small to avoid ventilation and broaching
of the foils. By using numerical calculations with
the Jetfoil in following regular waves, Saito et al.
(1991) showed that active control is effective.

6.13 Exercises

6.13.1 Foil-strut intersection

Part of a foil-strut system is shown in Figure 6.68.
Set up the relationship between circulations �1 for
the foil part I, �2 for the foil part II, and �3 for the
strut III and the intersection between the foil and
the strut.

(Hint: Introduce a closed curve C that includes
the curves defining �i ,i = 1, 3 so that the circu-
lation along C is zero.)

6.13.2 Green’s second identity

a) Green’s second identity is used to represent the
velocity potential due to a 2D foil as a distribution
of sources (sinks) and normal dipoles over the foil
surface SB and normal dipoles over the free shear
layer SV (see eq. (6.32)). It is then necessary that
the contribution from a control surface S∞ at infin-
ity is zero. Show that this is true.

(Hint: Represent the velocity potential at S∞ as
in eq. (6.54)).

b) Use eq. (6.32) to derive the dominant term for
the velocity potential due to the foil at large dis-
tances from the foil and free shear layer.

(Hint: Taylor expand ln r and ∂ (ln r) /∂n about
x = 0, y = 0).

6.13.3 Linearized 2D flow

a) Derive the pressure distribution on a foil due
to parabolic camber

b) Assume the mean line of the foil is described
by

η = −αx + C1x3. (6.229)

What is the ideal angle of attack αi ?

6.13.4 Far-field description of a high-aspect–ratio foil

Consider the far-field linear steady flow past a
high-aspect–ratio foil in infinite fluid as it is illus-
trated in Figure 6.42. Assume a foil with an elliptic
planform. Use eq. (6.46) to show that the vertical
fluid velocity can be expressed as

w (x1, y1, z1) = 2αU
π ( + 2)

π∫
0

dθ
cos θ (y∗

1 − cos θ)[
(y∗

1 − cos θ)2 + z∗2

1

] (6.230)

×


1 + x∗

1[
x∗2

1 + (y∗
1 − cos θ)2 + z∗2

1

]1/2


 ,

where α is the angle of attack, U is the forward
speed,  is the aspect ratio, x∗

1 = 2x1/s, y∗
1 = 2y1/s,

and z∗
1 = 2z1/s.

Derive also eq. (6.230) by starting out with a
dipole representation of the vortex sheet, that is,
eq. (6.116) for the velocity potential. It is then use-
ful to note that

d
dy


tan−1


 z1

x1

(
x2

1 + (y1 − y)2 + z2
1

)1/2

(y1 − y)







= z1x1(
(y1 − y)2 + z2

1

) (
x2

1 + (y1 − y)2 + z2
1

)1/2 .

6.13.5 Roll-up of vortices

In the far-field wake, the linear steady flow around
a 3D foil can be represented by 2D flow in the
cross-sectional plane SC shown in Figure 6.44. We
use this flow picture as a start condition for roll-up
of the vortices. This means the start condition is as
shown in Figure 6.69.

a)Represent the flow field due to this initial
description of the vortex sheet in two different
ways by using either a vortex distribution or a
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Figure 6.69. 2D representation of the vortex sheet in the
far-field linear steady wake of a 3D foil.

dipole distribution. Use Prandtl’s lifting line the-
ory for an uncambered lifting surface with ellip-
tical planform to represent the vortex and dipole
densities.

b)Now let the vortex sheet be free to move in the
cross-sectional plane. Sketch how one can numer-
ically calculate the motion of the vortex sheet, and
discuss qualitatively why this causes roll-up of the
vortex sheet.

6.13.6 Vertical wave-induced motions
in regular waves

a)Eqs. (6.210) and (6.211) are the coupled equa-
tions of heave and pitch motions in head sea reg-
ular waves of a hydrofoil vessel with a symmet-
ric submerged foil system in foilborne condition.
We will concentrate on the hydrodynamic terms
associated with η̄3 in eq. (6.210). Using seakeep-
ing nomenclature, these can be expressed as

A33
d2η3

dt2
+ B33

dη3

dt
,

where A33 and B33 are called, respectively, added
mass and damping coefficients in heave. Show that

A33 = ρ0.5πc2s + 2ρπUcs Im (C (kf )) /ωe

(6.231)

B33 = 2ρπUcs Re (C (kf )) . (6.232)

Show that the right-hand side of eq. (6.210) can be
expressed as

(iωe A33 + B33) ω0ζae−kh cos (0.5kLf ) .

b)A33 and B33 given by eqs. (6.231) and (6.232)
neglect influence of the free surface. We will study
a quasi-steady influence of the free-surface by
using the asymptotic lift force formula for large
Froude numbers given by eq. (6.144). Only heave
will be considered. Show that this leads to the fol-
lowing linear unsteady vertical force on the hydro-
foil vessel

F RF
3 = −C33η3, (6.233)

where

C33 = 32Mg
(

h
c

)
1
c

(1 + 16(h/c)2)(2 + 16(h/c)2)
.

(6.234)

(Hints: Start with eq. (6.144) and write h = hm −
η3, where hm is the average vertical position of
the foil. Use Taylor expansion about h = hm and
the fact that at h = hm, the lift force on the two
foils balances the weight Mg of the hydrofoil
vessel. h in eq. (6.233) corresponds to hm.)

c)Use the main parameters given in Table 6.3 and
a ship speed of U = 25 ms−1. Consider a range
of incident wavelengths to Lf -ratios between 0.25
and 8 in head sea.

Discuss the relative importance between

� A33 and M
� −ω2

e (M + A33) and C33
� −ω2

e (M + A33) + C33 and ωe B33
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7 Semi-displacement Vessels

7.1 Introduction

Monohulls and catamarans, often equipped with
foils, trim tabs, and/or interceptors that control the
trim angle and minimize wave-induced motions,
are nowadays the most established concepts for
high-speed vessels. Interceptors are relatively new
concepts and are illustrated in Figure 7.5. The ves-
sels have transom sterns, that is, there is a flat
part of the aft ship below the mean free surface
that is perpendicular to the centerplane. Catama-
ran designs include the wave-piercing and semi-
SWATH (small waterplane area twin hull)-style
hulls. The length of high-speed catamarans used
for passenger transportation in coastal water is
typically 30 to 40 m. Both monohulls and catama-
rans longer than 100 m have been built. Trimarans
and pentamarans are new types of multihull ves-
sels that are considered. They consist of a long
center hull with smaller outrigger hulls. The out-
rigger hulls are important for static heeling stabil-
ity. The larger vessels are typically ro-pax ferries,
which means they carry passengers and allow roll-
on/roll-off payloads, most often cars.

Calm water resistance of semi-displacement
vessels is dealt with in Chapters 2 and 4. This chap-
ter concentrates on linear wave-induced motions
and loads; however, added resistance in waves is
also handled. Common statistical procedures for
calculating short- and long-term responses based
on linear results in regular waves are also shown.
One important load aspect is slamming, which is
relevant for all high-speed vessels. This is dealt
with in detail in Chapter 8. Maneuvering is con-
sidered in Chapter 10.

7.1.1 Main characteristics of monohull vessels

Table 7.1 lists examples of main characteristics of
large high-speed monohulls. The data are partly
based on Jane’s 2002–2003 High-Speed Marine

Transportation. These vessels have very low draft
and a high beam-to-draft ratio relative to conven-
tional ships. Steel or aluminium is used as the hull
material. All the vessels use waterjet propulsion.
The use of motion control systems is also listed.
LPP, LWL, CB, and Hb are the length between
perpendiculars, the length of the designer’s load
waterline, the block coefficient, and the height of
the bow above calm water, respectively.

7.1.2 Main characteristics of catamarans

The side hulls of a catamaran have main dimen-
sions different from those of a monohull. We
will describe typical main characteristics of
high-speed catamarans with a length between
perpendiculars LPP varying from 40 to 90 m. The
ratio LPP/∇1/3 may vary from 6 to 7.5. Here ∇
is the displaced volume. The center of buoyancy
is typically 40% to 48% of LPP from the stern.
When it comes to the cross-sectional form of each
hull, the aft part often has a constant local beam
(see Figure 7.53). U-frames are typical for the
midship section. In order to reduce base drag,
the draft at the transom is smaller than that for
the midship section. There are either concave
frames or V-frames in the forward part of the
hull, with nearly constant local draft over most
of the fore part. A picture of the waterline is
shown in Figure 7.1. b1 should be larger than
b2 (see Figure 7.1). The ratios b1/b2 = 1.5 and
b2/LPP = 1/12 are typical for 40-m catamarans,
whereas b1/b2 from 2 to 2.25, b2/LPP from 1/14
to 1/15, and b1/LPP of 1/7 are representative for
80 to 90 m–long catamarans. The minimum value
of b2 is determined by the engine and is about
3 m for a 40 m–long catamaran. The distance
2p = b1 + b2 between the centerplanes of the two
hulls may vary between four and six times the
draft midships. The trim angle is often 0◦ at zero
forward speed. An example of the wetdeck for a
40 m–long catamaran is illustrated in Figure 7.2.
The longitudinal cross section at the centerplane
is illustrated. The transverse cross section of the
wetdeck may be wedge-formed or horizontal (see
Figure 7.53). The wetdeck of a “wave-piercing”
catamaran is very different (see Figure 1.3). The
center of gravity is a small distance above the wet-
deck. The radii of gyration in pitch and roll are
typically 26% of LPP and 50% of the beam of the
vessel, respectively. Figure 7.53 and Table 7.5 show
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Bow
entrance

angle
5-8°

b2 b1

Figure 7.1. Typical waterline of a high-speed catamaran.

an example of the body plan and main particulars
of a catamaran to be used later in discussing global
wave loads.

7.1.3 Motion control

Wave-induced vertical accelerations may cause
seasickness and represent an important factor for
the limited operability of high-speed vessels (see
section 1.1 for criteria). However, motion con-
trol may be effective in reducing the heave and
pitch of a high-speed vessel. T-foils, trim tabs
(flaps), and interceptors are used as parts of con-
trol systems for monohull and multihull semi-
displacement vessels. Trim tabs and interceptors
are situated at the transom stern, whereas T-foils
are in the forward part of the vessel. Because the
vertical ship motions are largest in the bow, it is an
advantage that a heave and pitch damping device
is placed close to the bow. The damping effect of
T-foils, trim tabs, and interceptors increases with
speed and would not be efficient for conventional
ships operating at moderate speeds.

Figure 7.3 shows how the T-foil is placed below
the keel. A deeply submerged foil is an advan-
tage in avoiding slamming, cavitation, and venti-

Bow

2m

2 stations

Wetdeck

1.5m

Figure 7.2. The wetdeck of a high-speed catamaran at
the centerplane. LPP = 40 m. The measure “2 stations”
means 10% of the length between perpendiculars (LPP).

Figure 7.3. T-foil placed below the keel and used to
damp vertical wave-induced ship motions at high speed
(Seastate).

lation. Cavitation is a function of the ambient pres-
sure (including the atmospheric pressure) at the
foil position. The higher the ambient pressure, the
smaller the probability of cavitation and ventila-
tion. However, the onset of cavitation and venti-
lation also depends on the local flow around the
foil, which is affected by the foil design, the angle
of attack of the incident flow to the foil, and the foil
motion. The higher the ship speed, the larger the
probability of cavitation and ventilation. Cavita-
tion and ventilation on a foil operating at speeds
higher than approximately 50 knots are difficult
to avoid. Because T-foils add drag to the ves-
sel, it is an advantage that they can be retracted
in calm water conditions. Retractable T-foils are
obviously also an advantage during operation in
shallow water.

The phasing of the flap angles can be controlled
relative to the vertical velocities to increase the
heave and pitch damping. However, a T-foil also
works well as a passive damping device. This will
be discussed further later in this chapter.

Figure 7.4 shows a trim tab (flap) installation. It
is a flat plate that is hinged from the hull and actu-
ated by a hydraulic cylinder. A transom flap may
be either mounted aft of the transom or recessed
into the hull forward of the transom. We could say
that the trim tab is like a horizontal rudder inte-
grated with the hull and it is only wetted on the
lower side when it is in operation at high speed.
By changing the angle of the trim tab, we change
the trim moment on the vessel so that the trim
angle is either increased or reduced. This also can
be done as a part of an automatic control system.
Further, the roll can also be controlled by having
independently operating flaps.
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Figure 7.4. Trim tab installation (Seastate). The trim tab
is an elongation of the hull bottom. By changing the angle
of the trim tab by means of an hydraulic actuator, the trim
moment on the ship is changed so that the trim angle is
either increased or reduced.

An interceptor is illustrated in Figure 7.5 and
has clearly less weight than a trim tab. Minimiza-
tion of the weight is important for high-speed
vessels. Figure 7.6 illustrates how an interceptor
with height h works in steady 2D flow. The height
h is adjustable. An incident boundary-layer flow
is shown. The interceptor is typically inside the
boundary layer of the vessel. When the Froude
number is sufficiently high, let us say Fn > 0.4,

the flow separates from the interceptor and leaves
a hollow behind the vessel. This is similar to what
is discussed in Chapter 4 for transom stern flow
(see Figure 4.18). The presence of the interceptor
causes a pressure distribution on the hull, illus-
trated by a hydrodynamic pressure coefficient Cp

in Figure 7.6. There is a pressure maximum at the

Figure 7.5. Left, interceptor and high-speed rudder. Right, the Seastate interceptor assembly. The
horizontal part is the interceptor (Seastate).

intersection between the hull and the interceptor.
If we had potential flow, this hydrodynamic pres-
sure maximum would be 0.5ρU2, where U is the
inflow velocity. If the interceptor were not there,
the pressure would, in a small area of the hull bot-
tom, decrease to atmospheric pressure at the tran-
som stern.

The pressure distribution illustrated in Fig-
ure 7.6 causes a trim moment on the vessel that
reduces the trim angle. (Positive trim angle cor-
responds to bow up.) This is similar to how a trim
tab works. Brizzolara (2003) has numerically stud-
ied the steady 2D flow situation in Figure 7.6 and
how Cp depends on the relative longitudinal coor-
dinate x/h. The interceptor causes a drag force on
the vessel, but this is of small significance for typ-
ical interceptor heights. Numerical studies of how
the interceptor works in incident waves are also
needed. If the interceptors are placed on the hull
side at the transom stern instead of on the bottom,
they can be used for steering control. This may also
be possible by trim tabs.

T-foils are most efficient in damping vertical
motions. They may also be advantagous in follow-
ing sea when there is a tendency toward dive-in of
the bow. This is a quasi-steady flow situation, and
proper change of the flap angles may help in lifting
the bow up.

An important effect of roll on catamarans is
that roll causes vertical motions of the side hulls.
Everything that has been said for heave and pitch
damping previously in the text is also relevant
for roll damping of catamarans. By independently
controlling the vertical motions of the side hulls
by T-foils, trim tabs, and/or interceptors, we can
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BOUNDARY
LAYER
FLOW

U

HULL SURFACE

Cp

INTERCEPTOR

X

h AIR

FREE SURFACE

Figure 7.6. 2D steady boundary-layer flow past an interceptor with adjustable height h at the transom
stern. Cp = hydrodynamic pressure coefficient on the hull surface.

control the roll motions of a multihull vessel. Roll
may represent a problem for monohull vessels. A
rudder (see Figure 7.5) provides roll damping at
high speeds.

7.1.4 Single-degree mass-spring system
with damping

The theoretical description of wave-induced mo-
tions and loads on monohull and multihull ves-
sels is, to a large extent, based on a mass-spring
type of system with damping. Coupling between
the different modes of motions – for example, cou-
pling between heave and pitch or among sway, roll,
and yaw – matters. However, to exemplify essen-
tial features of the dynamic system, we will limit
ourselves to a single degree of freedom system,
even if this may be oversimplified for quantitative
predictions. This means we study the second-order
differential equation

mÿ(t) + bẏ(t) + cy(t) = f (t). (7.1)

Here y(t) is the response variable, which may be
the heave motion. m is the mass term, which in the
case of heave motion, includes the vessel mass and
the added mass in heave. b is the damping coeffi-
cient. Heave damping is, for instance, caused by
wave radiation due to heave oscillations. Other
damping contributions, such as hull-lift damping,
foil-damping, and viscous damping, are discussed
later in this chapter. c is the restoring (spring) coef-
ficient. For instance, changes in the buoyancy force
due to heave motion cause a restoring force. There
are also restoring components from a foil’s angle
of attack. f (t) is the excitation force. In the main
text of this chaper, we deal with continuous wave
excitation. Transient excitation due to slamming

(wave impact) is discussed in Chapter 8. Actually,
eq. (7.1) does not apply in the time domain for
a ship in waves. This is discussed in section 7.3.
The problem looks like the one in eq. (7.1) only in
steady-state monochromatic waves in which the
frequency-dependent added mass and damping
are defined.

If the right-hand side f (t) of eq. (7.1) is zero,
eq. (7.1), together with the initial conditions,
describes the free vibrations. This can be used in
experimental studies to obtain the damping coef-
ficient and natural frequency of oscillations (free
decay tests).

If f (t) is nontransient, as in continuous wave
loading, we are normally interested in a steady-
state solution. This means the effect of the initial
conditions has vanished. However, if the damping
is zero, the effect of the initial conditions does not
vanish.

Let us now study the different cases mathemat-
ically.

Free vibrations
We set f (t) = 0 in eq. (7.1) and specify initial con-
ditions at t = 0 for y(t) and ẏ(t). Possible solution
forms are obtained by substituting y(t) = exp(λt)
into eq. (7.1). This gives

λ2 + b
m

λ + c
m

= 0 (7.2)

or

λ1,2 = − b
2m

± 1
2m

√
b2 − 4mc. (7.3)

Here λ1 and λ2 are the two possible solutions. They
are generally complex. The sign of the discrimi-
nant b2 − 4mc defines whether the solution has an
imaginary part. This can be used to classify the
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y(t) 1

0.5 

−0.5 
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= 0.05

= 0.1
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Figure 7.7. Free vibrations as a function of number of oscillation periods for different damping–critical
damping ratios ξ = b/bcr = 0.5b/(mc)0.5.

solution into three classes:

i) b2 > 4mc, Overdamped
i i) b2 = 4mc, Critically damped
i i i) b2 < 4mc, Underdamped

(7.4)

Overdamping means that the solution has no
imaginary part, that is, the solution decays expo-
nentially without oscillating. This is not a practical
case for the dynamic systems that we will study.
In our case, the systems will be underdamped.
The critical damping bcr = 2

√
mc is often used

as a relative measure of the damping level. We
concentrate now on an underdamped system and
introduce

ωn = 1
2m

√
4mc − b2 (7.5)

α = b
2m

. (7.6)

Here ωn is the damped natural frequency. The gen-
eral solution of eq. (7.1) can then be expressed as

y(t) = e−αt {Acos ωnt + B sin ωnt}, (7.7)

where A and B are determined by the initial con-

ditions. Eq. (7.7) can be rewritten as

y(t) = exp

(
− ξ

(1 − ξ 2)1/2 ωnt

)
(7.8)

× {Acos ωnt + B sin ωnt} ,

where ξ is the ratio between the damping b and
the critical damping bcr , that is,

ξ = b
bcr

≡ b
2
√

mc
. (7.9)

Eq. (7.8) is exemplified in Figure 7.7 by A = 1,
B = 0, and ξ = 0.01, 0.05, 0.1, 0.2 as a function of
ωnt/2π. This illustrates the decay rate as a function
of the damping ratio ξ.

If m and c are known, we can use an experimen-
tal free-decay curve like the one in Figure 7.7 to
obtain the damping. Let us exemplify this for small
ξ so that ξ/(1 − ξ 2)0.5 ≈ ξ. We consider then the
two values yi and yi+n that are recorded at time ti

and ti + n 2π/ωn. Here n is an integer. Eq. (7.8)
gives then

yi

yi+n
= exp(2πnξ),

which is solved for the damping coefficient b:

b = √
mc ln(yi/yi+n)/πn. (7.10)



P1: JYD
0521845688c07a1 CB921-Faltinsen 0 521 84568 7 November 4, 2005 4:26

228 • Semi-displacement Vessels

Forced harmonic oscillations
We express now f (t) in eq. (7.1) as F0 cos ωt. The
general solution of eq. (7.1) is the sum of the homo-
geneus solution yh and the particular solution yp.

Here yh is the same as eq. (7.8), whereas the partic-
ular solution solves the equation when the right-
hand side of eq. (7.1) is different from zero. It fol-
lows that

yp = F0

(c − mω2)2 + ω2b2
(7.11)

×[(c − mω2) cos ωt + ωb sin ωt].

So we see that the two parts of the solution, that
is, yh and yp, oscillate with different frequencies
ωn and ω. This causes a “beating” effect in the
time series until yh is damped out. We will later be
interested in the steady-state solution. This means
the transient effects represented by yh have van-
ished and the solution is steady state and given by
eq. (7.11).

The dynamic amplification ratio D is defined as
the ratio between the amplitude of yp and the
amplitude |yst | of the quasi-static response. yst

is obtained by setting m and b equal to zero in
eq. (7.11). It then follows that

D = |yp|
|yst | =


(

1 −
(

ω

ωn0

)2
)2

(7.12)

+ 4
(

ω

ωn0

)2

ξ 2

)−1/2

where ωn0 = (c/m)0.5 is the undamped natural fre-
quency and ξ is the damping ratio defined by
eq. (7.9). Eq. (7.12) is plotted in Figure 7.8 for
various damping ratios ξ . Eq. (7.12) shows that
D = 0.5/ξ, when ω = ωn0. If ξ is small, maximum
response occurs at ω = ωn0.

These results are of importance later when we
study the response of a ship in regular waves. How-
ever, m, b, and F0 will be frequency dependent
in that case. Further, coupling between motion
modes will matter. This means the response ampli-
tude is only qualitatively similar to that presented
in Figure 7.8.

When ω/ωn0 is very small, the response is in
phase with the excitation. The response is 180◦

out of phase with the excitation when ω/ωn0 is
very large. A rapid change in phase occurs when

D
5

4

3

2

1

ξ = 0.1

ξ = 0.2

ξ = 0.4

0 0.5 1 1.5 2
ω
ωn0

Figure 7.8. Dynamic amplification factor D as a func-
tion of ratio ω/ωn0 between forcing frequency ω and
undamped natural frequency ωn0. Note that when the
ratio ξ between damping and critical damping is high,
the maximum response occurs at a frequency clearly dif-
ferent from ωn0.

ω/ωn0 is near 1. The smaller ξ is, the more rapid
the change. When ω/ωn0 = 1, the phase of the
response is 90◦ out of phase with the excitation.

Response to impulsive loads
We now allow f (t) to be any excitation function.
The general solution of eq. (7.1) is the sum of the
homogeneous solution yh and the particular solu-
tion yp. Here yh is the same as eq. (7.8). The par-
ticular solution is

yp(t) = 1
mωn

t∫
0

f (τ ) sin[ωn(t − τ )]

(7.13)
× exp[−ξωn0(t − τ )]dτ, t > 0,

where ωn and ξ are given by eqs. (7.5) and (7.9).
Further, ωn0 = (c/m)0.5 is the undamped natural
frequency.

A slamming load is an example of impul-
sive loads in which the excitation force f(t) in
eq. (7.1) has a limited duration Td. The character
of the response is dependent on the ratio Td/Tn,

where Tn = 2π/ωn is the natural period. For short-
duration loads, that is, Td/Tn < ≈0.25, the force
impulse written as

I =
Td∫

0

f (t)dt (7.14)
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determines the maximum response. We can quali-
tatively understand this from eq. (7.13) by assum-
ing the maximum response occurs on the time
scale of Tn. The integral can then be approximated
as

yp(t) = 1
mωn

sin(ωnt) exp(−ξωn0t)

Td∫
0

f (τ )dτ .

(7.15)

This shows that the maximum response is propor-
tional to the force impulse.

For long-duration loading, that is, Td/Tn > ≈1,

the dynamic magnification factor D is between 1
and 2. The tendency is that the longer the rise time
of the loading to its maximum value, the lower D
is. Detailed descriptions of the response to sine-
wave, rectangular, and triangular loading are given
by Clough and Penzien (1993).

7.2 Linear wave-induced motions in regular waves

Linear theory can, to a large extent, describe
the wave-induced motions of a semi-displacement
ship in operational conditions. However, nonlin-
ear effects matter in severe sea states.

Consider a ship in incident regular waves of
amplitude ζa . The wave steepness is small, that
is, the waves are far from breaking. Linear theory
implies that the wave-induced motion amplitudes
are linearly proportional to ζa .

A useful consequence of linear theory is that
we can obtain results in irregular waves by adding
together results from regular waves of different
amplitudes, phases, wavelengths, and propagation
directions. This means it is sufficient from a hydro-
dynamic point of view to analyze a ship in incident
regular sinusoidal waves of small wave steepness;
this is done in the following text. We assume a
steady-state condition, meaning there are present
no transient effects due to initial conditions. It
implies that the linear dynamic motions and loads
on the ship are harmonically oscillating with the
same frequency as the wave loads that excite
the ship. The hydrodynamic problem in regular
waves is normally dealt with as two sub-problems,
namely:

1. The forces and moments on the ship when
the body is restrained from oscillating and
there are incident regular waves. The hydro-
dynamic loads are called wave excitation

loads and are composed of the so-called
Froude-Kriloff and diffraction forces and
moments. Froude-Kriloff loads are caused by
the pressure field in incident waves, which
are undisturbed by the ship. Newman (1977)
names what we call the diffraction prob-
lem the scattering problem. In his nomen-
clature, the diffraction loads are the sum of
the Froude-Kriloff and scattering loads.

2. The forces and moments on the body when
the structure is forced to oscillate in calm
water with the wave excitation frequency
in any rigid-body motion mode. There are
no incident waves, but the oscillating body
causes radiating waves. The hydrodynamic
loads are identified as added mass, damp-
ing, and restoring forces and moments. This
sub-problem is often termed the radiation
problem.

Because of linearity, the forces obtained in items
1 and 2 can be added to give the total hydrody-
namic force. One cannot separate the diffraction
and radiation problems in a nonlinear theory.
Before we go into detail and describe the different
hydrodynamic loads, we define coordinate systems
and the rigid-body motion modes. A right-handed
coordinate system (x, y, z) fixed with respect to
the mean oscillatory position of the ship is used,
with positive z vertically upward through the cen-
ter of gravity of the ship, and the origin in the
plane of the undisturbed free surface. If the ship
moves with a mean forward speed, the coordinate
system moves with the same speed. In addition,
we define a body-fixed coordinate system (x̄, ȳ, z̄)
that coincides with the (x, y, z) when the ship does
not oscillate (Figure 7.9). We show the connection
between these two coordinate systems by consid-
ering either head or following sea. The ship will
surge, heave, and pitch.

We define η1 (surge) and η3 (heave) as the trans-
latory motions of the origin of the (x̄, ȳ, z̄) sys-
tem along the x- and z-axes, respectively. Positive
rotational angle η5 (pitch) about the y- or ȳ-axis
corresponds to bow up. We consider then a fixed
point P on the ship (Figure 7.10) with coordinates
(x̄, ȳ, z̄) . The corresponding x and z-coordinates
can be derived as illustrated in Figure 7.10, that is,

x = x̄ cos η5 + η1 + z̄ sin η5 (7.16)

z = z̄ cos η5 + η3 − x̄ sin η5. (7.17)
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z
z

x
x

Figure 7.9. Inertial system (x, y, z) moving with the constant ship speed U. Body-fixed coordinate
system (x̄, ȳ, z̄) .

Because linear theory is considered, we keep only
linear terms in ηi . This gives as a first approxima-
tion, x = x̄ and z = z̄ . A second approximation of
eqs. (7.16) and (7.17) are

x = x̄ + η1 + zη5 (7.18)

z = z̄ + η3 − xη5. (7.19)

The longitudinal and vertical motions of point P on
the ship can therefore be expressed in the (x, y, z)-
system as, respectively, η1 + zη5 and η3 − xη5 . This
means we do not need the body-fixed coordinate
system in describing the linear motions. Because
the (x, y, z) coordinate system is an inertial sys-
tem, we can directly apply Newton’s second law
and Bernoulli’s equation in this system. If we had
used the body-fixed coordinate system, we would
have had to modify these equations. The body-
fixed coordinate system would be natural to use
if the complete nonlinear ship-wave interaction
problem were to be solved.

z z

x x

P
(x,y,z)

(x,y,z)

z– z–

x– x–

–
–

– –

(x,y,z)
(x,y,z)– – –

xcosη5

–zcosη5

–zsinη5

–xsinη5
η5

η5

η5

η5
η3

η1

η5
η3

η1

(a) (b)

P

Figure 7.10. Transformation between body-fixed (x̄, ȳ, z̄) and inertial (x, y, z) coordinate systems.

Let us now return to a more general formu-
lation of the linear motions in combination with
the (x, y, z) coordinate system. Let the translatory
displacements in the x-, y-, and z-directions with
respect to the origin be η1, η2, and η3 respectively,
so that η1 is the surge, η2 is the sway, and η3 is the
heave displacement. Furthermore, let the angular
displacements of the rotational motions about the
x-, y-, and z-axes be η4, η5, and η6, respectively, so
that η4 is the roll, η5 is the pitch, and η6 is the yaw
angle. The coordinate system and the translatory
and angular displacement conventions are shown
in Figure 7.11.

The motion of any point on the ship can be writ-
ten as

s = η1i + η2j + η3k + ω × r,

where “×” denotes vector product and

ω = η4i + η5j + η6k, r = xi + yj + zk,
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Figure 7.11. Definitions of coordinate system, rigid-body motion modes, and wave propagation direc-
tion. U is the forward speed of the ship. The coordinate system moves with the forward speed of the
vessel but does not oscillate with the ship. The origin is in the mean free surface. The z-axis goes
through the center of gravity of the vessel when the vessel does not oscillate.

and i, j, k are unit vectors along the x-, y-, and
z-axes, respectively. This means

s = (η1 + zη5 − yη6) i + (η2 − zη4 + xη6) j

+ (η3 + yη4 − xη5) k. (7.20)

We will now express η j in the case of steady-
state harmonic oscillations in regular incident
waves. We then need an expression for the incident
waves to relate to. The wave elevation in an Earth-
fixed coordinate system XYZ (see Figure 4.6) can
be expressed as in eq. (4.4), that is,

ζ = ζa cos(kX cos β + kY sin β − ω0t − ε),

where we have replaced ω with ω0 to express the
frequency of the waves in the XYZ system. We
are free to select the phase angle ε. It is just a
question of what we define as t = 0. We choose
ε = −π/2. Then a coordinate transformation
to the xyz system (see Figure 4.6), X = x − Ut,
Y = y, gives

ζ = ζa sin((ω0 + kU cos β)t − kx cos β − ky sin β).
(7.21)

This means the wave elevation oscillates in the
xyz-system with the frequency ω0 + kU cosβ. This
defines the frequency of encounter, ωe, that is,

ωe = ω0 + kU cos β and k = ω2
0

g
= 2π

λ
. (7.22)

Here β = 0, 90◦, 180◦ corresponds to head sea,
beam sea, and following sea, respectively. The
linear steady-state motion η j in six degrees of

freedom can now be expressed as

η j = |η j | sin(ωet + ε j ), j = 1, . . . , 6. (7.23)

Positive εj means a phase lead relative to the wave
elevation at x = 0 and y = 0. (Note that the lit-
erature and computer programs may have differ-
ent definitions of phases, but as long as we know
the definitions, we can transform one definition
of phase angle into another.) The amplitude |η j | is
proportional to ζa in linear theory. The ratio |η j |/ζa

is called a transfer function (or response amplitude
operator, RAO) for motion mode j. It is a function
of ωe, U and β and has to be found by either exper-
iments or numerical calculations. Assuming that
|η j | and εj are known, let us illustrate how other
response variables can be derived.

Vertical accelerations in the bow
We consider as the first example head sea, and we
want to express the linear wave-induced vertical
acceleration at the bow. Using eq. (7.20) and dif-
ferentiating it twice with respect to time gives

a 3 = −ω2
e

[
|η3| sin(ωet + ε3)

(7.24)
+ L

2
|η5| sin(ωet + ε5)

]
.

Here x = −L/2 is used for the x-coordinate of the
bow. If we want to find the amplitude of the ver-
tical acceleration at the bow, we have to collect
sin ωet and cos ωet terms separately in eq. (7.24).
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This means we write eq. (7.24) as

− ω2
e

{
sin ωet

[
|η3| cos ε3 + L

2
|η5| cos ε5

]

+ cos ωet
[
|η3| sin ε3 + L

2
|η5| sin ε5

]}
.

The acceleration amplitude then becomes a3a =
ω2

e

√
A2 + B2, where A= |η3| cos ε3 + 0.5L|η5|

cos ε5 and B = |η3| sin ε3 + 0.5L|η5| sin ε5. The
time-dependent vertical acceleration at the bow
is

a3(t) = a3a sin(ωet + εa),

where

cos εa = − A√
A2 + B2

and sin εa = − B√
A2 + B2

.

Sway and roll
It is common to say that a vessel rolls about a cer-
tain axis (often called roll axis). We now show that
this is generally not possible and consider a situ-
ation in which yaw is negligible, as it may be in
a beam sea condition. By using eqs. (7.20) and
(7.23), we can write the linear transverse trans-
latory motion of a point on the vessel as

s2 (z; t) = |η2| sin(ωet + ε2) − z |η4| sin(ωet + ε4)

= (|η2| cos ε2 − z |η4| cos ε4) sin ωet

+ (|η2| sin ε2 − z |η4| sin ε4) cos ωet.

If the vessel is to roll about an axis, we must require
there to be a z-value in which the transverse trans-
latory motion is always zero, that is,

|η2| cos ε2 − z |η4| cos ε4 = 0 (7.25)

|η2| sin ε2 − z |η4| sin ε4 = 0. (7.26)

Solving eq. (7.25) for z |η4| and introducing this
into the left-hand side of eq. (7.26) gives

|η2| (sin ε2 − cos ε2 tan ε4) .

Because the sway amplitude is different from zero,
in order to satisfy eq. (7.26), we must require that
tan ε2 = tan ε4. ε2 and ε4 depend on ωe and U and
generally do not satisfy this relationship. In the
same way, we may show that the ship in general will
not pitch about a certain axis in waves. This is the
same as saying that the vertical motion amplitude
is non-zero everywhere along the ship.

Complex expressions of response variables
It is common to use complex variables to express
the linear response variables. This means the
motions are written as

η j = η̄ j eiωe t , (7.27)

where i is the complex unit, η̄ j is the complex
amplitude, and it is understood in all expressions
that it is the real part of the total complex expres-
sion, for instance, Re (η̄ j exp(iωet)) , that has phys-
ical meaning. This is allowed as long as we assume
a linear system. Let us illustrate what we mean by
using eq. (7.27). The real and imaginary parts of
η̄ j are called ηRj and ηIj , respectively. This means
the physical part of eq. (7.27) is

Re
{
(ηRj + iηI j ) eiωe t

}
(7.28)

= ηRj cos ωet − ηI j sin ωet,

where we have used eiωe t = cos ωet + i sin ωet. We
expand eq. (7.23) into cos ωet and sin ωet terms and
compare this with eq. (7.28), giving

ηRj = ∣∣η j

∣∣ sin ε j

ηI j = −∣∣η j

∣∣ cos ε j

or

ε j = tan−1

(
ηRj

−ηI j

)
.

It is more convenient to use complex variables
when we want to combine linear response vari-
ables. Having obtained the final answer for the
complex amplitude, we multiply it by eiωe t as in
eq. (7.28) and take the real part of the resulting
expression to get the physical variable.

Wave-induced accelerations of cargo
and equipment
We want to stress that the coordinate system xyz
in Figure 7.11 is not fixed relative to the instanta-
neous position of the ship. This is, for instance,
important when we want to study the effect of
wave-induced ship oscillations on objects (cargo
or equipment) on the deck of the vessel. We might
want to find out when the object loses grip or to
design foundations or other lashing devices. Con-
sider a head sea condition in which the vessel is
oscillating in surge, heave, and pitch. There is then
a linear component gη5 along the ship-fixed x̄-axis.
Here g is gravitational acceleration.
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Figure 7.12. Object with mass M on the deck in head sea
conditions. Center of gravity coordinates (xc, yc, zc) in
the global (x, y, z) coordinate system. The (x̄, ȳ, z̄) coor-
dinate system is body fixed. A force with components Fx̄

and Fz̄ acts from the deck on the object.

Let us consider the consequences of that. We
consider an object with mass M on the deck (Fig-
ure 7.12). The deck is assumed horizontal in the
mean oscillatory position of the vessel. The center
of gravity of the object has coordinates (xc, yc, zc)
in the (x, y, z) coordinate system defined in Fig-
ure 7.11. The longitudinal wave-induced acceler-
ation component at the center of gravity of the
object is consistent with linear theory equal to
η̈1 + zcη̈5 if we refer to either the x- or x̄-axis. Here
dot means time derivative. We now consider equi-
librium conditions of the object along the body-
fixed coordinate axes x̄ and z̄. Consistent with lin-
ear theory and using Newton’s second law in the
x̄-direction, we have

M (η̈1 + zcη̈5) = Mgη5 + Fx̄. (7.29)

Here Fx̄ is the force component in the x̄-direction
acting on the object as a result of sea fastening
and/or friction forces from the deck. If the object
is not fastened, we write

Fx̄ = −µFz̄, (7.30)

where µ is a friction coefficient and Fz̄ is the force
component in the z̄-direction acting from the deck
on the object. Consistent with linear theory and
by using Newton’s second law in the z-direction
gives

M (η̈3 − xcη̈5) = −Mg + Fz̄. (7.31)

We see from eq. (7.31) that it is necessary that Fz̄ is
positive. Otherwise, the object will leave the deck.

Eq. (7.29) shows that the derived response vari-
able (relative acceleration)

ax̄ = η̈1 + zcη̈5 − gη5 (7.32)

is important in evaluating whether an object on
the deck will lose grip or in designing foundations
or other lashing devices for the object.

If we consider oblique sea, eq. (7.32) can be gen-
eralized to

ax̄ = η̈1 + zcη̈5 − ycη̈6 − gη5. (7.33)

There is, then, also a relative acceleration compo-
nent

aȳ = η̈2 − zcη̈4 + xcη̈6 + gη4 (7.34)

along the ȳ-axis to be considered. We note that
the signs of the g-terms in eqs. (7.33) and (7.34)
are different. We have already explained the sign
in eq. (7.33). If we look at Figure 7.11, we see that
positive roll η4 means a gravity acceleration com-
ponent gη4 along the negative ȳ-axis.

We also emphasize that eqs. (7.33) and
(7.34) are the accelerations needed to estimate
the dynamic forces on the object while the
forces on the deck/seafastening have opposite
directions.

7.2.1 The equations of motions

When the hydrodynamic forces have been found,
we can set up the equations of rigid-body motions.
This follows by using the equations of linear and
angular momentum. For steady-state sinusoidal
motions, we may write

6∑
k=1

[(Mjk + Ajk) η̈k + Bjkη̇k + Cjkηk]

(7.35)
= Fj eiωe t ( j = 1, . . . , 6) ,

where Mjk, Ajk, Bjk, and Cjk are, respectively,
the components of the generalized mass, added
mass, damping, and restoring matrices of the ship.
For example, the subscripts in Ajkη̈k refer to the
force (moment) component in j-direction because
of motion in k-direction. Fj are the complex ampli-
tudes of the exciting force and moment compo-
nents. Obtaining the hydrodynamic forces is by
no means trivial.

The equations for j = 1, 2, 3 follows from
Newton’s second law, which assumes an inertial
system like the (x, y, z) system. For instance, let
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us consider j = 1. For a structure that has lateral
symmetry (symmetric about the xz-plane) and
with center of gravity at (0, 0, zG) in its static equi-
librium position, we can write the linearized accel-
eration of the center of gravity in the x-direction
as

d2η1

dt2
+ zG

d2η5

dt2
.

From this, the components of the mass matrix Mjk

follow as

M11 = M, M12 = 0, M13 = 0
M14 = 0, M15 = MzG, M16 = 0.

Here M is the ship mass. We have similar results
for the other translatory directions, that is, j = 2, 3.
For j = 4, 5, 6, we have to use the equations derived
from the angular momentum. We can then set up
the following mass matrix

Mjk =




M 0 0 0 MzG 0
0 M 0 −MzG 0 0
0 0 M 0 0 0
0 −MzG 0 I44 0 −I46

MzG 0 0 0 I55 0
0 0 0 −I46 0 I66




,

(7.36)

where Ij j is the moment of inertia in the jth mode
and Ijk is the product of inertia with respect to the
coordinate system (x, y, z) . Explicitly:

I44 = ∫
(y2 + z2)dM, I55 = ∫

(x2 + z2)dM

I66 = ∫
(x2 + y2)dM, I46 = ∫

xz dM.

(7.37)

Here dM is the mass of an infinitesimally small
structural element located at (x, y, z) . The inte-
gration in eq. (7.37) is over the whole struc-
ture. This is done in practice by a summation. I46

can often be neglected. Further, it is common to
express Ij j as Mr 2

j j , where the radius of gyration
r j j corresponding to pitch is typically 0.25 times
the ship length.

One may wonder why we did not choose the
origin of the coordinate system in the center of
gravity of the vessel. That would be natural from
a ship mass point of view. However, it is more
convenient to use the chosen coordinate system
with origin in the mean free surface when hydro-
dynamic sub-problems are considered. Then we
can solve the hydrodynamic problem without con-

sidering where the vertical position of the center
of gravity is.

The added mass and damping loads are steady-
state hydrodynamic forces and moments due to
forced harmonic rigid-body motions. There are
no incident waves; however, the forced motion
of the structure generates outgoing waves. The
forced motion results in oscillating fluid pressure
on the body surface. If the linearized pressure is
expressed as in eq. (3.6), and no interaction with
local steady flow is considered, then it is the pres-
sure part

p1 = −ρ
∂ϕ

∂t
− ρU

∂ϕ

∂x
(7.38)

that is considered in the equation of added mass
and damping loads. The velocity potential ϕ is lin-
early dependent on the forced motion amplitude
and is harmonically oscillating with the forcing fre-
quency. Integration of these pressure loads over
the mean position of the ship’s surface gives result-
ing forces and moments on the ship. By defining
the force components in the x-, y-, and z-directions
as F1, F2, and F3 and the moment components
along the same axes as F4, F5, and F6, we can
formally write the hydrodynamic added mass and
damping loads due to harmonic motion mode η j

as

Fk = −Akj
d2η j

dt2
− Bkj

dη j

dt
. (7.39)

What we have implicitly said is that added mass
has nothing to do with a finite mass of the fluid
that is oscillating. The latter is a common misun-
derstanding. Later we actually see an example of a
catamaran in which heave-added mass is negative
in a certain frequency domain.

Similarly, if we integrate the pressure loads due
to the hydrostatic pressure −ρgz, it results in
restoring forces and moments. It is then necessary
to integrate over the instantaneous position of the
ship. Because the COG of the ship is not chosen as
the origin of the coordinate system, one must also
consider moments due to the ship’s weight acting
through the COG. We may write the force and
moment components as

Fk = −Ckjη j . (7.40)

The only non-zero restoring coefficients for a ship
in intact condition, that is, the xz-plane is the
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symmetry plane for the submerged volume, are

C33 = ρg AW
(7.41)

C35 = C53 = −ρg
∫
AW

∫
x ds

C44 = ρg∇(zB − zG) + ρg
∫
AW

∫
y2 ds = ρg∇GM

C55 = ρg∇(zB − zG) + ρg
∫
AW

∫
x2 ds = ρg∇GML.

Here AW is the waterplane area; ∇ is the displaced
volume of water; zG and zB are the z-coordinates
of the center of gravity and center of buoyancy,
respectively; GM is the transverse metacentric
height; and GML is the longitudinal metacentric
height. We can, for instance, deduce C33 by consid-
ering forced heave motion and analyzing the addi-
tional buoyancy forces due to hydrostatic pres-
sure −ρgz. This can be linearly approximated as
−ρg AWη3. From this, C33 follows from eq. (7.40).
The analysis of C33 and C55 is similar to that used
when deriving eqs. (4.108) and (4.109) for sinkage
and trim estimates of a ship in calm water. If the
ship is equipped with T-foils, one can also associate
restoring terms with the foil angle of attack.

If the ship has partially filled tanks, the fluid
motion in the tanks will influence the dynamics of
the vessel. If the behavior of the fluid in the tanks is
assumed quasi-steady, this causes reductions in the
longitudinal and transverse metacentric heights.
If the period of oscillation is high relative to the
highest natural period of the fluid motion in the
tank, this is a good approximation. Because reso-
nant fluid motions (sloshing) in a tank may occur,
changing the metacentric heights would be wrong
in general. An analysis of the coupling between
the dynamic fluid motions in the tank and the
ship motions as described by Rognebakke and
Faltinsen (2003) is necessary. This would account
for the proper phasing of the forces and moments
caused by sloshing.

For a ship with lateral (port-starboard) symme-
try, the six coupled equations of motions reduce
to two sets of equations, one set of three coupled
equations for surge, heave, and pitch and another
set of three coupled equations for sway, roll, and
yaw. Thus for a ship with lateral symmetry, surge,
heave, and pitch are not coupled with sway, roll,
and yaw.

The equations of motions (7.35) can be solved
by substituting ηk = η̄keiωe t into the left-hand side.
Here η̄k is the complex amplitude of the motion
mode k. Dividing by the factor eiωe t , the resulting
equations can be separated into real and imag-
inary parts. This leads to six coupled algebraic
equations for the real and imaginary parts of the
complex amplitudes for surge, heave, and pitch.
This is exemplified for coupled heave and pitch
in section 9.5.2. A similar algebraic equation sys-
tem can be set up for sway, roll, and yaw. These
matrix equations can be solved by standard meth-
ods. When the motions are found, the wave loads
can be obtained by using the expressions we dis-
cussed previously for hydrodynamic forces .

It should be stressed that equation (7.35) is only
generally valid for steady-state sinusoidal motions.
For instance, in a transient free-surface problem,
the hydrodynamic forces include memory effects
and do not depend only on the instantaneous val-
ues of body velocity and acceleration (Cummins
1962 and Ogilvie 1964). This is discussed further
in section 7.3.

There are different ways to calculate the added
mass, damping, and wave excitation loads that
appear in the equations of motions in the fre-
quency domain. Before showing this in some more
detail, we discuss in the following sections what
causes large wave-induced ship motions.

Heave, pitch, and roll are response variables in
which the resonance frequencies play an impor-
tant role. We will show that the wavelength caus-
ing resonant heave (and pitch) increases with the
Froude number in head sea. The consequence
is that the wave excitation loads per unit of
wave amplitude causing resonant vertical motion
increase with the Froude number in head sea.
The resonant response amplitude is obviously
also dependent on damping. There are four main
sources of damping for a rigid ship. They can be
categorized as

� Wave radiation damping
� Hull-lift damping
� Foil-lift damping
� Viscous damping

As long as the flow does not separate and vortices
are created, viscous damping will be small and will
not be considered here.

In section 7.2.3, we analyze heave motion in
beam sea of a monohull at zero speed. This
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demonstrates that the wave radiation damping
decreases, and hence the resonant heave motion
per unit of wave amplitude increases with decreas-
ing beam-to-draft ratio B/D. This illustrates that
small B/D-values for a monohull and demihulls of
a catamaran are not beneficial from a seakeeping
point of view. Because wave radiation damping is
a function of ship-generated waves, in section 7.2.4
we discuss how these waves depend on ship speed
and frequency of oscillation. Wave trapping may
occur between the hulls of a multihull vessel. The
consequence is small-wave radiation, which is dis-
cussed in section 7.2.5 for vertical motions and sec-
tion 7.2.11 for roll. The effect is most pronounced
for smaller ship speeds.

Hull-lift damping in heave and pitch is con-
nected with flow separation from the transom
stern at high Froude numbers, which leaves the
transom stern dry. This is explained in section 7.2.7
by making a simplifying high-frequency assump-
tion. Because a semi-displacement vessel at max-
imum operating speed may have large heave and
pitch motions, passive and active control by means
of hydrofoils is important. This is discussed in sec-
tions 7.2.8, 7.2.9, and 7.2.10.

Two common numerical methods are then pre-
sented in section 7.2.12: a 3D Rankine panel
method and a 2.5D (2D+t) method. Compar-
isons are made with model tests, and it is shown
that interaction between unsteady flow and local
steady flow matters in heave and pitch predictions.

7.2.2 Simplified heave analysis in head sea for
monohull at forward speed

We now demonstrate how increasing speed in a
head sea condition causes higher wave excitation
loads for resonant heave motions. Several simpli-
fications are made. The first is that we decouple
the heave motion from other motions, that is, we
write the equation of motion based on eq. (7.35)
as

(M + A33)
d2η3

dt2
+ B33

dη3

dt
+ C33η3 = F3eiωe t . (7.42)

In practice, one must include the coupling with
pitch, but it is common to neglect the coupling
with surge in strip theories and in a 2.5D theory.
The argument is that a slender hull causes small
hydrodynamic forces and moments due to forced

surge relative to forced heave and pitch motion.
A typical added mass in surge is the order of 5%
of the vessel mass.

The next simplification is the wavelength depen-
dence of the vertical excitation loads. We obtain
that by considering the vertical Froude-Kriloff
force on a box-shaped body of length L and beam
B in head sea waves in deep water. We find the cor-
responding pressure on the bottom of the body by
using Table 3.1, that is,

p = ρgζae−kD sin(ωet − kx) .

Here D is the draft. This results in the following
vertical force

F3 = ρgζae−kDB

L/2∫
−L/2

sin(ωet − kx) dx

= ρgζae−kDB
2
k

sin
(

kL
2

)
sin ωet.

This means

F N
3 = 2

kL

∣∣∣∣sin
(

kL
2

)∣∣∣∣ (7.43)

can be used to discuss the wavelength dependence
of the heave excitation force. Here k = 2π/λ is the
wave number and L is the ship length. Eq. (7.43)
qualitatively expresses the integrated effect of the
phase differences of the excitation loads along
the ship. For instance, if λ → ∞, the sectional
excitation loads along the ship are in phase and
F N

3 → 1. If λ = L,F N
3 = 0. This is a consequence

of the 180◦ phase difference between the vertical
force from FP to midships and from midships to
AP. You can see this by drawing a picture of the
instantaneous incident wave along the ship. The
relationship between the frequency of encounter
ωe and the wave frequency ω0 for head sea
(see eq. (7.22)) is

ωe = ω0 + ω2
0

g
U, (7.44)

where U is the ship speed. We are interested in
studying when ωe is equal to the undamped natu-
ral frequency ωn3 in heave. ωn3 follows by setting
B33 and F3 equal to zero in eq. (7.42) and looking
for the nontrivial solutions that are oscillating as
exp(iωn3t). This gives that

ω2
n3 = C33

M + A33
= ρg AW

M + A33
.
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Figure 7.13. Qualitative estimation of how the heave
excitation force at natural heave frequency ωn3 depends
on the ship speed U. This is expressed by the func-
tion F N

3 (see Eq. (7.43)). The larger F N
3 is, the higher

the heave excitation per unit of wave amplitude. The
effect of natural frequency is most pronounced at low
speeds.

This can be rewritten as

ωn3

√
L
g

=
√

L
D

CWP

CB

1
(1 + A33/M)

. (7.45)

Here CWP = AW/(L · B) and CB are the water-
plane area coefficient and block coefficient,
respectively. By using eq. (7.44) and that ω2

0/g = k
and ωn3 = ωe, we can also write

ωn3

√
L
g

=
√

kL+ kLFn.
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Figure 7.14. Two-dimensional added mass and damping in heave for a rectangular cylinder oscillating
on the free surface, for different B/D ratios. B is the beam of the cylinder and D is the draft. Infinite
water depth is used. BEM (Baarholm 2001) and results given by Vugts (1968) are shown. a33 = 2D
added mass in heave, b33 = 2D damping in heave, ω = circular frequency of oscillation.

Here Fn = U/
√

Lg. By solving this with respect
to kL, we get

√
kL =

−1 +
√

1 + 4ωn3 (L/g)1/2 Fn

2Fn
. (7.46)

This represents λ/L values that for a given speed,
give resonance. By using eqs. (7.46) and (7.43),
we can get a qualitative picture of how the heave
excitation force at heave resonance increases with
speed. The results are graphically presented in Fig-
ure 7.13 for various values of ωn3

√
L/g. The range

of ωn3
√

L/g is found by eq. (7.45).

7.2.3 Heave motion in beam seas of a monohull at
zero speed

We now examine how the resonant heave motion
of a monohull in beam sea is influenced by the
beam-to-draft ratio at zero forward speed. We
start by discussing how two-dimensional added
mass and damping coefficient vary with beam,
draft, and frequency. The damping is caused by the
wave radiation. The smaller the ship speed and the
higher the frequency of oscillation, the more rele-
vant are these data. We can then use a strip theory
approach (Salvesen et al. 1970). This means the
flow at different transverse cross sections of the
ship are assumed independent of one another, and
2D results are used as building blocks.

Figure 7.14 shows two-dimensional added mass
and damping in heave for a rectangular cross
section for various beam-draft ratios B/D. The
highest B/D value is 8, which means that the B/D
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at resonance
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Figure 7.15. Heave amplitude |η3| at resonance of a ship
in regular beam sea waves as a function of beam-to-
draft ratio. The ship has a constant cross section along
its length. ζa = incident wave amplitude, B = beam,
D = draft. Infinite water depth (Faltinsen 1990).

variations include realistic values for high-speed
monohulls (see Table 7.1). The wave radiation
damping goes to zero when ω → 0 and ∞. This
implies that the body is then a poor wave gen-
erator. The added mass increases strongly when
ω → 0. Kotik and Mangulis (1962) have shown
that the added mass in heave for a 2D surface-
piercing body goes logarithmically to infinity when
ω → 0. We note that the damping clearly increases
with B/D. We illustrate the consequence of this
for wave-induced heave motion by considering a
two-dimensional rectangular cross section in beam
sea regular waves. The heave equation is given by
eq. (7.42). For an infinitely long cylinder in beam
sea, Newman (1962) expressed the exciting force
amplitude |Fj | per unit length as

|Fj | = ζa

(
ρg2

ω
bj j

)1/2

, j = 2, 3, 4, (7.47)

where bj j is the two-dimensional damping coeffi-
cient in mode j. Using eq. (7.42), it follows that

η3 = |F3| ei(ωt+ε)

−ω2 (m + a33) + b33iω + c33
. (7.48)

Here m and c33 are the structural mass- and
heave-restoring coefficients per unit of length.

Further, ε is the phase angle of the heave excitation
force. The largest heave response occurs approx-
imately when −ω2(m + a33) + c33 = 0, that is, at
the undamped natural frequency ωn3 for heave
motion. This means that resonant heave amplitude
is

|η3| = ζa
g

ω
3/2
n3

[
ρ

b33

]1/2

. (7.49)

The results are presented in Figure 7.15, which
shows that the transfer function for heave |η3| /ζa

at the resonance clearly decreases with increas-
ing B/D values. This means that it is beneficial to
have the large B/D values that high-speed mono-
hulls have. In contrast, we see from Figure 7.15
that choosing very small B/D values has a nega-
tive consequence.

We should, of course, realize that the trans-
verse cross sections of high-speed monohulls are
far from rectangular and that CB can be less than
0.5 (see Table 7.1). However, this does not change
the general trend that it is beneficial to have large
B/D values also at other headings and at forward
speed.

We now start discussing the influence of forward
speed by considering the wave system that a ship
generates at forward speed.

7.2.4 Ship-generated unsteady waves

A ship generates unsteady waves both when it
oscillates and when there are incident waves and
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Figure 7.16. Wave crests due to source in (0,0,0) for τ <

1/4; U = 3.0 ms−1 and ωe = 0.7rad/s, giving τ = 0.21.

Positive x is in the downstream direction (Ronæss 2002).
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the ship is restrained from oscillating. Both trans-
verse and divergent waves occur. Later we see that
these waves depend on both the frequency and the
forward speed. When the frequency is zero and
the ship has a forward speed, the wave system is
the same as the one we discussed in Chapter 4.
The frequency and forward speed dependence of
the waves generated by the oscillating ship causes
the added mass Ajk and damping coefficients
Bjk to be frequency and forward-speed depen-
dent. Forward-speed dependence is also caused
by the body boundary conditions and the pressure
expressed by eq. (7.38).

The parameter

τ = ωeU
g

is important for the characteristics of the waves.
When τ < 1/4, deep-water waves may be gen-
erated upstream of the ship. This is not true for
τ > 1/4. Later we explain why this is so.

In order to find the wave systems and their char-
acteristics, we can proceed with an analysis similar
to the one in Chapter 4 on steady waves. How-
ever, more wave systems are generated because
of a harmonically oscillating source at forward
speed. This is illustrated in Figures 7.16 and 7.17 for
τ < 1/4 and τ > 1/4, respectively. When τ < 1/4,
there are circular waves (D2) propagating out-
ward and two sets of divergent and transverse
waves (D1 and AA). The ring waves D2 have their
shortest wavelength upstream of the source. When
U = 0, only ring waves are present. The wave-
length is then the same in all directions. The D1
waves have propagation direction with a positive
x-component, whereas the x-component is nega-
tive for the AA waves. When τ > 1/4, the circular
D2 waves degenerate into circular and divergent
parts and the transverse waves of system AA dis-
appear. The lines shown in Figures 7.16 and 7.17
are lines with equal phase. They will represent the
crests at a specific time instant. Because some of
the wave systems have small wavelengths relative
to other wave systems, not all wave “crests” are
shown for all the wave systems. This is defined in
the figure captions.

We illustrate how the wave systems depend on
ωe and U by considering the transverse waves
along the ship’s track. In order for the Laplace
equation to be satisfied, the velocity potential of
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Figure 7.17. Wave crests due to source in (0, 0, 0) for τ >

1/4; U = 5.0 ms−1 and ωe = 1.2rad/s, giving τ = 0.61.

Positive x is in the downstream direction (Ronæss 2002)

these wave systems has to be of the form

ϕTe−iωe t = Aekz ± ikx − iωe t , (7.50)

where A is a constant. The k-value is real and posi-
tive in order for the flow to vanish deep in the fluid
and for the velocity potential to represent waves
at large positive or negative x-values. When ωe and
U are given, the wave number k follows from sat-
isfying the free-surface condition (see eq. (3.10)
with p0 = 0), that is,[(

−iωe + U
∂

∂x

)2

+ g
∂

∂z

]
ϕT = 0 at z = 0.

(7.51)

We first consider waves propagating along the neg-
ative x-axis, that is, in the ship’s forward direction.
This means the combination exp(−ikx − iωet) in
eq. (7.50). This gives −ω2

e − 2kωeU − U2k2 + kg =
0. The corresponding solutions of k are

k1,2 = g
2U2

[
1 − 2τ ±

√
1 − 4τ

]
. (7.52)

Because real solutions are required, τ must be less
than one fourth.

Waves propagating along the positive x-
axis means the combination exp (ikx − iωet) in
eq. (7.50). This gives the following two wave
numbers:

k3,4 = g
2U2

[
1 + 2τ ±

√
1 + 4τ

]
. (7.53)

This is possible for all τ. In order to find out if
the waves corresponding to the various k-values



P1: JYD
0521845688c07a2 CB921-Faltinsen 0 521 84568 7 November 5, 2005 12:48

240 • Semi-displacement Vessels

are upstream or downstream of the source (ship),
we must evaluate the group velocity. We should
then consider the problem from a relative frame
of reference system x′ = x − Ut. In this coordi-
nate system, the ship moves with a velocity U in
the negative x′-direction. The various wave sys-
tems must be considered in this coordinate system.
The group velocity (energy propagation veloc-
ity) of the different wave systems can be written
as

Cg = 0.5
√

g/k. (7.54)

We then find

C1,2
g = 0.5

√
g/k1,2

(7.55)

=
√

2
2

U
(

1 − 2τ ± (1 − 4τ )1/2
)−1/2

.

This means that C1
g < U and C2

g > U. Because
the phase velocity is in the negative x-direction,
the waves corresponding to k2 are upstream
of the source (ship). However, both k1 and k2

require τ < 1/4. We get similarly

C3,4
g =

√
2

2
U

(
1 + 2τ ± (1 + 4τ )1/2

)−1/2
. (7.56)

This means C3
g < U and C4

g > U. However, both
these wave systems propagate in the positive
x-direction and cannot appear upstream of the
source.

Let us calculate the wavelengths corresponding
to ki for the conditions presented in Figures 7.16
and 7.17. It means that the ring waves D2 in Fig-
ure 7.16 have wavelengths λ2 = 59.8 m upstream
and λ4 = 175.5 m downstream along the ship’s
track. The AA and D1 waves have wavelengths
λ1 = 12.1 m and λ3 = 4.1 m. The AA waves have
a propagation direction along the negative x-axis
but appear downstream of the ship because the
group velocity is less than the ship speed.

The case for τ > 1/4 presented in Figure 7.17
has only two transverse wave systems along the
ship’s track. They both appear downstream of the
source (ship). The D1 and D2 waves have wave-
lengths λ3 = 7.9 m and λ4 = 87.3 m.

The various wave systems are not equally impor-
tant. For instance, if the wavelength is of the order
of the ship draft, the corresponding wave system
is unimportant. Figure 7.18 presents a case by
Ronæss (2002) in which only the D2 waves mat-
ter. The figure shows the wave pattern for a modi-
fied Wigley hull that is harmonically oscillating in

heave at Fn = 0.2 and ωe

√
(L/g) = 3. The results

are presented as contour plots of the real and imag-
inary parts of the complex amplitude. The diver-
gent waves dominate.

A simplified picture of the wave system can be
obtained by a strip theory approach. This means
we consider first a two-dimensional cross section
of a ship that is forced to oscillate with the fre-
quency ωe. Two-dimensional waves propagating
away from the cross section are created. The wave
front will move with the group velocity 0.5g/ωe.

Let us now introduce the forward speed U and
the complete ship hull. The wave front generated
initially at the bow part moves a distance 0.5gt/ωe

outward, whereas the ship moves a distance Ut for-
ward. The angle α between the ship and the outer
border of the wave system can then be approxi-
mated as

tan α = 0.5gt/ωe

Ut
= g

2Uωe
= 1

2τ
. (7.57)

This is illustrated in Figure 7.19. τ cannot be too
small for this to be valid; for instance, it is not
true for τ < 1/4. However, this angle agrees well
with the results in Figure 7.18. Further, for a high-
speed vessel, the divergent waves are the ones that
dominate. This was shown analytically by Ohkusu
and Faltinsen (1990). This is also the basis for the
2.5D theory to be considered in section 7.2.12. The
wave angle α is consistent with the 2.5D theory.

7.2.5 Hydrodynamic hull interaction

There will be wave interference between the waves
generated by each hull of a multihull vessel. Wave
interference means that the waves generated from
each hull are superimposed without accounting for
the fact that the waves generated by one hull will
be modified because of the presence of another
hull (see section 4.3.5). Another matter is wave
interaction, that is, that the waves generated by
one hull become incident to another hull and wave
diffraction occurs as a consequence.

A first check on whether there will be any wave
interaction between the two side hulls of a cata-
maran can be assessed by first assuming no hydro-
dynamic hull interaction and then considering the
wave angle α for one hull given by eq. (7.57) to
see if the waves inside the wave angle α become
incident to the other hull. By using a procedure
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Figure 7.18. Contour plot of the real and imaginary parts of the free-surface elevation due to a mod-
ified Wigley hull advancing at Fn = 0.2 while oscillating in pure heave at frequency ωe(L/g)0.5 = 3.

The upper part is real, the lower part is imaginary. The elevation is made dimensionless with respect
to forced heave amplitude. Only D2 waves are included (Ronæss 2002).

similar to the one in Figure 4.26, the length LI of
the aft part of the side hull that is affected by the
other hull can be expressed as

LI = L− (b1 + 0.5b2) / tan α.

α

ωe

U

Figure 7.19. Two-dimensional unsteady wave pattern
with forward-speed effect (Ronæss 2002).

This means

LI

L
= 1 −

(
b1 + 0.5b2

L

)
2
ωeU

g
. (7.58)

Eq. (7.58) shows that for a given ωe, the wave inter-
action decreases with increasing speed.

Wave trapping due to vertical motions
Wave interaction between the two side hulls
becomes particularly strong when resonant wave
motion occurs between the two hulls. This prob-
lem will be discussed for vertical motions. Sec-
tion 7.2.11 considers the wave trapping for roll
motion. We start by showing two-dimensional
results, that is, there is no effect of the forward
speed. The features associated with resonance
between the two hulls will then be exaggerated.
Both 3D flow and forward speed will reduce the
effect. However, even if we consider a high-speed
ship, it also has to be analyzed for zero-speed
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Figure 7.20. Two-dimensional added mass a33 and damping b33 coefficients in the heave of two semi-
submerged circular cylinders with axes in mean free surface. 2p = distance between cylinder axis,
A = cross-sectional submerged area of the two cylinders, d = draft (Nordenstrøm et al. 1971).

conditions. The reason can be engine failure in bad
weather.

Figure 7.20 shows two-dimensional added mass
a33 and damping b33 in the heave of two semi-
submerged circular cylinders with axis in the mean
free surface, presented by Nordenstrøm et al.
(1971). The results are in agreement with theoret-
ical and experimental results by Ohkusu (1969).
There is also a curve for added mass and damping
coefficients without accounting for hydrodynamic
hull interaction. We note a pronounced effect of
interaction in the whole frequency domain pre-
sented, as well as an even stronger effect in a lim-
ited frequency domain. For instance, the added
mass becomes negative and the damping coeffi-
cient has both a peak value and is close to zero
in this limited frequency domain. No waves are
radiated when the damping coefficient is zero.
Ohkusu (1969) commented that a high standing
wave occurred between the maximum and min-
imum damping coefficients. As an example, he
mentioned that the amplitude of the standing wave
was 16 times the heaving amplitude for 2p/d = 3.

Here 2p is the distance between the centerplanes
of the two hulls and d is the draft. Figures 7.21
and 7.22 show similar numerical results for two
nearly rectangular-shaped cross sections. Here the
ratio Ā3 between the radiated wave amplitude
and the forced heave amplitude is presented as

function of the square of nondimensionalized fre-
quency. By conservation of energy, Ā3 can be
related to the 2D heave damping coefficient b33

by noting that the work done in one period T by
forcing the body in heave is b33ω

2|η3|20.5T and that
the energy flux due to the generated waves over
any period is 2 · 0.5ρg Ā2

3 · |η3|2 · (g/2ω)T. This
gives

b33 = ρg2

ω3
Ā2

3, (7.59)

where ω is the forcing frequency. The beam-to-
draft ratio and the block coefficient for each hull
used in Figures 7.21 and 7.22 are 2 and 0.984,
respectively.

Piston mode resonance
The results shown above clearly indicate a reso-
nance effect between the two hulls. We will try
to relate these results to what Molin (1999) calls
piston mode resonance. His concept is illustrated
in Figure 7.23. There is a one-dimensional reso-
nant fluid motion between the two hulls causing
an oscillating mass flux with large amplitude at
the lower end of the gap between the two hulls.

In the analysis, we use a coordinate system yz,
where the y-axis is the plane of the lower horizon-
tal parts of the two rectangular hulls (Figure 7.24).
The origin is in the centerplane of the two hulls,
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Figure 7.21. Amplitude Ā3 of heave-induced radiation waves per unit of heave amplitude. The solid
line shows results when only one of the side hulls is present (Okhusu 1996).

2.0

1.0

0.0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

−1.0

−2.0

−3.0

a33

ρA


Catamaran

ω2d
g

Figure 7.22. Two-dimensional added mass a33 in the heave of the catamaran shown in Figure 7.21. A =
cross-sectional submerged area of the two hulls, d = draft. The solid line shows results when only one
of the side hulls is present (Ohkusu 1996).
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Figure 7.23. Piston mode resonance between the two
hulls, illustrated by instantaneous fluid velocity vectors
indicating large fluid mass flux. The velocity is harmon-
ically oscillating with the natural frequency of the reso-
nance. As a first approximation, the velocity is constant
across the gap between the two hulls.

and the mean free surface is at z = d, where d is the
draft. In an eigenvalue analysis, we are looking for
the nontrivial solutions when there is no forcing.
This means the body is restrained from moving.

We assume a one-dimensional fluid motion in
the gap between the two hulls, that is, the velocity
potential is approximated as

ϕ = A0 + B0
z
d

, (7.60)

where A0 and B0 are independent of y and z.
The later analysis will determine a relationship
between A0 and B0. Because it is an eigenvalue
problem, we cannot determine the values of both
A0 and B0. Molin represents the flow for nega-
tive z-value by a source distribution along the y-
axis. If we now make an analogy to thin ship the-
ory in the previous chapter (see Figure 4.12 and
accompanying discussion), then the source density
is expressed by the vertical velocity along the y-
axis. The case in Figure 4.12 was a 3D problem, but
the same procedure applies to a 2D problem. The
difference is only in the source expression. A two-
dimensional source in infinite fluid is (Q/2π) ln r ,

B

bm

z

y

d

Figure 7.24. Definitions in Molin’s (1999) model for pis-
ton mode resonance.

where r is the radial distance between the source
point and the field point. This representation of the
flow implies a source density in the gap expressed
by the vertical fluid velocity ∂ϕ/∂zat z = 0, that is,
for y between −0.5bm and 0.5bm, where bm is the
breadth of the gap. Because ∂ϕ/∂z = 0 on the bot-
tom of each hull, the source density is zero there.

So far, no approximations have been made in
solving the problem. The difficulty is to repre-
sent the vertical velocity at z = 0 outside the two
hulls. We do not really know that before we solve
the complete problem for the fluid motion in the
whole fluid. It is not sufficient to use only a source
distribution for y between −0.5bm and 0.5bm. This
will cause infinite pressure at infinity. It is at this
stage that Molin makes a big simplification to
ensure that the flow at infinity is not source-like,
by placing two sinks at y = ±B/2. Here B is the
total beam of the catamaran. When we have used
the terms source and sinks, we have not been com-
pletely precise. The reason is that ∂ϕ/∂z at the gap
is harmonically oscillating and changing between
causing a source and a sink effect. The flow seen
from infinity must look like a flow with a non-zero
source (sink) strength. Molin’s procedure ensures
that. We can then represent the velocity potential
ϕ at z = 0 in the gap as

ϕ(y, 0, t) = − 1
π

0.5bm∫
−0.5bm

∂ϕ

∂z
(η, 0, t)

×
[

ln |y − η|−1
2

ln
(

B
2

− y
)

(7.61)

−1
2

ln
(

B
2

+ y
)]

dη.

Here the field point and the source (sink) point
coordinates are at (y, 0) and (η, 0) , respectively.
The integration is in the η-direction, which is the
same as the y-direction in Figure 7.24. By using
the fact that |y| ≤ 0.5bm � 0.5B, eq. (7.61) can be
further approximated as

ϕ (y, 0, t) = − 1
π

0.5bm∫
−0.5bm

∂ϕ

∂z
(η, 0, t) ln

|y − η|
0.5B

dη.

(7.62)

Now we equate the equations (7.60) and (7.62).
We cannot satisfy this relationship exactly, but we
can do it in an average way. We first integrate the
right-hand side of eq. (7.62) by assuming ∂ϕ/∂z =
B0/d. This expression will depend on y. This is
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Table 7.2. 2D piston mode resonance frequency
for two semi-submerged circular cylinders with
axes in the mean free surface and horizontal
distance 2p between the cylinder axes

ω
√

R/g ω
√

R/g
2p/R at max(b33) at min(b33) ωn

√
R/g

3 0.81 0.88 0.75
4 0.66 0.75 0.67
5 0.59 0.69 0.62
6 0.51 0.61 0.59

R = cylinder radius. ωn
√

R/g is according to Molin’s
formula (see eq. 7.64). ω

√
R/g at max(b33) and

min(b33) refer to maximum and minimum values of
the two-dimensional damping coefficients presented in
Figure 7.20 in the vicinity of ωn

√
R/g .

inconsistent with the left-hand side of eq. (7.62),
which, by using eq. (7.60), says that ϕ (y, 0, t) =
A0. Then we do the averaging. This means we
integrate both the left- and right-hand sides from
y = −0.5bm to 0.5bm and divide by bm. This gives

A0 = 1
π

bm

d
B0

[
3
2

+ ln
B

2bm

]
. (7.63)

We have found the relationship between A0 and
B0, but not the natural frequency. We assume
A0 and B0 to be harmonically oscillating as
exp (iωnt) , where ωn is the natural frequency, and
use the free-surface condition −ω2

nϕ + g ∂ϕ/∂z =
0 for z = d and y between −0.5bm and 0.5bm.

Eq. (7.60) gives then

−ω2
n (A0 + B0) + g B0/d = 0

or

ω2
n = g

d (1 + A0/B0)
.

Using eq. (7.63) gives Molin’s formula for piston
mode resonance frequency, that is,

ωn

√
d
g

=
√√√√ 1

1 + bm
πd

(
1.5 + ln B

2bm

) . (7.64)

It is noted that the right-hand side approaches the
value 1 for small bm and is then in accordance with
page 99 in Faltinsen (1990) for moon pools.

We will show that eq. (7.64) gives good estimates
for the natural frequency even for the case with
two semi-submerged circular cylinders presented
in Figure 7.20. Table 7.2 presents the frequency
corresponding to the maximum and minimum val-

ues of b33 for two circular cylinders with axis in the
mean free surface based on the calculated results
in Figure 7.20. According to Ohkusu’s experi-
ments, the resonance condition occurred between
the frequencies corresponding to maximum b33

and minimum b33. In the same table, we present
the resonance frequency ωn for piston mode reso-
nance according to Molin’s formula, even though
he assumed rectangular hull sections. We note that
ωn is between the frequencies for maximum and
minimum b33 when 2p/R is 4, 5, and 6. However,
when the distance 2p between the centerplane of
the cylinders is equal to three times the radius R of
a cylinder, ωn is at a slightly lower frequency than
the frequency corresponding to maximum b33.

The two nearly rectangular hull sections that
are used in the calculated results presented in
Figure 7.21 are more in accordance with the
assumed hull form in Molin’s formula. This case
corresponds to 2p/d = 4. Molin’s formula gives
ω2

nd/g = 0.45, whereas maximum value of Ā3

(the amplitude of radiated wave per unit of
heave amplitude) corresponds to ω2

nd/g = 0.42.

The local minimum value of Ā3 in the vicinity of
maximum Ā3 occurs when ω2

nd/g = 0.53, thus the
average (0.42 + 0.53)/2 = 0.475 is in good agree-
ment with Molin’s formula.

Ronæss (2002) pointed out that Molin’s for-
mula was also useful in indicating piston mode
resonance for a catamaran at forward speed. The
experimental studies by Kashiwagi (1993) for a
Lewis form catamaran at Fn = 0.15 were used to
validate Ronæss’ numerical calculations based on
the unified theory concept by Newman (1978) and
Newman and Sclavounos (1980). The unified the-
ory is appropriate for all frequencies but implicitly
assumes a moderate Froude number. In the anal-
ysis, the demihulls were assumed to be in the far
field of each other. There is a clear difference in
the behavior of the results by Ronæss (2002) rel-
ative to the previous 2D results. The added mass
in heave now becomes only slightly negative in a
certain frequency domain. Further, the damping
coefficient in heave does not become zero except
when ω → 0 and ω → ∞, but that is only a con-
sequence of the fact that a ship is a very bad wave
generator for very small and very high frequencies.

However, this very strong interaction effect for
this catamaran did not have an important effect
on predicted heave and pitch motions by Ronæss
(2002). The reason is a clear difference in the
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piston mode resonance frequency and the heave
and pitch resonance frequencies. This conclusion
does not need to be so for all catamarans and
Froude numbers.

7.2.6 Summary and concluding remarks on wave
radiation damping

We have shown that the wave system generated by
an oscillating ship is dependent on the frequency
of oscillation ω and the forward speed U. The wave
radiation damping is therefore also dependent on
ω and U. The hull form and hull interaction will
matter. A general tendency for heave and pitch
wave radiation damping is that the smaller the
beam-to-draft ratio of a monohull or the demihull
of a catamaran, the smaller the damping relative
to the critical damping.

Because both added mass and damping arise
from integrating hydrodynamic pressures due to
forced oscillations in different modes of motion,
added mass will also depend on ω and U. Because
the ship also generates waves when it is restrained
from oscillating and there are incident waves, the
wave excitation loads due to diffraction are also
dependent on ω and U.

We must either rely on experiments or numer-
ical methods to estimate the effect of wave gen-
eration on hydrodynamic coefficients. When the
Froude number is high, this can, for instance, be
achieved by a 2.5D theory, to be described later in
the text.

All the discussions are based on linear theory
and neglect of interaction between local steady
flow and unsteady flow.

We now look at two other sources of damping:
hull-lift and foil-lift damping. Hull-lift damping is
an integrated part of calculations of damping coef-
ficients for the hull. However, we treat it in the
next section as a separate effect without any wave
generation in order to illustrate the physics.

7.2.7 Hull-lift damping

To illustrate what we mean by hull-lift damping,
some simplifications will be made. We neglect free-
surface wave generation and use the dynamic free-
surface condition ϕB = 0, where ϕB is the velocity
potential due to the vessel. This can be consid-
ered a first approximation for a high-speed vessel.
The dynamic free-surface condition ϕB = 0 is also
consistent with a high-frequency assumption. The

fact that ϕB is assumed to be a constant (i.e., zero)
on the free surface implies that the fluid velocity is
vertical on the free surface. The next simplification
we will make is to use strip theory. As an example,
we consider forced heave motion of the vessel. We
can formally write the velocity potential as

ϕ = ϕB + Ux = ϕ3η̇3 + Ux, (7.65)

where ϕ3 is independent of heave velocity and will
be estimated by a strip theory approach. Strip the-
ory means that there is no hydrodynamic interac-
tion between the flows at the various cross sections
of the ship. We have here used a coordinate sys-
tem that moves with the forward speed U of the
vessel. The x-direction is in the longitudinal direc-
tion of the vessel and is positive aftward. Eq. (7.65)
assumes that steady flow around the ship is simply
represented by Ux, that is, the steady wave pattern
and local flow effects are neglected. We then con-
sider the hydrodynamic pressure that follows from
Bernoulli’s equation. The Bernoulli equation can
be written as

p − pa = −ρ
∂ϕ

∂t
− ρ

2
|∇ϕ|2 − ρgz + ρ

2
U2. (7.66)

Here pa is the atmospheric pressure and −ρgz
represents the hydrostatic pressure. z = 0 is at
the mean free surface, and z is positive upward.
We now linearize eq. (7.66) by inserting eq. (7.65).
This means we keep only the linear terms in η3.

Further, we do not consider the hydrostatic pres-
sure in this context. The hydrostatic pressure is
accounted for in the restoring coefficients in the
equations of motions. This means we will consider
the linearized pressure term

− ρ

(
∂

∂t
+ U

∂

∂x

)
ϕ3η̇3 (7.67)

following from eq. (7.66). The last term in
eq. (7.67) follows from noting that |∇ϕ|2 =
|∇ϕ3|2η̇2

3 + 2U ∂ϕ3 η̇3
∂x + U2. Let us first consider the

pressure term −ρ∂ϕ/∂t. This gives rise to a vertical
hydrodynamic force

F ′
3 = ρ

∫
S

∫
ϕ3η̈3n3 ds =

∫
L

dx


ρ

∫
c(x)

ϕ3n3 ds


η̈3,

(7.68)

where S is the mean wetted surface and n3 is the
z-component of the normal vector n of the body
surface. The positive direction of n is into the fluid.
c(x) means the average submerged cross-sectional
boundary curve. As a matter of definition, we can



P1: JYD
0521845688c07a2 CB921-Faltinsen 0 521 84568 7 November 5, 2005 12:48

7.2 Linear wave-induced motions in regular waves • 247

also write eq. (7.68) as −A33η̈3, where A33 is the
added mass in heave. A33 can, by a strip theory
approach, be written as

∫
L a33(x)dx, where a33(x)

is the two-dimensional added mass in heave for
the cross section at longitudinal coordinate x. By
comparing this with eq. (7.68) we obtain

a33 (x) = −ρ

∫
c(x)

ϕ3n3 ds. (7.69)

We will use eq. (7.69) when considering the vertical
force F ′′

3 due to the pressure term −ρUη̇3∂ϕ3/∂x.
We can write

F ′′
3 = ρU

∫
L

dx
∫

c(x)

∂ϕ3

∂x
n3 dsη̇3. (7.70)

We perform a partial integration of the ∂ϕ3/∂x
term along x. It is then important to note that ϕ3

is zero at the bow, but non-zero at the stern. It
is then assumed that the flow leaves tangentially
from the transom stern. The consequence of the
partial integration is that eq. (7.70) can be written
as

F ′′
3 = ρU

∫
c(xT )

ϕ3n3 dsη̇3, (7.71)

where xT is the x-coordinate of the transom stern.
If we now use eq. (7.69), we see that

F ′′
3 = −Ua33(xT)η̇3. (7.72)

This is a force part that originally belongs on the
right-hand side of the heave equation of motion.
If we move it to the left-hand side of the equation,
it appears as a damping term:

BHL
33 = Ua33(xT), (7.73)

which we call the hull-lift damping in heave. If we
consider a monohull with a half-circular transom
stern with beam b2, then

BHL
33 = ρ

π

8
b2

2U, (7.74)

again assuming the high-frequency free-surface
condition ϕ3 = 0. This illustrates a strong depen-
dence on U and b2. If the transom stern has a non-
circular form, we can still say that BHL

33 is approxi-
mately proportional to b2

2. The reason we use the
term hull-lift damping is as follows. Let us consider
the double body, that is, we image the hull reflected
in the free surface. Because of the free-surface con-
dition ϕ3 = 0 and the fact that we consider only
vertical motions, the flow around the double body

gives the correct flow below the free surface. Let us
now make a quasi-steady approximation. The ver-
tical velocity η̇3 causes an angle-of-attack effect.
Observed from the double body, there appears to
be an incident flow with approximate velocity U
and an angle of attack −η̇3/U. The double body
can be considered a low-aspect ratio–lifting sur-
face with the trailing edge corresponding to where
the transom stern is. If we apply the low-aspect
ratio–lifting surface theory (see section 10.3.1), we
will get the same result as the one we have already
derived.

One should note from the derivation of
eq. (7.72), that the force is not acting at the tran-
som stern even though the hull dimensions at the
transom stern are what determine the force. If we
go back to eq. (7.70), we see that we get a force
contribution from where ∂ϕ3/∂x is non-zero. So let
us consider an idealized ship with constant cross
section aft of the bow region. The force is then
acting in the bow region. If we had neglected the
Kutta condition of the trailing edge or, equiva-
lently, that the flow leaves tangentially from the
transom stern, our force would be very different.
For instance, if we said that the velocity poten-
tial becomes zero just after the ship stern, then we
would get zero total force and no hull-lift damp-
ing in heave. This type of analysis can also be
performed for other modes of motion. The terms
that arise are the same as the “end terms” in
the strip theory of Salvesen et al. (1970; see also
section 8.5.1).

7.2.8 Foil-lift damping

Foils can provide important heave, roll, and pitch
damping. The damping increases linearly with for-
ward speed and is therefore more important for
high-speed vessels than for displacement vessels.
The damping depends on the details of the foil and
is, in a quasi-steady approximation, proportional
to the lift on the foil.

We assume that the flow is two-dimensional and
that there is no effect of boundaries such as the free
surface and the vessel. It also implicitly means that
cavitation and ventilation are not considered.

Let us now consider a heaving thin foil without
camber that moves with a forward speed U. We
assume zero mean angle of attack. Relative to the
foil, there is an incident flow velocity component
U parallel to the foil and an incident flow velocity
−dη3/dt orthogonal to the foil (see Figure 6.61).
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b

Figure 7.25. Two-dimensional damping
coefficient bL

33 in heave due to a harmoni-
cally heaving flat (uncambered) thin foil in
infinite fluid estimated by the Theodorsen
function. ω = circular frequency of oscilla-
tion, c = chord length, U = forward speed,
ρ = mass density of fluid.

Here η3 means the heave motion of the foil. This
means that there is an ambient flow velocity

V =
(

U2 +
(

dη3

dt

)2
) 1

2

≈ U,

with an instantaneous angle of attack

α = −dη3

dt
/U (7.75)

relative to the foil. We have implicitly assumed
small α-values. If we use a quasi-steady approach,
the lift L per unit length is 0.5ρU2c2πα (see
eq. (6.93)). This gives a two-dimensional vertical
force:

L = −ρUcπ
dη3

dt
. (7.76)

If this expression is used in the equations of
motions, it means that we can interpret

bL
33 = ρUcπ (7.77)

as a two-dimensional damping coefficient in heave
due to foil lift.

We can generalize this quasi-steady approach as
follows, by starting with expressing the steady lift
force as L = 0.5ρCLU2 A. CL is the lift coefficient,
and A is the planform area of the foil. We then con-
sider CL as a function of the angle of attack α and
assume unsteady variations −η̇3/U in the angle of
attack about a mean value α0. The unsteady part
of the lift force can then be expressed as

0.5ρU2 A
dCL

dα

∣∣∣∣
α=α0

(−η̇3/U) .

If this expression is used in the equations of
motion, it gives the following damping coefficient
in heave due to foil lift:

BL
33 = 0.5ρU A

dCL

dα

∣∣∣∣
α=α0

. (7.78)

A more accurate determination of foil-lift
damping can be obtained by accounting for the
continuously shed vorticity from the trailing edge.
The continuously shed vorticity influences the
effective angle of attack of the flow at the foil and
therefore the pressure distribution and the force
on the foil. If we assume two-dimensional flow in
infinite fluid and consider a thin flat foil that is har-
monically oscillating in heave, the lift force can be
expressed by the Theodorsen function C(k) (see
eq. (6.189)). If ω is the circular frequency of oscil-
lation,

k = ω c
2U

(7.79)

is the so-called reduced frequency. It is implicitly
assumed that the amplitude of the heave oscilla-
tion is small and that steady-state conditions have
been obtained. It follows from the lift expression
presented in Chapter 6 that we can write

bL
33 = ρUcπRe[C(k)], (7.80)

where Re[C(k)] means the real part of C(k). This
formula for bL

33 is graphically presented in Fig-
ure 7.25 as a function of reduced frequency k. bL

33

is monotonically decreasing with increasing values
of k. When k → 0, Re[C(k)] → 1, and when k →
∞, Re[C(k)] → 0.5. Our previous quasi-steady
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analysis corresponds to ω = 0. k will in reality
be small in practical applications. Consider, for
instance, ω = 1 rad/s, c = 1 m, and U = 10
ms−1. This gives k = 0.5 ω c/U = 0.05. Figure 7.25
shows that bL

33 = 0.91ρπUc, that is, a 9% reduction
relative to quasi-steady predictions. Figure 7.25
shows that unsteady analysis always gives smaller
damping than does a quasi-steady analysis, but the
difference may not be that significant.

We demonstrated in Chapter 6 that free-surface
effects, 3D flow, and possible interaction from an
upstream foil ought to be considered. In addi-
tion, the interaction with the flow around the hull
may matter. However, we will not deal with these
effects here.

The discussion of heave damping can be easily
generalized to pitch damping by first expressing
the local vertical motion of the foil as η3 − xFη5,

where xF is an average x-coordinate of the foil rel-
ative to the center of gravity (COG) of the vessel,
and η5 is the pitch angle in radians. Eq. (6.187)
giving the lift in terms of the Theodorsen function
includes the effect of pitch angle. The pitch damp-
ing coefficient and coupled pitch-heave damp-
ing coefficients follow by considering the pitch
moment of the lift force about the COG of the ves-
sel (see exercise 3.3 in Faltinsen 1990). We can, of
course, generalize the procedure and include other
modes of motion and other orientations of the
lifting surface. A rudder can, for instance, cause
important roll damping at high speed.

7.2.9 Example: Importance of hull- and foil-lift
heave damping

We illustrate the importance of hull- and foil-lift
damping by considering an example of a 560-tonne
catamaran. The beam b2 of each hull at the tran-
som stern is 3.75 m. Each hull is equipped with
vertical-motion damping foils. These are T-foils
located at 0.17 LPP measured from FP and trim
tabs located at AP. The slope of the lift coeffi-
cient is dCL/dα = 3.0 for the T-foils and 2.0 for
the trim tabs. The projected horizontal foil areas
are 2.5 m2 and 4.0 m2 for the T-foils and trim tabs,
respectively.

We will study heave damping. The critical damp-
ing in heave is

Bcr = 2(M + A33)ωn, (7.81)

where M is the total mass of the vessel, A33 is the
added mass in the heave of the vessel, and ωn is the
natural circular frequency in heave. We estimate
the critical damping in heave to be 2 · 106 N sm−1.

The hull-lift damping in heave for each hull is esti-
mated by eq. (7.74). We consider U = 15 ms−1.

This means that the ratio ξ HL between hull-lift
damping and critical heave damping is

ξ HL = 2ρ π

8 b2
2U

2(M + A33)ωn
= 0.08. (7.82)

The foil-lift damping for each foil is calculated by
eq. (7.78). This means that the ratio ξ FL between
foil-lift damping and critical heave damping is 0.12.

Wave radiation damping will also contribute
to the total heave damping, but this has to
be assessed by either experiments or a direct
numerical method, such as the 2.5D method of
Faltinsen and Zhao (1991a). A general tendency
is that the more slender the hull – that is, the lower
the beam-to-length ratio – the lower the wave radi-
ation damping (see section 7.2.3).

7.2.10 Ride control of vertical motions by T-foils

We consider a T-foil like that in Figure 7.3 with
flaps that we will actively control by changing the
flap angle to reduce the heave and pitch motions
of the vessel. Our analysis will not consider the
frequency effect on the lift characteristics, as we
did by using the Theodorsen function for a 2D flat
plate (thin foil without camber) in infinite fluid.
A quasi-steady approach will be followed instead.
We consider incident regular head sea waves that
have vertical velocity

w = ω0ζaekzF cos(ωet − kxF ) (7.83)

at the mean coordinates x = xF and z = zF of the
foil. The vertical wave-induced motion of the foil
due to heave and pitch is represented as η3 − xFη5.

The flap angle is denoted as α f (t), as in Figure 6.39.
The lift coefficient CL of the foil is a function of the
angle of attack α and the flap angle αf . Similarly,
as described in section 7.2.8, there is a linearized
dynamic lift on the foil that can be expressed as

F3 = ρ

2
∂CL(α, αf )

∂α

∣∣∣∣
α=α0
αf =αf 0

AU[w − η̇3+xF η̇5+Uη5]

(7.84)

+ρ

2
∂CL(α, αf )

∂αf

∣∣∣∣
α=α0
αf =αf 0

AU2αf .
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Here α = α0 and α = αf 0 refer to the mean angle
of attack and mean flap angle, respectively, and A
is the projected foil area that is equal to the chord
length for a 2D foil.

If we consider linear flow past a 2D flat foil with
a flap in infinite fluid, we can write CL(α,αf ) =
2πα + 2πηf αf , that is,

∂CL(α, αf )
∂α

∣∣∣∣
α=α0
αf =αf 0

= 2π

∂CL(α, αf )
∂αf

∣∣∣∣
α=α0
αf =αf 0

= 2πη f .

Here the flap efficiency coefficient ηf was pre-
sented in Figure 6.40 as a function of the ratio
between flap length and chord length.

The pitch moment F5 due to the dynamic lift on
the foil can be approximated as

F5 = −xF F3. (7.85)

Because we focus on damping effects, we disregard
added mass forces. Further, we assumed the foil is
in the forward part of the ship so that xF is negative.
We now express

α f = −k1η̇3 − k2η̇5, (7.86)

where the positive gain constants k1 and k2 are
a consequence of tuning the ride control system
with due consideration for the maximum change
of αf , available power, cavitation, and ventila-
tion. In addition, a saturation element maintain-
ing αf between maximum and minimum limits
should be included in the control software. This
saturation effect causes nonlinearities. Further,
dynamic stability of the system must be ensured.
We can now introduce the following damping
terms associated with the flaps in the equations of
motions:

BRC
33 = ρ

2
∂CL

∂α f

∣∣∣∣
α0
α f 0

AU2k1 (7.87)

BRC
35 = ρ

2
∂CL

∂α f

∣∣∣∣
α0
α f 0

AU2k2 (7.88)

BRC
53 = −ρ

2
∂CL

∂α f

∣∣∣∣
α0
α f 0

AU2k1xF (7.89)

BRC
55 = −ρ

2
∂CL

∂α f

∣∣∣∣
α0
α f 0

AU2k2xF . (7.90)

The superscript RC is an abbreviation for ride con-
trol. We must, of course, also introduce the other
dynamic terms due to the foil in the equations of
motion. We can now use the equations of motion
to tune k1 and k2 to obtain improved performance
of the heave and pitch motions. We can get an idea
about what damping effect k1 causes by examining
the case in section 7.2.9 and considering the damp-
ing ratio for uncoupled heave. In practice, the final
tuning of the gain coefficients will be done when
the system is installed on the ship.

The situation described above refers to resonant
heave and pitch motions. Another scenario is fol-
lowing sea in which deck diving can occur (see
Figure 7.39). This is a quasi-steady phenomenon,
which means in this case we would express α f =
−k3η3 − k5η5.

If we consider a multihull vessel, then we can
control the roll motion by individual control of
the flaps of a T-foil on each hull.

It could be assumed that the controller gains
are updated based on the sea state and opera-
tional conditions. The most simplified way is to
use a set of predefined controller gains, in which
the operator or the ride control system itself
selects the proper gain settings based on indirect
or direct measurements of sea states. Indirect mea-
surements mean that wind, roll, and/or pitch are
measured.

7.2.11 Roll motion in beam sea of a catamaran
at zero speed

Roll damping of monohulls can be small and result
in large resonant roll. On conventional ships, this
is counteracted by using bilge keels, antirolling
tanks, and fins. Roll damping fins and rudders as
those shown in Figures 7.58 and 7.5 are effective
at high speed.

We focus on roll motion of a catamaran in beam
sea at zero speed. Strong wave interaction may
then occur between the two demihulls. Our studies
are limited to two-dimensional flow. However, 3D
flow as well as forward speed will reduce the wave
trapping between the demihulls.

Figure 7.26 shows 2D added mass a44 and
wave radiation damping b44 in roll of two semi-
submerged circular cylinders with axis in the mean
free surface as a function of nondimensional fre-
quency ω(d/g)0.5 for various 2p/d-values. Here
d is the cylinder radius and 2p is the distance
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Figure 7.26. Two-dimensional added mass a44 and damping b44 coefficients in the roll of two semi-
submerged circular cylinders with axes in the mean free surface. The coefficients are with respect
to an x-axis in the mean free surface, as in Figure 7.49. 2p = distance between cylinder axes,
A = cross-sectional submerged area of the two cylinders, d = draft (Nordenstrøm et al. 1971).

between the two cylinder axes. When considering
a44 and b44, we must be precise about what axis
we are using. A longitudinal x-axis at the inter-
section between the centerplane of the catamaran
and the mean free surface is the reference axis for
the results in Figure 7.26.

Figure 7.26 also shows results calculated by
neglecting hull interaction. These are obtained as
follows. According to the definition of added mass
and damping in section 7.2.1, we start with study-
ing forced roll motion η4 about the x-axis defined
above. This gives, according to eq. (7.20), a verti-
cal motion pη4 at the intersection point between
the free surface and the centerplane of the demi-
hull with positive y-values. Let us define an x′-axis
going through this intersection point and being
parallel to the x-axis. The hydrodynamic problem
for this demihull can now be decomposed into two
parts. One part is the result of forced heave motion
pη4. The other part is the result of rolling about
the x′-axis. However, because the cross section is
circular, the pressure distribution due to forced
rolling about the x′-axis causes no roll moment
about the x′-axis. This means we can focus on

the forced heave problem, which gives a vertical
hydrodynamic force on one hull:

F3 = −0.5a33 p
d2η4

dt2
− 0.5b33 p

dη4

dt
. (7.91)

Here 0.5a33 and 0.5b33 are the added mass and
damping in heave of the demihull. Then we take
the moment pF3 of this vertical force about the x-
axis. By making similar assumptions with the other
demihull and using the definition of added mass
and damping given by eq. (7.39), we find that

a44 = p2a33, b44 = p2b33 (7.92)

when hydrodynamic interaction is neglected.
We note in Figure 7.26 a pronounced interac-

tion effect in the whole frequency domain pre-
sented, as well as a very strong effect in a limited
frequency domain. For instance, the added mass
changes sign and the damping coefficient has both
large positive values and zero value in this lim-
ited frequency domain. Zero damping means wave
trapping between the two demihulls. A similar
phenomenon occurs for added mass and damping
in heave, as presented in Figure 7.20, in which we
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Figure 7.27. The boundary-value problem for determi-
nation of natural frequencies and eigenmodes of slosh-
ing in a 2D rectangular tank, used to estimate the natural
frequency of wave trapping between the demihulls of a
catamaran due to roll motions.

explained this as a piston mode resonance. How-
ever, because forced roll motion causes the flow
to be antisymmetric at the two demihulls, piston
mode resonance cannot be present. We instead
explain the wave trapping by relating the reso-
nant motion between the demihulls to sloshing in
a ship tank. We consider therefore the eigenvalue
problem for sloshing in a rectangular tank, as pre-
sented in Figure 7.27. Because there is no obvi-
ous depth in the catamaran problem that we can
relate to the fluid depth in a tank, we assume infi-
nite depth in the tank. A solution of the boundary-
value problem in Figure 7.27 can then be expressed
as

ϕ = Aekz cos (ωt + ε) cos ky, (7.93)

where ω2/g = k and kb = nπ, n = 1, 2, 3 . . . and
b is the tank breadth. We leave it to the reader
to check that this solution satisfies the boundary-
value problem in Figure 7.27 for infinite fluid
depth. The solution for n = 1 gives the lowest
natural frequency and corresponds to a half-
wavelength between the tank walls. Further, the
flow is antisymmetric about the centerplane of
the tank. The latter is a necessary requirement
for application to our catamaran problem. We will
consider the solution for n = 1. There are higher
antisymmetric modes, but the corresponding nat-
ural frequencies are too high to be of interest in
this context. We will set b = 2p − 2d correspond-
ing to the breadth of the waterplane area between
the demihulls. We then see if b44 in Figure 7.26
becomes zero when ω is equal to the natural fre-
quency ωs for sloshing of the lowest mode. This

natural frequency can be expressed as

ωs

√
d
g

= (π/ (2p/d − 2))0.5
. (7.94)

This agrees reasonably with the results in Fig-
ure 7.26. For instance, ωs(d/g)0.5 are 0.89, 1.02, and
1.25 for, respectively, 2p/d = 6, 5, and 4. We could
not expect exactly the same because, for instance,
we are using results for sloshing in a rectangular
tank whereas the shape of the demihulls is circu-
lar. Further, there is a connection between the flow
between the demihulls and what is happening out-
side this area.

When the incident wave period is equal to both
the undamped natural roll period Tn and the trap-
ping period Ts = 2π/ωs, infinite roll response will
occur according to potential flow theory and when
coupling with sway is neglected.

Let us examine if this is possible by considering
uncoupled roll. However, in reality, coupling with
sway will matter (Vugts 1968). The undamped nat-
ural roll frequency can be expressed as

ωn =
√

ρg AGM
I44 + a44

, (7.95)

where A is submerged volume per unit length. The
metacentric height GM is defined in eq. (7.41). We
set the z-coordinate of the center of gravity equal
to d above the mean free surface. This gives

ρgAGM = ρgd3

((
2p
d

)2

− π

)
. (7.96)

Further, we will set the vessel mass moment of
inertia in roll I44 and the added mass in roll equal
to

I44 = ρπd2(p + d)2, a44 = 0.7ρπd2 p2. (7.97)

This means that a44 does not account for the hull
interaction and the frequency dependency. This
should of course be done, but it becomes too
troublesome to account for the strong frequency
dependency of a44 in a simple calculation like this.
Further, we should, strictly speaking, refer a44 to
an axis going through the center of gravity. Our
estimate now becomes

ωn

√
d
g

=
√

(2p/d)2 − π

π [0.25 · 1.7(2p/d)2 + (2p/d) + 1]
.

(7.98)
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Figure 7.28. Estimate of wave-trapping
frequency ωs for the forced roll motion
of two semi-submerged circular cylinders
with axes in the mean free surface. ωn is
uncoupled and undamped natural roll fre-
quency, 2p = distance between cylinder
axes, d = draft.

This is plotted in Figure 7.28 together with
ωs(d/g)0.5 and an estimate ωn(d/g)0.5 of natural
roll frequency obtained by setting a44 = 0. This
gives an indication of the uncertainty caused by
our estimate of a44.

The results show that ωn = ωs is possible when
2p/d is close to 6. However, detailed studies of
this require that we investigate roll response by
using accurate estimates of a44 and b44 and account
for coupling with sway. The trapping frequency ωs

is also important for sway motion and the anti-
symmetric part of the diffraction potential of the
restrained ship.

If we consider uncoupled roll, we can use eq.
(7.47) to obtain the wave excitation moment in
roll. However, if we consider coupled roll and
sway, we need to know the phasing between the
wave roll excitation moment and the sway excita-
tion force. Eq. (7.47) does not tell us that. How-
ever, there are computer programs that can do
calculations like this. Our objective here is to
qualitatively discuss the important effects on roll
associated with hull interaction.

7.2.12 Numerical predictions of unsteady flow
at high speed

There are different ways to calculate the added
mass, damping, and wave excitation loads that
appear in the equations of motions in the fre-
quency domain. One way is the 2.5D theory

(Faltinsen and Zhao 1991a,b). We have already
outlined this method for steady flow in sec-
tion 4.3.4. Differences for unsteady flow are
the result of both the body boundary and free-
surface conditions. We divide the velocity poten-
tial ϕ due to the body into different parts, that
is,

ϕ =
6∑

j=1

ϕ j η̄ j eiωe t+ϕ7eiωe t . (7.99)

Here ϕ j , j = 1, . . . , 6 is the velocity potential due
to unit motion in mode number j when there are
no incident waves. ϕ7 is the diffraction potential
when the ship is restrained from oscillating and
there are incident waves. The sum of the veloc-
ity potential due to the incident waves and the
diffraction potential must satisfy no flow normal
to the ship’s surface. Addition of the seven sub-
problems (six radiation and one diffraction) in
eq. (7.99) is possible because of linearity. When
we solve these hydrodynamic problems, we do
not know the motions. They follow from using
this procedure to calculate added mass, damping,
and excitation forces and moments and by insert-
ing them into the equations of motions given by
eq. (7.35).

The free-surface conditions for steady flow were
given by eq. (4.52). These must be modified
according to eqs. (3.7) and (3.9). This means when
interaction with local steady flow is neglected, the
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dynamic and kinematic free-surface conditions are

∂ϕ j

∂x
= − gζ j

U
− iωeϕ j

U
on z = 0

(7.100)
∂ζ j

∂x
= 1

U
∂ϕ j

∂z
− iωeζ j

U
on z = 0.

ζ j eiωe t in eq. (7.100) is the wave elevation corre-
sponding to ϕ j eiωe t . Each velocity potential part
satisfies the two-dimensional Laplace equation in
the cross-sectional plane, as in eq. (4.51). The
numerical procedure is the same as for the steady
flow, that is, we start at the bow and use eq. (7.100)
to step the solution downstream. When ϕ j are
found, we use eq. (7.38) to find the hydrodynamic
pressure giving forces and moments on the hull.
Using eq. (7.39) defines the added mass and damp-
ing coefficients. Together with the pressure loads
due to the incident waves (Froude-Kriloff loads),
the forces and moments associated with ϕ7 give
the wave excitation loads on the ship.

Interaction with local steady flow is studied by
Faltinsen and Zhao (1991a,b). Comparisons with
model tests for added mass and damping show that
interaction with local steady flow matters.

We commented in the discussion of the steady
flow that this procedure accounts only for diver-
gent waves, requiring a Froude number Fn larger
than 0.4 to 0.5 in practice. The same is true for the
unsteady flow that is symmetric about the center-
plane of the vessel, that is, for the surge, heave, and
pitch problem. For sway, roll, and yaw motions,
no transverse wave systems are created along the
track of the ship. The reason is that the flow has
to be antisymmetric about the centerplane. Fur-
ther, the transverse waves have to be small in the
vicinity of the ship’s track. This suggests that the
method is also applicable for lower Froude num-
bers in the case of lateral motions. If the hull ends
in a transom stern, for the sway, roll, and yaw prob-
lems, it is important to assume that there is a vor-
tex sheet leaving from the transom stern in the
downstream direction and to consider the ship as
a low-aspect ratio–lifting surface.

Figure 7.29 presents an experimental validation
of the theoretically predicted heave, pitch, and ver-
tical acceleration of a high-speed monohull in head
sea by the 2.5D method by Faltinsen and Zhao
(1991a,b). Interaction with local steady flow was
neglected. Transom stern effects are important for
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Figure 7.29. Heave, pitch, and vertical amplitudes for a
monohull in head sea regular deep-water waves. Fn =
1.14. Trim 1.62◦. Experiments by Blok and Beukelman
(1984). Numerical calculations by 2.5D theory (Faltinsen
and Zhao 1991b). Heave: |η3| /ζa, pitch: |η5| / (kζa) ,

accelerations a3 L/ (50gζa) , L = ship length, ζa = inci-
dent wave amplitude, k = incident wave number. Length
of test waterline = 2 m, beam of test waterline = 0.25 m,
draft = 0.0624 m, block coefficient = 0.396.

hull-lift damping (see section 7.2.7). Validation of
steady wave elevation, wave resistance, and added
mass and damping are also presented. The fig-
ure shows that the resonant wavelength for heave
corresponds to λ/L = 2.9. If the ship had zero
speed, the corresponding wavelength that excites
the resonance oscillations in heave would be much
smaller (see discussion in section 7.2.2). The value
of heave at resonance is about 1.5 times the inci-
dent wave amplitude according to the theory. This
is high relative to conventional ships at moderate
forward speed, but a high-speed catamaran may
have even higher values for the transfer function
of heave at resonance. One reason for this is that
the wavelength in head sea that causes heave and
pitch resonance increases with speed. Increased
wavelength tends to increase the wave excitation
loads due to smaller phase differences along the
hull.

Bertram and Iwashita (1996) and Takaki and
Iwashita (1994) have systematically investigated
the ability of numerical methods to predict wave-
induced motions of semi-displacement monohulls
and catamarans. Bertram and Iwashita (1996)
conclude that conventional strip methods (e.g.,
Salvesen et al. 1970) are valid only roughly for
Fn < 0.4 and that 2.5D theories are at present,
that is 1996, the most suitable methods for fast
ships, for practical purposes.

We illustrate that state-of-the-art numerical
methods do not always give satisfactory predic-
tions of wave-induced heave and pitch motions of
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semi-displacement vessels. The catamaran model
presented in Figure 4.21 is used in the exam-
ples. The pitch radius of gyration is 0.26 times
the ship length L. A linear 3D Rankine panel
method (RPM) similar to the one described in sec-
tion 4.3.4 is used. The transom stern is assumed
wet, and there is therefore no effect of hull-lift
damping. The interaction between the unsteady
and steady flow is handled in two different ways.
One approach assumes that the steady flow can be
calculated by a rigid free-surface condition saying
that the free surface acts as a wall. This provides
interaction between the local steady flow and the
unsteady flow. However, this steady free-surface
condition is only appropriate for low Froude num-
bers (Fn), let us say Fn < 0.2. Because the steady
flow can be calculated by considering a double
body in which the submerged hull surface is mir-
rored about the mean free surface, the model is
referred to as a double-body model (DM). The
second method assumes that the steady flow can
be approximated as a uniform flow with a velocity
equal to the ship speed. The free-surface condi-
tions are given by eq. (7.100). In further discussion,
the second method is referred to as the Neumann-
Kelvin (NK) method.

Head sea waves are considered and response
amplitude operators (RAO) of heave and pitch are
experimentally and numerically predicted. The
RAO of heave refers to steady-state amplitude of
heave |η3| divided by the incident wave amplitude
ζa in regular incident waves. Similarly, the RAO
of pitch means |η5| /ζa . The RAO can experimen-
tally be obtained either by considering a transient
test technique (Colagrossi et al. 2001) or by simply
considering incident regular waves. The following
results are for Fn = 0.3, 0.4, and 0.5 and have been
reported by Lugni et al. (2004).

The heave and pitch frequency resonance for
Fn=0.3, 0.4, and 0.5 was first identified by the tran-
sient test technique. Then, tests in regular incom-
ing waves with different wave amplitudes were
performed in the resonance frequency range.

The RAO experimental data are presented in
Figure 7.30 together with the predictions by the
3D linear RPM code. The standard deviation (σ )
connected with the transient test technique is also
given in the plots, showing good reliability of the
experiments. For the numerics, both the NK and
DM approximations are considered. The numeri-
cal results overestimate the pitch motion. For all

investigated speeds, the DM linearization shows
the best agreement with the experiments. This is
consistent with the conclusions in Bertram (1999)
documenting an important role of the interaction
with the local steady flow in the wave-induced
body motion predictions, even at a Froude number
around 0.2. A strong amplification of the motions
is generally observed near the resonance because
of a small damping level. Because each demihull
has a small beam-to-draft ratio, that is, B/D = 1.14,
we should expect this from the discussion in sec-
tion 7.2.3 (see Figure 7.15). The monohull results
presented in Figure 7.29 show smaller numerical
and experimental resonant vertical motions than
those in Figure 7.30. One reason is that B/D = 4
for the monohull, that is, it is clearly larger than
the ratio for the demihull of the catamaran. Fig-
ure 7.15 suggests, then, smaller resonant vertical
motions for the monohull than for the catamaran.
The 3D RPM used in connection with Figure 7.30
neglects hull-lift damping. This matters and should
be included for Fn = 0.5 when the flow separates
from the transom. However, it is not correct to
include this effect for a wet transom, that is, for
Fn = 0.3 and 0.4.

The heave and pitch results are not affected by
resonant wave trapping between the demihulls.
Using eqs. (7.46) and (7.64) gives that the reso-
nant frequency for piston mode resonance corre-
sponds to λ/L = 1.97, 2.31, 2.63 for Fn = 0.3, 0.4,
and 0.5, respectively. The results in Figure 7.30 do
not show any strong variations due to resonance
in the vicinity of these wavelengths.

The small damping in heave and pitch for the
catamaran suggests the need for proper active con-
trol systems and foils. However, it should also
be noted that the values of the wavelength-to–
ship length ratio giving resonance in heave and
pitch in head sea increase with the Froude number
(see section 7.2.2). This implies that the excitation
loads along the ship become stronger in phase as
Fn increases. The consequence is larger excitation
loads.

The experiments show clear nonlinear effects.
The regular wave results do not converge to
the transient test results as the wave amplitude
reduces. One possible error source is a varia-
tion of the wave amplitude along the track of
the model. This aspect was not investigated. At
high Froude numbers, the RAO for the pitch
motion shows a double peak behavior, typical
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Figure 7.30. Catamaran: heave (η3, left) and pitch (η5, right). Response amplitude operators. From
top to bottom: Fn = 0.3, 0.4, 0.5; ζa and k = 2π/λ are the regular incoming wave amplitude and wave
number, respectively; λ is the incoming wavelength. The ship model is presented in Figure 4.21. Lugni
et al. (2004).

for the multihull vessels. The results for pitch
shows that it is important to account for the hull
interaction.

From the experiments, the mean trim and sink-
age are not influenced substantially by the inci-
dent wave steepness, even at a wave frequency
equal to the heave and pitch resonance frequency.
It implies that they are dominated by the steady

flow. These results are relevant, for instance, for
the wetdeck slamming that is sensitive to the trim
angle (Ge 2002). An accurate estimate of the
relative motions in the impact area matters also
in the wetdeck slamming predictions. The pre-
sented results suggest that the presented theoret-
ical methods to evaluate wave-induced motions
have to be improved for a better prediction of, for
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instance, wetdeck slamming. Wetdeck slamming is
discussed further in section 8.4.

7.3 Linear time-domain response

Section 7.2 deals with wave-induced ship response
in the frequency domain by analyzing the steady-
state solution in regular incident waves. If we con-
sider the behavior of the ship in irregular sea, there
are many excitation frequencies. Because added
mass and damping are frequency dependent, we
cannot directly use the equation system given by
eq. (7.35) in the time domain. However, if we are
interested in the steady-state solution, we can cir-
cumvent this problem by adding the response to
regular wave components. This is what is done
in the next section when we consider the statis-
tical description of linear wave-induced response
in irregular seas.

However, there are scenarios in which we need
the transient response. One example is transient
waves generated by a passing ship. Another exam-
ple is coupling between nonlinear sloshing in a ship
tank and ship motions (Rognebakke and Faltinsen
2003). A third example is wetdeck slamming on
a catamaran in regular incident waves (see sec-
tion 8.4). The wetdeck slamming causes a tran-
sient vertical force that excites transient response
in heave, pitch, and global elastic vibration modes.
Let us concentrate on the two-node vertical bend-
ing mode that has a natural period on the order of
1 s. There is, in addition, important vessel response
at the wave encounter period. This is the order of
10 s. We then have the conflict of which frequency
we should use in calculating added mass and
damping in eq. (7.35). The added mass and dam-
ping for these two periods will be quite different.

These examples illustrate when we cannot use
eq. (7.35). We must then formulate the equations
of motions in a different way. This was discussed
by Cummins (1962) and Ogilvie (1964). If we limit
ourselves to heave and pitch motions, we can write
the linear equations of motions as

(M + A33(∞)) η̈3 + B33(∞)η̇3 + C33η3

+
t∫

0

h33(τ )η̇3(t − τ )dτ

(7.101)

+ A35(∞)η̈5 + B35(∞)η̇5 + C35η5

+
t∫

0

h35(τ )η̇5(t − τ )dτ = F3(t)

A53(∞)η̈3 + B53(∞)η̇3 + C53η3

+
t∫

0

h53(τ )η̇3(t − τ )dτ

(7.102)

+ (I55 + A55(∞)) η̈5 + B55(∞)η̇5 + C55η5

+
t∫

0

h55(τ )η̇5(t − τ )dτ = F5(t).

The integrals are often referred to as convo-
lution integrals (often used in connection with
Laplace and Fourier transforms) or as Duhamel
integrals. Here the vessel mass terms M and
I55, as well as the restoring terms Cjk, are the
same as in eq. (7.35). Ajk(∞) and Bjk(∞) mean
infinite-frequency added mass and damping coef-
ficients. F3 (t) and F5 (t) are heave excitation force
and pitch excitation moment, respectively. h jk (t)
are the retardation functions (also referred to as
impulse response functions) that can be evaluated
by

h jk (t) = − 2
π

∞∫
0

ω(Ajk (ω) − Ajk (∞)) sin ωt dω

= 2
π

∞∫
0

(Bjk (ω) − Bjk(∞)) cos ωt dω.

(7.103)

Calculation of h jk(t) requires information on the
behavior of either Ajk or Bjk at all frequen-
cies. It is no problem to calculate Ajk and Bjk

for infinite frequency and for frequencies typi-
cal of ship motions. It is more difficult to esti-
mate how Ajk and Bjk behave asymptotically for
large frequencies. Let us illustrate this by refer-
ring to a boundary element method. The hull sur-
face is then approximated by panels. The length
dimensions of the panels must be small relative to
the wavelength. There are, as we saw in section
7.2.4, different wavelengths created by an oscil-
lating ship at forward speed. Let us simplify to
illustrate our point. We return then to Table 3.1.
The relationship between wavelength λ and ω is
λ = 2πg/ω2. So increasing ω causes small wave-
lengths and therefore small panels. There is a prac-
tical limit to how small the panels can be because
of CPU time. Further, the equation system may
be ill-conditioned at high frequencies because of
irregular frequencies (Faltinsen 1990). A different
strategy is to patch asymptotic expansions of Ajk
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Figure 7.31. Retardation functions hjj (t) in sway (j = 2)
and heave ( j = 3) for a rectangular cross section with
a beam-to-draft ratio of 2.0. R is the half-breadth of the
section, and A is the mean submerged area (Rognebakke
and Faltinsen 2003).

and Bjk for large ω with an ordinary numerical
solution for finiteω (Greenhow 1986, Rognebakke
and Faltinsen 2003).

The response calculated by eqs. (7.101) and
(7.102) is influenced by the high-frequency behav-
ior of Ajk and Bjk. Adegeest (1995) and Kvålsvold
(1994) have, for instance, reported that it is not
straightforward to use eqs. (7.101) and (7.102).
However, it has become common to use a
formulation like eqs. (7.101) and (7.102) in com-
bination with simplified nonlinear hydrodynamic
loads on the hull.

Figure 7.31 shows calculated retardation func-
tions h22 and h33 in sway and heave for a 2D

Figure 7.32. Illustration of panels used in the Rankine panel method described by Sclavounos and
Borgen (2004).

problem with a rectangular cross section. We
note that hi j is practically zero when t(g/R)0.5 is
larger than 12. A similar behavior with hi j being
practically non-zero in a finite time is also true
for hi j in eqs. (7.101) and (7.102). Let us illus-
trate the consequence of this by examining the
term

t∫
0

hi j (τ )η̇ j (t − τ )dτ (7.104)

in eqs. (7.101) and (7.102). We are going to find η̇ j

at time t, which corresponds to τ = 0 in eq. (7.104).
It is then only necessary to integrate eq. (7.104)
over previously found η̇ j up to a “cutoff” value
t = t∗ when hi j is practically zero. The numer-
ical results are not sensitive to t∗. The time-
consuming part of the analysis is the calculation of
hi j .

We can also solve the hydrodynamic prob-
lem and the equations of motions directly in the
time domain. Sclavounos and Borgen (2004) used
a three-dimensional Rankine panel method that
accounts for flow separation at the transom stern.
Figure 7.32 illustrates panels distributed over the
mean wetted hull surface and a truncated part of
the free surface. A numerical beach is used to
avoid unphysical wave reflection from the bor-
der of the truncated free surface. More details
about the Rankine panel method are found in
Sclavounos (1996).
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7.4 Linear response in irregular waves

7.4.1 Short-term sea state response

A short-term sea state refers to wave conditions
defined by a given and constant significant wave
height H1/3 and mean wave period T2. In addition,
we need to specify a mean wave heading, wave
energy spreading, and duration. The duration typ-
ically used is three or six hours.

A useful consequence of linear theory is that
we can obtain results in irregular waves by adding
together results from regular waves of differ-
ent amplitudes, wavelengths, and propagation
directions.

The so-called frequency of encounter wave
spectrum is sometimes used in connection with
calculations of statistical values in an irregular
short-term sea. If we measure the incident wave
elevation relative to a coordinate system that is
moving with the forward speed of the vessel and
then evaluate the spectrum, we will obtain the
frequency of encounter wave spectrum Se(ωe).
However, if we use a standard wave spectrum
like JONSWAP or Pierson-Moskowitz, it is more
convenient to represent all response variables as
a function of the wave frequency ω0. We will
describe how we normally make statistical predic-
tions in a short-term sea. Long-crested seas will be
assumed. The following procedure is applicable to
all linear wave-induced response values, such as
the six degrees of motions, accelerations, global
loads and so on. We will see that it is not necessary
to evaluate the time-domain solution presented in
section 7.3.

1. We start out with a wave spectrum that
is representative for the sea state. This
could be a measured or an empirical spec-
trum, for instance, the spectra that ISSC
and ITTC have recommended (see Chap-
ter 3). This can be graphically presented as in
Figure 7.33.

We can also express the wave elevation in
the time domain as

ζ =
N∑

j=1

Aj sin(ω0 j t − kj X + ε j ), (7.105)

where 0.5A2
j = S(ω0 j )�ω0 (see eqs. (3.53)

and (3.54) with explanations). We have here
assumed that the wave propagation direc-

Figure 7.33. Wave spectrum.

tion is along the X-axis. Further, ω0 j is the
circular frequency of wave component num-
ber j. Ideally, both Aj and ε j are variables
with a probability distribution, but normally
only the phasing is treated with a certain
likelihood. This might not always be a good
assumption (Tucker et al. 1984).

2. We should then combine this wave spectrum
with the transfer function of the variable that
we study. Let us, for instance, consider heave.
We will then calculate the transfer function
|η3| /ζa for different regular waves with the
same propagation direction as the irregu-
lar sea. This can graphically be presented as
in Figure 7.34, in which we have also indi-
cated that |η3| /ζa → 1 when ω0 → 0, that is,
for very long wavelengths. The ship behaves,
then, like a cork floating on the water. The
transfer function depends on the ship speed
U,ω0, and the wave heading β. Because there
is a relationship between the frequency of
encounter ωe and U, ω0, and β, we could also
say that the transfer function depends on U,

ωe, and β.

Transfer function

η3
ζa

0



1.0

Figure 7.34. A typical transfer function for heave at
moderate forward speed in head sea.
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3. The transfer function (Figure 7.34) and the
wave spectrum (Figure 7.33) can now be
combined. We can show this by using a
time-domain representation. Formally we
can write the steady-state response to one
regular wave as

Aj |H(ωej , U, β|
(7.106)

× sin(ωej t+δ(ωej , U, β) + ε j ).

Here ωej is the frequency of encounter asso-
ciated with wave component number j. Fur-
ther, |H(ωej , U, β)| is the transfer function,
which is the response amplitude per unit of
wave amplitude. We note also that there is
a phase angle δ(ωej , U, β) associated with
the response. ε j is the same phase angle as
the one in eq. (7.105). Having obtained the
response due to one wave component, we
can linearly superpose the response from the
different wave components, that is, we can
write

N∑
j=1

Aj |H(ωej , U, β)|
(7.107)

× sin(ωej t+δ(ωej , U, β) + ε j ).

We calculate now the variance σ 2 of
eq. (7.107)

σ 2 =
{

N∑
j=1

Aj |H(ωej , U, β)| sin(ωej t + δ(ωej , U, β) + ε j )

}2

, (7.108)

where the line over the expression means
time average. Before taking the time aver-
age, we multiply out the square expression,
that is, the square of eq. (7.107). This gives
terms proportional to

cos((ωej ± ωek)t + δ(ωej , U, β)
(7.109)

± δ(ωek, U, β) + ε j ± εk).

Then we can take the time average of each
term. When ωej �= ωek, the time average of
eq. (7.109) is zero. The only contribution
occurs when ωej = ωek. The result is

σ 2 =
N∑

j=1

0.5A2
j |H(ωej , U, β)|2, (7.110)

where we recall that 0.5A2
j = S(ω0 j )�ω0.

4. We now formally let N → ∞ and �ω0 → 0.

This gives

σ 2 =
∞∫

0

S(ω0)
∣∣H(ωe, U, β)

∣∣2
dω0. (7.111)

5. By using the Rayleigh distribution, we can
find the probability of exceeding a given
value of the heave amplitude. This means we
write the probability that the heave ampli-
tude is larger than x as

P (η3 > x) = e−x2/2σ 2
3 . (7.112)

We have used the subscript 3 on the variance
to indicate heave. By using eq. (7.112), we
can calculate the most probable largest value
xmax in N oscillations. A good approximation
for large N is

xmax = σ3

√
2lnN. (7.113)

Here N can be set equal to t/T2, where t is
the duration of the storm and T2 is the zero
upcrossing period.

7.4.2 Long-term predictions

By combining the Rayleigh distribution with a
joint frequency table (scatter diagram) for H1/3

and the modal wave period or mean wave period

(see Table 3.4), we can obtain the long-term prob-
ability distribution of a response. Summing over
both period and wave height gives

P (R) = 1 −
M∑

j=1

K∑
k=1

exp
(
−0.5R2/

(
σ jk

r

)2
)

pjk,

(7.114)

where P(R) is the long-term probability that the
peak value of the response does not exceed R,

and σ jk
r is the standard deviation of the response

for a mean H1/3 and wave period T2 in the signif-
icant wave height interval j and the wave period
interval k. Further, pjk is the joint probability for
a significant wave height and mean wave period to
be in interval-numbers j and k, respectively. For
instance, by referring to Table 3.4, the joint prob-
ability for the wave period T2 to be between 9.5
and 10.5 s and H1/3 to be between 3.5 and 4.5 m
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Figure 7.35. Typical wavelength depen-
dency of nondimensional added resistance
RAW L/ρgB2ζ 2

a of a ship at forward speed
in regular head sea waves. ζa = ampli-
tude of incident waves, λ = wavelength,
L = ship length, B = beam of the ship.
The general tendency is that the larger
the Froude number, the higher λ/L cor-
responding to maximum nondimensional
added resistance.

is 15/995. The values of M and K are, respec-
tively, 13 and 16. However, strictly speaking, the
table contains too few observations to be used for
extreme value statistics. Typically, one needs on
the order of 100,000 observations to create a reli-
able scatter diagram. However, most high-speed
vessels have service restrictions, so extreme sea
states may not be that important for these vessels.
The probability level Q = 1 − P(R) and the num-
ber of response cycles N are related by Q = 1/N.

A return period of 100 years corresponds approx-
imately to Q = 10−8.7, depending on the response
variable and its zero upcrossing period. The
corresponding response amplitude R can then be
found from eq. (7.114). The procedure is often per-
formed by fitting the results to a Weibull distribu-
tion (Nordenstrøm 1973). The Weibull distribu-
tion is then used for extreme value predictions.

7.5 Added resistance in waves

7.5.1 Added resistance in regular waves

Added resistance RAW in waves is sometimes mis-
understood as wave resistance. Wave resistance
refers to calm water conditions and is extensively
discussed in Chapter 4. Added resistance in waves
is caused by interaction between incident waves
and the ship. Wave drift forces of importance for
stationkeeping of offshore floating platforms are
physically the same as added resistance in waves
(Faltinsen 1990). An example of the importance of
added resistance in waves relative to other resis-
tance components is presented in Figure 4.1.

A typical nondimensional added resistance
curve in regular head sea waves is illustrated
in Figure 7.35. Added resistance is, as a first

approximation, proportional to the square of the
incident wave amplitude, that is, ζ 2

a . That is the
reason for using ζ 2

a to nondimensionalize RAW in
Figure 7.35.

It can be shown by conservation of fluid momen-
tum and energy (Gerritsma and Beukelman 1972,
Maruo 1963) and assuming potential flow that
added resistance in waves is due to the ship’s ability
to generate unsteady waves. A ship in the vicinity
of resonant heave and pitch conditions will gen-
erate the largest waves per unit of wave ampli-
tude. A reason is the large relative vertical motions
between the ship and the waves. This condition
causes the peak in the nondimensional curve in
Figure 7.35.

When the ratio λ/Lbetween the incident wave-
length λ and the ship’s length L is small (let us say
λ/L < 0.5 ), the ship will not move much because
of the incident waves. However, the incident waves
will be reflected from the ship. This is the reason
why there is a finite added resistance for small
wavelengths in Figure 7.35. Whenλ/Lis very large,
the relative motions between the ship and the
water goes to zero. It means that the ship does not
generate unsteady waves, that is, RAW goes to zero.

Even though the nondimensional added resis-
tance presented in Figure 7.35 is largest at resonant
heave and pitch conditions, the finite added resis-
tance at small wavelengths matters. The reason is
that small wavelengths are associated with small
sea states and small sea states are most frequently
encountered by a ship. As an example, let us take
the North Atlantic routes shown in Figure 7.36.
The average involuntary speed loss over one year
was calculated for a 198 m–long container vessel.
The target speed was 22 knots and average invol-
untary speed loss was 1.7 knots westbound and



P1: JYD
0521845688c07a2 CB921-Faltinsen 0 521 84568 7 November 5, 2005 12:48

262 • Semi-displacement Vessels

Figure 7.36. Different routes in the North Atlantic of a 198 m–long container vessel with target speed
of 22 knots. The calculated average involuntary speed loss over one year is 1.7 knots westbound and
0.9 knots for a roundtrip voyage.

0.9 knots roundtrip voyage. A major contribution
was added resistance in small sea states (Faltinsen
and Svensen 1990).

An alternative way of using conservation of
momentum and energy to estimate added resis-
tance in regular waves is by direct pressure inte-
gration (Faltinsen et al. 1980, 1991a). In order to
describe this method, we should first recall what is
done in linear theory. We then satisfy free-surface
conditions at mean free-surface and body bound-
ary conditions at the mean oscillatory position of
the ship. The resulting linearized hydrodynamic
pressure (this excludes the hydrostatic pressure
that must be evaluated at the instantaneous posi-
tion) is found at the mean oscillatory ship posi-
tion. Further, the resulting hydrodynamic forces
and moments are found by integrating the pres-
sure over the mean wetted surface. The pressure
is multiplied by the normal vector of the hull sur-
face in a coordinate system that is not oscillating
with the ship. The consequence of the analysis is
hydrodynamic forces that are harmonically oscil-
lating in time, that is, the mean value is zero. This
means a linear theory will not lead to added resis-
tance in waves.

We must at least include terms that are second
order in incident wave amplitude, that is, terms
proportional to ζ 2

a to predict added resistance. So
we must go through the whole list of approxima-
tions that were done in the linear theory and make
corrections to second order in ζa . We will demon-
strate one such contribution and use Figure 7.37
for illustration. This figure shows a shaded area
along the hull that is in and out of the water.
This is caused by the relative vertical motions, ηR,

between the ship and the water, which can for-
mally be expressed as

ηR = ηRa(x) cos(ωet + ε(x)). (7.115)

This means that the wetted area per unit length at
longitudinal position x and time t has a difference
ηR from the mean wetted area per unit of length
at the same position. We will account for this dif-
ference in wetted area that linear theory does not
account for. We need to know the pressure distri-
bution over this time-dependent wetted area. We
can use an argument similar to the one that led to
Figure 3.5, that is, the pressure has a “hydrostatic”
depth dependence relative to instantaneous water
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Figure 7.37. Illustration of hull area (shaded) that is in and out of the water for a ship in regular head
sea waves for given incident waves and ship speed. The hydrodynamic pressure on this shaded area
contributes to added resistance in waves.

elevation in the close vicinity of the free surface.
The resulting longitudinal force is

F1 = −ρg
2

∫
C

η2
Rn1 ds, (7.116)

where the integration is with respect to the water-
line curve, C, and n1 is the longitudinal component
of the outward normal to C.

Then we need to time average eq. (7.116).
Because the time average of cos2 (ωet + δ) is 0.5,
we get

F̄1 = −ρg
4

∫
C

η2
Ra (x) n1 dS. (7.117)

Because ηRa is proportional to ζa, F̄1 is pro-
portional to ζ 2

a . We want to emphasize that eq.
(7.117) is only one of several contributions to
added resistance in waves following from direct
pressure integration. For instance, integrating the
pressure loads due to the quadratic velocity term
in Bernoulli’s equation over the mean wetted hull
surface gives another contribution.

7.5.2 Added resistance in a sea state

We will illustrate how added resistance in a long-
crested short-term irregular sea state can be cal-
culated by starting with eq. (7.116). However, we
now represent ηR as in eq. (7.107). Then we take
the time average ofη2

R.This is the same as was done
in eq. (7.108), and this led to eq. (7.110). Now we
replace 0.5 |H|2 in eq. (7.110) by F̄1/ζ

2
a . As for eq.

(7.111), this leads to

RAW = 2

∞∫
0

S (ω0)
F̄1

ζ 2
a

dω0. (7.118)

Here F̄1/ζ
2
a is a function of ω0, U, and the ship’s

heading. Of course, we took only one component
of the added resistance in waves when we started
out with eq. (7.116). However, doing the same with
the other components does not change the fact
that we can express RAW in irregular long-crested
sea, as in eq. (7.118).

7.6 Seakeeping characteristics

A semi-displacement vessel, hydrofoil vessel, and
SES have quite different seakeeping behaviors.
We discussed in Chapter 6 that a hydrofoil ves-
sel with a submerged foil system had clearly bet-
ter seakeeping behavior than a semi-displacement
vessel in head sea even without using automatic
control. However, this type of hydrofoil vessel
needs, in general, a ride control system. Figure 1.12
illustrates the difference for an SES and a catama-
ran. Calculated operational limits based on verti-
cal accelerations at the center of gravity (COG) of
a 40 m–long catamaran without a foil and a 40 m–
long SES without a ride control system are shown.
An RMS value of 0.2 g is used as a criterion in this
example. The vertical accelerations will, of course,
depend on the details of the hull. The intention of
Figure 1.12 is to illustrate the main features of the
acceleration level at COG in head seas. The results
in Figure 1.12 are for long-crested waves described
by the two-parameter JONSWAP spectrum rec-
ommended by ITTC. T1 is the mean wave period
defined by the first moment of the wave spectrum
and H1/3 is the significant wave height. The vessel
speed in calm water is 50 knots for the SES and
40 knots for the catamaran. The SES will have the
highest involuntary speed loss in a seaway.
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Figure 1.12 shows that the operational limits for
small wave periods are clearly lowest for the SES.
The reason is the “cobblestone” effect, which is
caused by resonances occurring in the air cushion.
No ride control was accounted for in the calcula-
tions. Use of ride control will increase the opera-
tional limits for the SES at lower wave periods.

Figure 1.12 illustrates that the SES has the low-
est vertical acceleration level when T1 > ≈5 s. We
illustrate in section 7.2.9 that using foil appendages
on a catamaran may improve the seakeeping qual-
ities. However, care must be shown in doing that.
We must have in mind that there are different
contributions to damping of vertical ship motion.
An example will illustrate this for the catamaran.
Three hulls were numerically investigated. Hull 1
was a basis hull without foils. Hulls 2 and 3 were
modifications of hull 1. The displacement was
reduced respectively by 10% and 20% relative to
hull 1. This was done by reducing the displace-
ment volume in the aft end of the ship. The hulls
had transom sterns, and the reduction in the dis-
placed volume resulted in a decrease in the local
beam at the transom stern. The reduction in dis-
placements of hulls 2 and 3 were compensated by
lift from foils at the aft end of the hulls. The net
result of this was that the vertical accelerations
of the three hulls did not differ very much. One
reason is probably that the increase in damping
by the foils was compensated by a decrease in the
damping due to the hull. The latter is the result
of both wave radiation damping and dynamic lift-
ing effects. The magnitudes of the lift force and
moment on the hull depend on the local beam at
the transom stern. However, adding passive foils
to a hull without changing the hull will lower the
vertical accelerations. The foils are most effective
if they are placed in the bow part where the rela-
tive vertical motions are largest. However, out-of-
water effects of the foils or cavitation will degrade
the damping effect of the foils.

There is no doubt that foils improve the sea-
keeping behavior of a high-speed catamaran. We
will quantify this by an example presented by
Haugen et al. (1997). A 580-tonne catamaran with
54 m length between perpendiculars was investi-
gated. Long-crested head sea is assumed. Accord-
ing to service regulations by DNV, the vessel can
operate in a sea with maximum significant wave
height H1/3 = 3.5 m. Service regulations by DNV
specify reductions in speed relative to the signifi-

cant wave height. The maximum allowable speed
is 40 knots for H1/3 between 0 and 1 m, 35 knots for
H1/3 between 1 and 2 m, 30 knots for H1/3 between
2 and 2.5 m, and 25 knots for H1/3 between 2.5 and
3.5 m. When H1/3 is larger than 3.5 m, the vessel
should seek shelter at slow speed or it should not
leave port.

An alternative way to estimate speed changes
in head sea waves is to use operational criteria
for slamming and vertical accelerations (see sec-
tion 1.1). Ochi (1964) has expressed the slamming
probability in terms of a critical relative verti-
cal velocity between the hull and the water sur-
face, which is 2.14 ms−1 for a ship with LPP =
54 m. This was used in the absence of any other
established criteria known to the authors. When
the wetdeck slamming probability at FP is 0.03 or
larger in a sea state, speed changes are assumed.
This depends both on the wave period and the sig-
nificant wave height. Peak periods between 4 and
12 s were studied. A modified Pierson-Moskowitz
wave spectrum was used. The linear transfer func-
tions for vertical relative velocities and motions
have been calculated by strip theory (Salvesen
et al. 1970) when the Froude number Fn < 0.4.
When Fn ≥ 0.4, the 2.5D high-speed theory by
Faltinsen and Zhao (1991a) has been used. The
two hulls are assumed hydrodynamically indepen-
dent. The vessel is studied with and without verti-
cal motion damping foils. These are T-foils located
at 0.17LPP measured from FP and trim tabs located
at AP. The slope of the lift coefficient dCL/dα = 3.0
for the T-foils and 2.0 for the trim tabs. The pro-
jected horizontal foil areas are 2.5 m2 and 4.0 m2

for the T-foils and the trim tabs, respectively. In the
calculations, the foils are handled as appendages
and no degradation of the foil performance due
to possible air ventilation is accounted for. The
probability of ventilation increases with sea state
and ship speed. Figure 7.38 shows the results of
the computations. For a given ship speed, there
is a maximum significant wave height H1/3max that
the ship can operate in because of the wetdeck
slamming. H1/3max shown in Figure 7.38 is the min-
imum value for all the investigated wave periods.
There is a limiting maximum value of H1/3 that can
occur because of the wave breaking for a given
wave period. This is not accounted for in the fig-
ure. However, wave breaking will not occur for the
wave periods that give the H1/3max value shown in
Figure 7.38.
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Figure 7.38. Maximum operational significant wave
height H1/3 due to wetdeck slamming as a function of
ship speed U for a 54 m–long catamaran. Head sea long-
crested waves (Haugen et al. 1997).

Introducing criteria for speed changes due to
vertical accelerations will not significantly change
the picture seen in Figure 7.38. It is clear that the
catamaran without foils cannot operate in H1/3 =
3.5 m in head sea waves; however, the vessel can,
of course, change sailing course. When the cata-
maran is equipped with vertical motion damping
foils, it can operate in much higher sea states at
high speed. Actually, Figure 7.38 shows that a good
strategy to lower the wetdeck slamming proba-
bility for U > ≈12 knots is to increase the ship’s
speed. The reason is that the lift and therefore the
damping provided by the foils increase with speed.
However, the results in Figure 7.38 are dependent
on the slamming criterion by Ochi (1964) and its
applicability to wetdeck slamming on a high-speed
ship. This needs to be studied further.

When characterizing the seakeeping behavior
of a vessel, it is not sufficient to have only fig-
ures like Figure 7.38. Other important quantities
are vertical accelerations along the length of the
ship, rolling, relative vertical motions and veloci-
ties between the ship and the waves, and the influ-
ence of other wave directions. The relative verti-
cal motions and velocities are closely related to
slamming loads. The relative vertical motions also
express the danger of green water on the fore deck
or of the waterjet inlet being exposed to air. The
latter was examined by Faltinsen et al. (1991a) for
a 40-m catamaran and a 40-m SES with flush inlets.
It was clear that the waterjet inlet on an SES could
easily be exposed to air for small sea states. The
catamaran has a better behavior. In order to set
operational limits for the performance of a water-

jet system in a seaway, it is necessary to better
understand the physics and how to relate a crite-
rion to the relative vertical motion at the waterjet
inlet (Faltinsen et al. 1991a).

We present here more detailed results by
Faltinsen et al. (1991a) for the catamaran. The res-
ults for the SES are given in section 5.8. The main
characteristics of the catamaran are given in
Table 7.3. Waterjet propulsion is used. Only head
sea waves and wind were considered. A JONSW-
AP spectrum (see eq. (3.61)) was used. The wind
velocity, VW, was assumed uniform in space and
calculated by the formula VW =(H1/3g/0.21)0.5.

The results are presented in Table 7.4. Invol-
untary speed loss is calculated for each combina-
tion of H1/3 and T1, where T1 is the mean wave
period defined by the first moment of the spec-
trum. We note that the speed is dependent on T1.
This is because of the added resistance in waves,
which can be explained by eq. (7.118) together
with Figure 7.35 showing typical behavior of added
resistance in regular waves. Because of the dom-
inant peak in the added resistance curve for reg-
ular waves, the added resistance in irregular sea
will be sensitive to the mean wave period (see also
Figure 5.27). This example demonstrates that one
should not use a sea-state number system in which
there is only one mean wave period associated
with one significant wave height. As an indica-
tion of the relative importance of added resistance,
the predicted added resistance is 7.8% of the total
resistance when H1/3 = 2 m, T1 = 5 s. The impor-
tance of added resistance increases strongly with
increasing significant wave height.

Table 7.4 also presents standard deviations for
vertical accelerations at the center of gravity of
the catamaran. If we require that σa < 0.2 g, we

Table 7.3. Main particulars of the high-speed
catamaran

Length overall 40.00 m
Length of waterline 35.30 m
Beam of each hull 3.53 m
Draft of each hull 1.78 m
Distance between centerplanes of the

hulls
8.00 m

Block coefficient of each hull 0.54
Pitch radius of gyration 8.57 m
Longitudinal position of center of gravity

from FP
20.73 m
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Table 7.4. Seakeeping data of a 40 m–long high-speed catamaran (see Table 7.3)
in head sea long-crested waves with a two-parameter JONSWAP-spectrum

T1(s)

H1/3(m) 3.3 5.0 6.7 8.3 10.0 11.7

1.0 39.3 39.1 39.0 39.2 39.3 39.3 Speed (kn)
0.003 g 0.15 g 0.21 g 0.14 g 0.11 g 0.08 g σa

0.27 0.27 0.25 0.17 0.12 0.09 σR(m)
2.0 38.6 37.7 37.4 38.2 38.6 38.8 Speed (kn)

0.07 g 0.31 g 0.42 g 0.28 g 0.21 g 0.16 g σa

0.54 0.56 0.48 0.32 0.23 0.18 σR(m)
3.0 37.9 35.4 35.0 36.9 37.8 38.2 Speed (kn)

0.10 g 0.49 g 0.61 g 0.41 g 0.31 g 0.24 g σa

0.81 0.82 0.67 0.44 0.34 0.27 σR(m)
4.0 30.5 31.9 35.0 36.8 37.6 Speed (kn)

0.73 g 0.74 g 0.52 g 0.40 g 0.32 g σa

1.05 0.73 0.57 0.45 0.37 σR(m)

H1/3 = significant wave height, T1 = mean wave period. Shaft power is 2 × 4150 kW in all sea
states. Waterjet propulsion (flush type), diameter outlet: 0.55 m. Design speed, still water:
40 knots. Total efficiency, still water: 0.603. First line: Speed in knots including involuntary
speed loss. Second line: Standard deviation of vertical accelerations at COG. Third line:
Standard deviation of relative vertical motions at waterjet inlet.

see that the involuntary speed prediction is too
high for one sea state (T1 = 6.7 s) when H1/3 =
1 m, and for most sea states when H1/3 ≥ 2 m.
If we use σa = 0.1 g as a limit, voluntary speed
reduction will also occur in most of the sea states
when H1/3 = 1 m. We have also presented the stan-
dard deviation σR for the relative vertical motions
at the waterjet inlet. By requiring that the draft
d = 1.7 m at the waterjet inlet be larger than four
times the standard deviation σR of the relative ver-
tical motion at the waterjet inlet, we see that the
limiting criterion for voluntary speed reduction is
satisfied when H1/3 = 1 m and for three of six sea
states when H1/3 = 2 m. Here 4σR is close to the
most probable largest value in the sea state. One
may question whether this is a correct criterion for
operational limit.

It is important to investigate different wave
headings. For instance, when a catamaran in

Figure 7.39. Danger of diving of the fore part of a high-speed catamaran in following seas (Weren-
skiold, unpublished).

following regular waves has a speed close to the
phase speed of the incident waves, the catamaran
can come to a position relative to the waves so that
the fore part of the vessel dives into a wave crest
(Figure 7.39). If there is not sufficient buoyancy in
the fore part of the vessel, a critical situation may
occur. The problem can be qualitatively analyzed
by approximating the fluid loads by only including
hydrostatic and Froude-Kriloff loads.

7.7 Dynamic stability

The dynamic stability of high-speed vessels both
in calm water and in waves is, in general, poorly
understood. A classification of phenomena that
can happen for monohulls is shown in Figure 7.40.
We should note that the importance of hydro-
static pressure relative to hydrodynamic pressure
decreases with increasing forward speed. One
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Figure 7.40. General types of instability for monohulls (Cohen and Blount 1986).

should also note that the rudder, cavitation, and
ventilation phenomena will influence the dynamic
stability of high-speed vessels. Figure 7.41 is based
on static tests of monohulls. A given weight was
placed off the centerplane of the vessel. The result-
ing steady roll moment causes a steady roll angle.
The figure illustrates how the constant heel angle
changes with increasing forward speed for four
different high-speed full-scale craft. The reason is
the change in hydrodynamic pressure on the hull,
influence of the rudder, and possible cavitation
effects in the propeller tunnels.

The loss of steady restoring moment in heel with
forward speed can cause a sudden list of a round-
bilge monohull to one side. This can at high speed
be followed by a violent yaw to one side. The
consequence can be capsizing. This “calm water
broaching” is the main reason round-bilge hulls
should not operate beyond a Froude number of
1.2 (Lavis 1980).

The loss of steady restoring heel moment with
speed should be accounted for in the design by
having a sufficiently high metacentric height GM
at zero speed. Recommendations are given by

Mller-Graf (1997). Suggested minimum values
for round-bilge monohulls are given in Figure 7.42
and are a function of the beam-to-draft ratio
and the maximum operating Froude number. The

Figure 7.41. Static heel stability of different monohulls
in calm water at forward speed. Experimental results.
A given weight was placed off the centerplane. The fig-
ure illustrates the decreasing importance of hydrostatic
pressure with increasing Froude number (Werenskiold
1993).
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Figure 7.42. Minimum transverse metacentric height of
a round-bilge monohull at zero speed as a function
of beam-to-draft ratio B/D and maximum operating
Froude number Fn (Bailey 1976).

forward speed dependence on the steady heel
moment should be considered if Fn is larger than
0.5. There may be a significant effect even at
Froude number 0.6. GM between 1 and 1.5 m are
representative recommended values for a round-
bilge monohull of 10 to 30 m length. GM less
than 0.8 m should be avoided (Mller-Graf 1997).
A spray rail system will decrease the loss of steady
restoring heel moment at high speed (Mller-Graf
and Schmiechen 1982). This can be understood
by considering a spray rail a low-aspect–ratio lift-
ing surface. The lift force is proportional to the
square of the forward speed of the vessel. The
speed dependence of the restoring heel moment
of a hard-chine monohull at planing speed is dis-
cussed in section 10.9.3.

Because the speed dependence of the the steady
restoring heel moment is partly the result of the
generation of free-surface waves, shallow water
effects matter. This depends on the water depth–
to–ship length ratio h/L and the depth Froude
number Fnh = U/

√
hg (see section 4.4). If h/L >

0.4, there is small water depth influence. When
the finite water depth effects matter, the behav-
ior is clearly different at subcritical, critical, and
supercritical flows. Even though the discussion in
sections 4.4 and 4.5 is for the wave resistance prob-
lem, it is also relevant for the speed dependence

of the steady heel moment. However, we are not
aware of quantitative information on how much
shallow water effects can matter.

Because a catamaran has a larger beam than a
monohull, the catamaran will with the same posi-
tion of the center of gravity as the monohull have
the clearly highest metacentric height. It means
that the loss of steady heel moment with forward
speed is a less severe problem for the catamaran.

Let us elaborate more on Figure 7.40. The
most classic situation for capsizing is when the
vessel rolls with large amplitudes in beam sea.
An extreme case is when breaking waves occur.
The combination of green water on deck and
wind heeling moments increases the probability of
capsizing.

Broaching is mentioned in Figure 7.40 as an
instability problem for semi-displacement vessels.
However, this is also true for ordinary displace-
ment vessels and quite typical for sailboats. It is
of particular concern in following seas and occurs
in long and steep waves. The wavelength is longer
than the ship’s length, and the wave shape propa-
gates faster than the ship. If one single wave like
this is at the position of the ship, it will tend to
move the ship with the same speed as the horizon-
tal fluid velocity in the wave. It means that the rel-
ative horizontal velocity between the ship and the
water becomes small. The ship then loses its direc-
tional stability in the horizontal plane, and the rud-
der loses its effect. The consequence is a change
in the ship’s course. This becomes more critical
if several (say three or four) similar waves are
passing the ship. Each wave will change the ship’s
course. The result of the change in course is that
the ship heels to the leeward side and the waves
can come in a beam sea situation relative to the
ship. If the ship has a low transverse metacentric
height, capsizing may occur. Broaching in waves
is described, for instance, by Wahab and Swaan
(1964), Nicholson (1974), and Vassalos et al.
(2000) (see also section 10.10.3).

Cork-screw instabilities are discussed in section
10.9.3. Porpoising is an instability phenomenon
only for planing vessels and is discussed in detail
in section 9.4.1.

7.7.1 Mathieu instability

A special type of roll instability that is not explic-
itly mentioned in Figure 7.40 is the Mathieu-type
instability. This is a problem particularly for ships
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Figure 7.43. Example on how the GZ-curve is influenced
by the wave. Based on quasi-steady analysis. The slope
dGZ/dη4 at zero roll angle η4 is the metacentric height.

with nonvertical ship sides near the waterline.
Changes in the local beam with changes in the
local draft are most significant in the bow and
stern regions. These changes may cause the trans-
verse GM to oscillate with large amplitudes in
a seaway. The latter is a necessary requirement
for a Mathieu-type instability to occur, but there
are other necessary requirements. For instance,
the waves must not change much in amplitude
or period, which means that it is easy to demon-
strate the phenomena in regular waves in a model
tank, but difficult to demonstrate in a sea state
with many wave components of different frequen-
cies. Further, the ratio between the natural roll fre-
quency and the frequency of oscillation of the ship
has to be approximately either 0.5, 1.0, 1.5, 2.0 and
so on. A low roll damping is also a necessity for the
buildup of large roll amplitudes due to a Mathieu
instability.

Let us try to explain the phenomenon theoret-
ically. The first step is to find out how the GZ-
curve is influenced by the heave, pitch, and wave
motions. If we know these motions, then we can
calculate by a hydrostatic stability program how
the GZ-curve changes at moderate Froude num-
bers. Let us first illustrate this by considering only
the effect of the waves (Figure 7.43). Here only
two wave positions are shown. For us, it is the ini-
tial metacentric height (the slope of the GZ-curve
at η4 = 0) that is most interesting. We see in Fig-
ure 7.43 that this is largest when the wave trough is
midships and smallest when there is a wave crest
midships. One should, of course, remember that
the results in Figure 7.43 are for a given wave and a
given ship. We should also note that in Figure 7.43

if the wave were stationary relative to the ship
(i.e., ωe = 0) and there were a wave crest midships,
this ship could easily capsize as the result of static
effects only. If we had drawn the GZ− curve for
other wave positions, we would have found that
the uprighting moment for small angles η4 could
be approximated as

F4 ≈ −(ρg∇ GMm + h∗
w sin(ωet + α))η4, (7.119)

where −ρg∇ GMmη4 is the uprighting moment in
calm water. We note that the additional term due
to waves oscillates with the frequency of encounter
ωe. If we had calculated the GZ-curve for other
wave amplitudes ζa, we would have found that h∗

w

is approximately proportional to ζa, that is,

h∗
w ≈ hwζa . (7.120)

The magnitude of hw will strongly depend on the
slope of the ship’s side near the waterline.

In the same way as for the waves, we can find
similar effect of heave and pitch. The coupling due
to pitch is generally less than the coupling from
heave. We can now write the roll equation approx-
imately as

(I44 + A44)
d2η4

dt2
+ B44

dη4

dt
+ ρg∇(GMm

(7.121)
+ δGM sin(ωet + β))η4 = 0,

where the effect of heave, pitch, and wave motions
is represented by the term

ρg∇δGM sin(ωet + β)η4. (7.122)

Eq. (7.121) is approximate because we have
neglected the coupling from sway and yaw and
the damping term has been linearized. We have
assumed head or following seas, so the roll exci-
tation moment from the waves is zero. However,
we may still experience rolling due to the instabil-
ities. This means that a small perturbation from
the equilibrium position will result in strongly
increased motions with time.

Eq. (7.121) can be rewritten as

d2η4

dt2
+ 2ξωn

dη4

dt (7.123)

+ ω2
n

(
1 + δGM

GMm
sin(ωet + β)

)
η4 = 0.

Here ωn is the undamped natural roll frequency,
that is,

ωn =
√

ρg∇GMm

I44 + A44
(7.124)
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Figure 7.44. Stability diagram for the
Mathieu equation applied to ship rolling.
ωn = natural roll frequency, δGM = ampli-
tude of the harmonically oscillating part
of the metacentric height, ωe = frequency
of encounter. Shaded areas represent sta-
ble domains when the ratio ξ between
roll damping and the critical damping is
zero. There are also lines shown with val-
ues of ξ (ωn/ωe) equal to 10−4, 10−3, 10−2,

5 · 10−2, and 10−1. These lines are bound-
aries between stable and unstable domains
(Klotter 1978).

and ξ is the ratio between the damping and the
critical damping (see eq. (7.9)), that is,

ξ = B44

2
√

(I44 + A44) ρg∇GMm

. (7.125)

If ξ = 0, eq. (7.123) is the classical Mathieu
equation. It can be shown that the stability will
depend on ωn/ωe, δGM/GMm , and the damp-
ing ratio ξ. Klotter (1978) has presented curves
that show the instability domains (Figure 7.44).
The unshaded areas represent instability domains
when ξ = 0. The boundaries between the stability
and unstability domains are shown for different ξ -
values. The domains for dangerous combinations
of δGM/GMm and ωn/ωe are located in the vicin-
ity of ωn/ωe = 0.5, 1.0, 1.5, 2.0, and so on, when
δGM/GMm is small. Figure 7.44 concentrates on
ωn/ωe up to

√
1.7. For instance, ωn/ωe = 0.5 means

that the encounter period Te is half of the natural
roll period. Further, larger values of δGM/GMm

are undesirable. This means either small initial sta-
bility (i.e., small GMm) or that the waves or the
heave motion is sufficiently large to cause large
values of δGM.

Damping will have a positive influence. The
higher the damping, the higher δGM/GMm has to
be for instability to occur. Roll damping tends to
be small for monohulls. However, it is an advan-
tage from a wave radiation damping point of view
to have the large beam-to-draft ratio that is typ-
ical for semi-displacement monohulls. The small

roll damping caused by the bare hull is counter-
acted in conventional ships by, for instance, using
bilge keels and antirolling tanks. Antirolling fins
and rudders cause a roll damping that increases
with the speed. If the vessel is in an area with
relatively large waves and is not moving because
of some machinery failure, the roll damping fins
will be ineffective. The vessel may move broad-
side to the waves and experience heavy roll in
an emergency situation. The roll damping due to
wave radiation is frequency dependent, as we have
seen in Figure 7.26. If the natural roll period, Tn,

is chosen too high, let us say higher than 20 s, then
the wave radiation damping tends to be negligi-
ble. If the other components of roll damping are
also small, it means that, from a Mathieu instabil-
ity point of view, we should be concerned near
the vicinity of ωn/ωe = Te/Tn = 0.5. Let us say
ξ = 0.02. Figure 7.44 shows, then, that instabili-
ties may occur for δGM/GMm slightly larger than
0.8 for ωn/ωe = 0.5.

7.8 Wave loads

There are two different levels at which wave loads
may be needed for structural design purposes:

1. Instantaneous local hydrodynamic pressures
on the surface of the hull as a result of ship
motions and ship-wave interactions. These
pressures may be needed over the entire hull
surface or only on some portion of it. The



P1: JYD
0521845688c07b CB921-Faltinsen 0 521 84568 7 November 5, 2005 12:5

7.8 Wave loads • 271

Figure 7.45. Global forces and moments in hull beam.

important case of slamming (water impact)
pressures is addressed in Chapter 8.

2. Integrated instantaneous pressures (global
wave loads), giving for instance:
a) Vertical and torsional bending moments

and shear forces at midships or other sta-
tions (Figure 7.45).

b) Transverse vertical bending moments,
vertical shear forces, and pitch connect-
ing moments on half of a part of a cata-
maran obtained by intersecting along the
centerplane (see Figure 7.48).

Global wave loads are expected to be significant
for monohulls and catamarans of lengths larger
than 50 m. As stated in the DNV Rules for High
Speed and Light Craft (part 3, chapter 1, section 1)
for craft less than 50 m, the minimum strength
standard for hull girder strength is normally sat-
isfied for scantlings obtained from local strength
requirements (of plates and stiffeners due to lat-
eral pressure). Often for small ships, but also for
ships longer than 50 m, actually the minimum
global strength standards are satisfied by a con-
siderable margin, hence there may be possibilities
to optimize these vessels’ weight slightly more.

7.8.1 Local pressures of non-impact type

The finite element structural analysis techniques
have given an impetus to the development of
methods for calculating the distribution of instan-
taneous hydrodynamic pressures over individual

sections and hence over the entire surface of a
hull oscillating in waves. Earlier in this chapter, we
show that the calculation of ship motions requires
the determination of integrated unsteady forces
and moments due to hydrostatic and hydrody-
namic pressures over the surface of the hull. This is
done by using integral theorems in the strip theory
by Salvesen et al. (1970), but most often it means
that the pressure distribution at a particular instant
is implicitly known when the motions have been
calculated.

When linear theory is used, the hydrody-
namic pressure results in the added mass, damp-
ing, Froude-Kriloff, and diffraction forces and
moments. The hydrodynamic pressure in the linear
theory is evaluated at the mean oscillatory posi-
tion of the ship. It is consistent in linear theory to
use the same pressure terms at the instantaneous
position of the ship. The hydrostatic pressure term
that gives rise to restoring coefficients in the equa-
tion of motions must be evaluated from its value
at the instantaneous ship position. Some care must
be shown at the intersection between the free sur-
face and the hull. This introduces nonlinear effects
that a linear theory cannot completely describe.

Knowledge about the pressure distribution
close to the waterline is needed in studies of fatigue
damage in the side longitudinals in the midship
area (Berstad et al. 1997). This type of damage
has occurred in oil tankers operating on the west-
ern coast of North America and on the eastern
coast of South Africa, but they are certainly not the
only vessels that experience this type of cracking.
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Figure 7.46. Details of the local structure in the waterline zone of a high-speed catamaran used in a
fatigue damage investigation by Berstad and Larsen (1997). The stress response in the longitudinals is
calculated as the sum of local bending responses from lateral pressure and axial stresses due to global
horizontal and vertical bending moments.

The introduction of HT steel into the side struc-
tures during the 1980s increased this problem on
tankers. This became a big issue after the Exxon
Valdez accident and the introduction of OPA-90
(Oil Pollution Act). Cracks propagating through
the side shell or contaminating ballast water giving
oil spills is a severe problem for the owner during
loading/off-loading because oil is easily seen on
the water, resulting in a bad reputation and so on.
However, this is not a big issue on high-speed ves-
sels from a pollution point of view.

Smaller ships may have transverse instead of
longitudinal stiffening. This kind of stiffening will
give less redundancy for global buckling and is not
often considered with respect to fatigue. However,
the method below may also be used for these kinds
of details.

The theoretical procedure presented by Berstad
et al. (1997) was applied to a high-speed catama-
ran by Berstad and Larsen (1997). The structural
details are shown in Figure 7.46.

We will present the theoretical procedure of
Berstad et al. (1997) for finding the pressure in
the waterline zone.

The total pressure below the instantaneous free
surface is found as

ptot = −ρ

(
∂

∂t
+ U

∂

∂x

)
ϕT − ρgz + pa, (7.126)

where ϕT is the total time-dependent velocity
potential. This means ϕT consists of the sum of

eq. (7.99) and the velocity potential of the inci-
dent waves. Eq. (7.126) assumes no interaction
between the local steady flow and the unsteady
flow. Because linearity is assumed, linear superpo-
sition can be assumed in irregular seas. The atmo-
spheric pressure pa can be omitted in the analysis.
The local wave elevation is

ζ = − 1
g

(
∂

∂t
+ U

∂

∂x

)
ϕT. (7.127)

where ϕT is evaluated at the mean free surface.
When calculating the pressure at a point on the
ship’s side, one has to account for the vertical
motion of the point due to ship motions. The mo-
tion is η3 − xη5 + yη4. The relative position bet-
ween point A (Figure 7.47) and the water is then

ζT = ζ − (η3 − xη5 + yη4 + zA) , (7.128)

where (x, y, zA) is the equilibrium coordinates of
point A. If the relative water elevation is less than
zero, the point is out of water and the pressure is

Figure 7.47. Local external fluid pressures in the water-
line zone.



P1: JYD
0521845688c07b1 CB921-Faltinsen 0 521 84568 7 November 5, 2005 12:27

7.8 Wave loads • 273

zero. Otherwise, the pressure for a point above the
mean free surface is calculated as

p = ρg(ζ − (η3 − xη5 + yη4 + zA)).

This implies that the pressure is “hydrostatic” rel-
ative to the instantaneous wave elevation. (see
Figure 3.5). Using eq. (7.127) means that

p = −ρ

(
∂

∂t
+ U

∂

∂x

)
ϕT

∣∣∣∣
z=0 (7.129)

−ρg(η3 − xη5 + yη4 + zA).

As seen from eqs. (7.128) and (7.129), the condi-
tion that point A is out of water corresponds to
the conditions that the pressure calculated from
eq. (7.129) is less than zero. Therefore, the pres-
sure is calculated as

p = max
(

−ρ

(
∂

∂t
+ U

∂

∂x

)
ϕT

∣∣∣∣
z=0 (7.130)

−ρg (η3 − xη5 + yη4 + zA) , 0
)

.

For a point B on the ship’s side with an equi-
librium position below the mean free surface, a
Taylor series expansion of the potential ϕT about
the point B is performed. Keeping the linear
terms, the following expression for the pressure is
derived:

p = max
(

−ρ

(
∂

∂t
+ U

∂

∂x

)
ϕT

∣∣∣∣
z=B (7.131)

−ρg (η3 − xη5 + yη4 + zB) , 0
)

.

Here (x, y, zB) is the equilibrium coordinates of
point B. If this procedure is used to calculate the
global loads on the ship, it will lead to nonlinear
second-order terms in addition to linear first-order
terms. However, it is not a consistent second-order
theory. For instance, a second-order potential and
other terms in Bernoulli’s equation have to be
introduced. Further, the local steady flow and its
interaction with the unsteady flow have not been
considered above.

7.8.2 Global wave loads on catamarans

Important global loads for catamarans are trans-
verse vertical bending moment (often called
split moment), vertical shear force, and pitch
connecting moment, as illustrated in Figure 7.48.
Torsional moments, vertical shear forces, and ver-
tical bending moments at transverse cross sections
are also of concern, as they are for monohulls.

TRANSVERSE
VERTICAL BENDING MOMENT

PITCH CONNECTING MOMENT

Figure 7.48. Examples of global wave loads on a cata-
maran.

Both continuous wave loading and slamming will
cause global loads. In Chapter 8, we deal with wet-
deck slamming–induced global loads, called whip-
ping. The vessel must then be considered elas-
tic. When we consider the effect of continuous
wave action, the catamaran can normally be con-
sidered rigid in the determination of the global
loads. However, it should be ensured that the nat-
ural frequencies of the global elastic modes are
higher than the encounter frequencies of practical
interest. In Chapter 8, we discuss how to account
for the global elastic modes during continuous
wave loading. This phenomenon is called spring-
ing. We discuss unsteady effects; however, there
are also steady Froude number effects that must be
considered.

Global wave loads in regular waves
Because the numerical method by Faltinsen and
Zhao (1991a,b) finds the dynamic pressure dis-
tribution on the hull, one can directly integrate
the pressure and inertia loads to find the global
dynamic loads. In the following, we present a dif-
ferent and simplified method to find the dynamic
loads on the half-parts that are obtained by a cut
along the centerplane of the catamaran. These
global loads are considered to be of main inter-
est in the design of a large catamaran.

Consider a catamaran at a high Froude num-
ber in incident regular waves in deep water. A
right-handed coordinate system (x, y, z) fixed with
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Figure 7.49. Coordinate system and definitions of trans-
latory and angular displacement of a catamaran.

respect to the mean oscillatory position of the ship
is used, with positive z vertically upward through
the center of gravity of the ship and the origin in
the plane of the undisturbed free surface. The cata-
maran is assumed to have the xz-plane as a plane
of symmetry in its mean oscillatory position. Each
hull is assumed symmetric about the hull’s cen-
terplane below the waterline. Let the translatory
displacement in the x-, y-, and z-directions with
respect to the origin be η1, η2, and η3, respectively,
so that η1 is the surge, η2 is the sway, and η3 is the
heave displacement. Furthermore, let the angular
displacements of the rotational motions about the
x-, y-, and z-axes be η4, η5, and η6, respectively,
so that η4 is the roll, η5 is the pitch, and η6 is the
yaw angle. The coordinate system and the trans-
latory and angular displacement conventions are
shown in Figure 7.49. The incident wave potential
is written in complex variables as

ϕ0 exp(iωet) = gζa

ω0
exp(kz − i kx cos β

− i ky sin β + iωet). (7.132)

This is consistent with the wave elevation given by
eq. (7.21).

The dynamic force vector (V1, V2, V3) on the
half-part of the catamaran, obtained by cutting
along the centerplane of the catamaran, is the
difference between the inertia forces and the
sum of external forces acting on the above-
mentioned half-part of the catamaran. The exter-
nal dynamic forces can be divided into added mass
and damping forces, restoring forces, and wave
excitation forces. Similarly, the moment vector
(V4, V5, V6) is equal to the difference between the
moment due to the inertia forces and the moment
due to the external forces. V2, V3, V4, and V5 are

the important structural loads and will be consid-
ered in more detail. In the following text, V2, V3,
V4, and V5 denote horizontal athwartships force,
vertical shear force, transverse vertical bending
moment, and pitch connecting moment between
the two hulls, respectively. By using the symmetry
property of each hull and the assumption of no
hydrodynamic interaction between the hulls, we
can set up simplified expressions.

We go through the details for the vertical shear
force V3 and refer to Figure 7.50. We can use
Newton’s second law, which implies that:

Mass of right-hand half-part of the catamaran
times

Vertical acceleration of the center of gravity of
this half-part

(Vertical structural inertia force)
=

Sum of vertical forces acting on this half-part

These vertical forces consist of

� Vertical shear force V3
� Vertical added mass, damping, and restoring

forces on the half-part
� Vertical wave excitation force on the half-part

The vessel mass of the half-part is 0.5M, where
M is the mass of the catamaran. The vertical
acceleration of the center of gravity of the half-
part follows by differentiating the z-component
of eq. (7.20) twice with respect to time and setting
y = yA, which is the y-coordinate of the center of
gravity of the half-part of the catamaran. Further,
x = 0. This means the longitudinal position of the

Figure 7.50. V3 is the vertical shear force acting on one
part of the catamaran obtained by cutting the catama-
ran along the centerplane. yA is the y-coordinate of the
center of gravity for the half-part. yB is the y-coordinate
for the centerplane of the demihull.
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center of gravity for the half-part is assumed to
be the same as for the whole catamaran. This gives
the following vertical structural inertia force for
the half-part:

0.5M(η̈3 + yAη̈4). (7.133)

Here η3 is heave motion of the center of gravity
of the catamaran. Because no fluid interaction is
assumed between the demihulls of the catamaran
and the underwater geometry of each demihull is
symmetric about its own centerplane, the vertical
hydrodynamic forces on the half-part act in the
centerplane of the demihull. We can then write
vertical added mass force on the half-part:

− 0.5(A33(η̈3 + yBη̈4) + A35η̈5). (7.134)

Here y = yB is the y-coordinate of the centerplane
of the demihull. Further, A33 and A35 are heave
and coupled heave-pitch added mass coefficients
for the catamaran. We set a factor 0.5 in eq. (7.134)
to account for the fact that we consider only half
a part of the catamaran.

The vertical damping and restoring forces can
be expressed similarly as eq. (7.134). This gives

−0.5 (B33 (η̇3 + yBη̇4) + B35η̇5)
−0.5 (C33 (η3 + yBη4) + C35η5) .

(7.135)

In order to express the vertical wave excitation
loads on the half-part we express the incident wave
potential given by eq. (7.132) in a local coordinate
system (x, y′, z) for the half-part of the catamaran.
Here

y′ = y − yB. (7.136)

We can then write

ϕ0 = gζa

ω0
ekz−ikx cos β−iky′ sin β(cos (kyB sin β)

(7.137)
− i sin(kyB sin β)) .

This means the vertical wave excitation force
X3 exp(iωet) on the half-part is proportional to
cos(kyB sin β) − i sin(kyB sin β) and can formally
be written as

X3eiωe t = 0.5F3(cos(kyB sin β)
(7.138)

− i sin(kyB sin β))eiωe t .

Shortly we will see what F3 is. If we similarly intro-
duce a local coordinate y′ = y + yB for the other
demihull, we find that the vertical wave excitation

force on that demihull can be written as

0.5F3(cos(kyB sin β) + i sin(kyB sin β))eiωe t .

(7.139)

Adding together eqs. (7.138) and (7.139) gives
the total vertical wave excitation. F3 cos(kyB sin β)
exp(iωet) on the catamaran.

Based on Newton’s second law and rearrange-
ments of terms, we can now set up the following
equation:

0.5
{
(M + A33) η̈3 + B33η̇3 + C33η3 + A35η̈5

+B35η̇5 + C35η5 −F3 cos(kyB sin β) eiωe t
}
(7.140)

+ 0.5 [MyA + A33 yB] η̈4 + 0.5B33 yBη̇4

+ 0.5C33 yBη4 + 0.5F3i sin (kyB sin β) eiωe t = V3

Now we see that the terms inside the { } brackets
represent all the terms in the heave equation of
motion for the whole catamaran, so this part is
equal to zero. So we have found that the vertical
shear force V3 is a function of the roll angle but
not a function of heave and pitch.

We can now follow a similar analysis for
V2, V4, andV5. This leads as a first step to the fol-
lowing expressions:

V2 = 0.5[(M(η̈2 − zGη̈4) + A22η̈2 + A24η̈4

+ A26η̈6 + B22η̇2 + B24η̇4 + B26η̇6 (7.141)

− F2 exp(iωet − ikyB sin β)]

V4 = 0.5


M (−zGη̈2 + yAη̈3) + I44η̈4

− 2
∫
A

xydMη̈5 − I46η̈6 + A42η̈2 + yB A33η̈3

+ A44η̈4 + yB A35η̈5 + A46η̈6 + B42η̇2

(7.142)
+ yBB33η̇3 + B44η̇4 + yBB35η̇5 + B46η̇6

+ yBC33η3 + yBC35η5 + ρg∇GMη4

− (F L
4 + yBF3) exp(iωet − i kyB sin β)




V5 = 0.5


− 2

∫
A

xydMη̈4 + I55η̈5 − 2
∫
A

zydMη̈6

+ A53(η̈3 + yBη̈4) + A55η̈5 + B53(η̇3 + yBη̇4)
(7.143)+ B55η̇5 + C53(η3 + yBη4) + C55η5

− F5 exp(iωet − ikyB sin β )
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Here Ajk, Bjk, and Cjk are the added mass, damp-
ing, and restoring coefficients, respectively, for the
catamaran; ∇ is the displacement; GM is the roll
metacentric height; I44 and I55 are the moment
of inertia with respect to the x- and y-axes, respec-
tively; and I46 is the roll-yaw product of inertia for
the catamaran. The center of gravity for the cata-
maran is located at (0, 0, zG). dM is an infinitesimal
mass element located at a point (x, y, z).

∫
A means

that the integration is over the above-mentioned
half-part of the catamaran. Further F2 exp(iωet)
cos(kyB sin β) is the transverse wave excitation
force on the catamaran. The total roll wave exci-
tation moment on the catamaran is [F L

4 cos(kyB

sin β) − iyBF3 sin(kyB sin β)] exp(iωet) and the
total pitch wave excitation moment is F5 cos(kyB

sin β) exp(iωet). This means F L
4 is proportional to

the local roll moment for each hull about an axis
coinciding with the intersection between the mean
waterplane and the centerplane of the hull.

The expressions for Vj can be simplified by using
the equations of motions for the catamaran. We
showed this for V3. We can now write

V2 = 0.5F2i sin(kyB sin β) exp(iωet) (7.144)

V3 = 0.5 [(M yA + A33 yB)η̈4 + yBB33η̇4
(7.145)

+ yBC33η4 + F3i sin(kyB sin β) exp(iωet)]

V4 = 0.5


F L

4 i sin(kyB sin β) exp(iωet)

(7.146)

+ M(yA − yB)η̈3 − 2
∫
A

xy dMη̈5


 .

It should be recalled that V4 is the trans-
verse vertical bending moment about the x-axis.
Further,

V5 = 0.5





−2

∫
A

yx dM + yB A53


 η̈4

+ yB(B53η̇4 + C53η4) − 2
∫
A

zy dMη̈6 (7.147)

+ F5i sin(kyB sin β) exp(iωet)


 .

Eqs. (7.144), (7.145), and (7.147) show that
V2, V3, andV5 are zero in head and following seas,

that is, wave directions β = 0◦ and 180◦. The
reason V2 is zero is that there is no transverse wave
forces or motions that appear for β = 0◦ and 180◦.
Because the vertical hydrodynamic and body iner-
tia force and pitch moments on the two demihulls
are equal and in phase whenβ = 0◦ and 180◦, there
cannot be any internal vertical force (shear force)
and pitch connecting moment in a longitudinal cut
along the centerplane.

Eq. (7.146) shows that V4 is non-zero when
β = 0◦ and 180◦. The reason is that the vertical
hydrodynamic force and structural inertia force
on the half-part of the catamaran act through dif-
ferent points with y-coordinates yB and yA (see
Figure 7.50).

V2 is zero when the wavelength λ= 2yBsinβ/

n(n = 1, 2 . . . ). For very long wavelengths, sin(kyB

sinβ), ωe, η4, η5, and η6 all go to zero. This
means that V2, V3, V4, and V5 go to zero. This is
also true for very short wavelengths, because the
wave excitation loads and the motions go to zero
then.

Eqs. (7.144) to (7.147) show that roll motion is
important for vertical shear force and pitch con-
necting moment, whereas heave and pitch acceler-
ations influence the vertical bending moment. The
horizontal athwarthships force is independent of
the ship motions.

Faltinsen et al. (1992) presented numerical and
experimental results of global wave loads on a
catamaran at Froude number 0.49. The numeri-
cal method is based on the high-speed theory by
Faltinsen and Zhao (1991a,b). A simplified rud-
der model with automatic control was included.
Global wave loads were evaluated as described
above. The experiments were done with a free-
running model (see Figure 7.53 and Table 7.5)
in a basin of length 80 m, breadth 50 m, and
depth 10 m, that is, at the Ocean Environment
Laboratory at the Marine Technology Center in
Trondheim. Regular incident waves of different
wave headings were used. During the tests, the
mean trim angle was between 2.2◦ and 2.6◦. The
loads were measured in the deck at zc = 0.185m
in a longitudinal cross section parallel to the cen-
terplane at a distance of 0.075 m. Sufficient infor-
mation on mass distribution is sometimes lacking
when model test results are presented. However,
the data presented in Table 7.5 are sufficient
according to the previously presented theoretical
method.
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Table 7.5. Main particulars of the tested catamaran model (see Figure 7.53)

Designation Symbol Unit Value

Length between perpendiculars L= LPP m 3.778
Beam at waterline amidships B m 0.918
Draft – even keel D m 0.235
Displacement ∇ m3 0.257
Block coefficient CB 0.542
Breadth of one hull at waterline amidships b m 0.267
Distance between centerplanes of demihulls 2p m 0.652
Transverse metacentric height GM m 0.556
Center of gravity above keel KG m 0.332
Center of gravity aft of amidships LCG m 0.296
Pitch radius of gyration with respect to axis through

center of gravity
r55 m 0.981

Roll radius of gyration with respect to axis through
center of gravity

r44 m 0.334

Yaw radius of gyration with respect to axis through
center of gravity

r66 m 1.022

Distance from centerplane of the catamaran to center
of gravity of one half-parta

yA m 0.298

Coupled inertia moment in roll-pitch of one half-parta − ∫
A xydM kgm2 0.366

Coupled inertia moment in roll-yaw of one half-parta − ∫
A xzdM kgm2 −1.118

Coupled inertia moment in pitch-yaw of one half-parta − ∫
A yzdM kgm2 0.0170

a Half-part (y > 0) obtained by an intersection along the centerplane of the catamaran.

Error sources in the theory are the result of:

� Transverse wave systems
(The high-speed theory neglects this effect. We
saw in Chapter 4 that this is an appropriate
approximation when Fn > ≈ 0.4 − 0.5.)

� Hull interaction
(The theory neglects this effect, but we saw in
section 7.2.5 that this effect is present in hydro-
dynamic coefficients. The effect decreases with
increasing forward speed.)

� Interaction steady/unsteady flow
(The theory neglects interaction between local
steady and unsteady flow. When the Froude
number increases, this interaction get increased
importance. We saw that in section 7.2.12 and
will see this for planing vessels in Chapter 9.)

� Rudder model
� Nonlinear effects are disregarded

Experimental error sources are the result of:

� Time window
(Transient effects did not die out because of few
oscillation periods. This was particularly true for

roll, vertical shear force and pitch connecting
moment in beam and following seas.)

� Heading control
(The results may be sensitive to heading.)

� Non-constant wave condition
(The incident wave amplitude may vary up to
10% along the track of the model.)

� Nonlinearities
(The experimental results showed that this was
a minor effect. This is because of small incident
wave slopes.)

Five wave headings were tested: 0◦, 45◦, 90◦,
135◦, and 180◦. The pitch connecting moment
(RAO) was generally largest for 45◦, and the ver-
tical shear force and the vertical bending moment
were generally largest for 90◦. For short-term
statistics, it is not only important how large the
maximum value in the transfer function is, but
how large a frequency range with large RAO
values overlaps frequencies with significant wave
energy.

Figure 7.51 shows results for transfer func-
tions (RAOs) of vertical shear force and verti-
cal bending moment for β = 90◦ as a function
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Figure 7.51. Vertical shear force |V3| and vertical bending moment amplitudes |V4| in beam sea regular
waves for the catamaran model presented in Figure 7.53 and Table 7.5. Fn = 0.49.

of nondimensional wave period T
√

g/L (T =
wave period, L = length between perpendiculars).
FASTSEA refers to the computer program. The
calculations have been done with a trim angle of
2.4◦. Calculations with zero trim angle will give
different results. For instance, for 90◦ heading, the
maximum roll angle will be 0.2◦ higher at a trim
angle of 2.4◦ relative to zero trim.

Numerical values for 88◦ and 92◦ are presented
because the response amplitude may be sensi-
tive to the wave heading and it was not possi-
ble to keep the desired heading of 90◦ during the
tests. The error was within 2◦. The figures show
differences in response amplitudes estimated by
a spectral analysis and by inspecting the time
series. This gives an indication of the experi-
mental errors and difficulties in performing the
tests.

An important reason for the differences bet-
ween numerically and experimentally predicted

Figure 7.52. Pitch connecting moment
amplitude |V5| in 45◦ heading for the cata-
maran model presented in Figure 7.53 and
Table 7.5. Fn = 0.49.

vertical shear forces was believed to be the dif-
ferences in numerically and experimentally pre-
dicted roll angles. Figure 7.51 shows quite good
agreement between numerical and experimental
values for vertical bending moments. The maxi-
mum values of |V4| occur close to the case in which
there is half an incident wavelength between the
centerplanes of the two demihulls. The latter gives
T(g/L)0.5 = 1.47 and suggests that the wave exci-
tation loads on the two demihulls are 180◦ out of
phase at maximum|V4| .

Results for pitch connecting moment in 45◦

heading are presented in Figure 7.52. The maxi-
mum value occurs for an incident wavelength that
is 0.7 times the ship length.

Global wave loads in a short-term sea state
Having obtained the linear transfer functions for
Vj as described above we can use eq. (7.111) to
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Figure 7.53. Body plan of a catamaran model tested in the Ocean Environment Laboratory of the
Marine Technology Center in Trondheim and used as a basis for the calculation of the global wave
loads presented in Figure 7.54.

predict the standard deviation σ in a long-crested
short-term sea state. Because S(ω) is proportional
to H2

1/3, σ is proportional to H1/3. Nondimensional
values of standard deviations of vertical shear
force (σ3 ), transverse vertical bending moment
(σ4), and pitch connecting moments (σ5) in the
centerplane of a catamaran in long-crested irregu-
lar sea are presented as functions of wave heading
and nondimensional mean wave period T1 in Fig-
ure 7.54. The Froude number is 0.7, and the cata-
maran is described in Figure 7.53 and Table 7.5.
The results illustrate that global loads are sensitive
to the wave heading. The vertical shear forces and
vertical bending moments are generally largest in
beam sea, whereas the largest values for pitch con-
necting moments occur at wave heading 60◦ when
T1 (g/L)0.5

> 2.

Let us consider an example with H1/3 = 5 m
and L = 70 m. In order to find corresponding
values for T1, we use the scatter diagram pre-
sented in Table 3.4. This means T2 ∈ (5.5 s, 13.5 s).
We now use eq. (3.62), that is, T1 = 1.073T2 for
a JONSWAP spectrum. This gives the range
(2.2, 5.4) for T1 (g/L)0.5

. In this range, we find
the following maximum values for the normal-
ized standard deviations for global sectional
loads:

max
{

σ3

ρgL2 H1/3

}
= 0.0032

for a heading of 90.0◦ and T2 = 5.5 s,

max
{

σ4

ρgL3 H1/3

}
= 0.00035

also for a heading of 90.0◦ and T2 = 5.5 s, and

max
{

σ5

ρgL3 H1/3

}
= 0.0007

for a heading of 60.0◦ and T2 = 5.5 s. We now want
to calculate the most probable largest value. This
can be approximated (see eq. (7.113)) as

Vj ≈ 4σ j , (j = 3, 4, 5).

The chosen sea states now give us the following
values:

V3 = 4σ3 = ρgL24H1/3 · 0.0032 = 3.1 · 106 [N]
V4 = 4σ4 = ρgL34H1/3 · 0.00035 = 2.4 · 107 [Nm]
V5 = 4σ5 = ρgL34H1/3 · 0.0007 = 4.8 · 107 [Nm]

The results in Figure 7.54 are short-term predic-
tions based on linear theory. However, it should
be recognized that nonlinearities may matter in
design conditions. Nonlinear corrections are made
in practice. However, the state of the art in calcu-
lating nonlinear effects from first principles needs
to be improved. If the ship has significant flare in
the bow part, nonlinearities become particularly
important. This can be illustrated by the full-scale
measurements on the container vessel CTS Tokyo
Express in the northern Atlantic. Short-term
statistical representations of the wave-induced
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Figure 7.54. Standard deviations of vertical shear forces (σ 3), transverse vertical bending moments
(σ 4), and pitch connecting moments (σ 5) in the centerplane of a catamaran in long-crested irregular
sea as a function of wave heading and mean wave period T1. Fn = 0.7. The catamaran is described in
Figure 7.53 and Table 7.5 (Faltinsen et al. 1992).
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Figure 7.55. Short-term statistical representation of the peaks εmax of wave-induced bending strain
ε derived from northern Atlantic measurements on CTS TOKYO EXPRESS (1018 GMT December
27, 1973). A low-pass filter was applied to remove contributions from the two-node vibration taking
place at 5 rad/s. (Jensen and Pedersen 1978, Hackmann 1979).

bending strain amplitudes εmax are presented in
Figure 7.55. The wave-induced sagging and hog-
ging bending moments are different. Sagging
describes a state in which at midships, there are
tensile bending stresses in the bottom and com-
pression bending stresses in the upper deck. Hog-
ging is the opposite of sagging, that is, tensile bend-
ing stresses occur at the midships upper deck. A
linear theory predicts the same values for wave-
induced sagging and hogging. These values are
denoted as Rayleigh in the figure. The data are
obtained during an operational period of 20 min-
utes. It is difficult to explain completely the non-
linear behavior leading to differences in hogging
and sagging, but different nonlinear generaliza-
tions of strip theory have been used. They are able
to explain a correct trend. A discussion is given by
the Load Committee of the 12th ISSC (see also
proceedings of the 14th ISSC).

Long-term predictions
The previously described numerical model was
combined by Faltinsen et al. (1992) with the pro-
cedure for long-term response outlined in sec-
tion 7.4.2 to predict design values for vertical
shear forces, transverse vertical bending moments,
and pitch connecting moments on the catamaran
model presented in Figure 7.53 and Table 7.5. The
full-scale vessel length varied between 50 m and
120 m. The catamaran was assumed to have 2.4◦

trim. The design speed corresponds to Fn = 0.7.

The global loads were evaluated in the deck at
z = 0.165 m (model scale) in the centerplane of the
catamaran. An operational area between Korea
and Japan was selected. The weather data were
in the form of joint frequency tables (scatter dia-
grams) for significant wave heights and mean wave
periods, and included data for all seasons. The data
were taken from Takaishi et al. (1980) and repre-
sented area E02S in their weather atlas. Each sea
state was represented by long-crested sea and the
JONSWAP spectrum given by ITTC. For simplic-
ity, it was assumed that each wave heading relative
to the vessel had equal probability. This is a normal
assumption for conventional vessels in the ocean
but not, for example, for ships that have operation
related to the offshore oil industry. The calcula-
tions were made for 13 wave headings between 0◦

and 180◦. If no rudder effects were accounted for,
numerical difficulties occurred at small frequen-
cies of encounter because of high predicted values
for transverse motion amplitudes. The results for
standard deviation of global loads in a given sea
state are presented in Figure 7.54.

Operational limits were accounted for. How-
ever, only a criterion related to wetdeck slam-
ming was used. Strictly speaking, criteria due to
vertical accelerations and the performance of the
propulsion and engine system in a seaway should
be included.

The effect of involuntary speed reduction due to
added resistance in waves and wind was neglected.
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Table 7.6. Example of long-term statistical values of global loads and operational limits of
catamarans of different lengths

L (m)
Vertical shear
force (kN)

Transverse vertical
bending moment
(kNm)

Pitch connecting
moment (kNm)

% Time in harbor
because of
operational limits

50 172 914 1804 6.7
60 300 1918 3961 5.0
70 485 3796 8560 3.8
80 735 6774 18793 2.7
90 1179 13504 37635 2.0

100 1766 22410 64206 1.7
110 2685 38120 110780 1.4
120 3487 53989 156890 0.7

Probability level 10−8. Design speed Fn = 0.7. The catamarans are obtained by scaling the model
presented in Figure 7.53 and Table 7.5 (Faltinsen et al. 1992).

If the catamaran did not satisfy the criterion that
the slamming probability be less than 0.03 after
reducing the ship speed to Froude number 0.45, it
was decided to exclude the sea state from the long-
term prediction of the response. In practice, oper-
ational limits have to be decided in a different way.
The most common way is to specify a maximum
operating H1/3 in combination with allowed speed.
This will influence the final results. The long-term
predictions were based on section 7.4.2 by also
including the effects of wave heading. This means
that for each sea state, the proper Rayleigh distri-
bution was multiplied by the probability of occur-
rence of the sea state. These products were then
summed up. It was decided to select design val-
ues corresponding to a probability of 10−8. This
corresponds to a return period on the order of 20
years. The results in Table 7.6 are for different ship
lengths between 50 and 120 m. The time spent in
the harbor according to the criteria for operational
limits is also shown.The predicted design values
for global loads are very much lower than recom-
mended values by DNV. However, if operational

Figure 7.56. The boundary-value problem
for high-frequency 2D heave-added mass
in heave for a semi-submerged circular
cylinder. η̇3 = heave velocity.

limits are omitted, the predictions are in closer
agreement with DNV rules.

7.9 Exercises

7.9.1 Mass matrix

Derive the mass matrix elements Mjk, j = 4,6, k =
1,6 in eq. (7.36). You should start by considering
an infinitesimal small mass element with mass dM
and accelerations following from eq. (7.20). Then
you should take the moment about the (x, y, z)
axis of the inertia force associated with the mass
element. Integrating the resulting moment due to
all mass elements of the vessel leads to the answer.

7.9.2 2D heave-added mass and damping

a) Consider the boundary-value problem for de-
termining high-frequency 2D heave-added mass
in heave for a semi-submerged circular cylin-
der shown in Figure 7.56. Show that the velocity
potential due to forced heave velocity η̇3 can be



P1: JYD
0521845688c07b1 CB921-Faltinsen 0 521 84568 7 November 5, 2005 12:27

7.9 Exercises • 283

Figure 7.57. 2D catamaran consisting of two semi-submerged circular cylinders.

expressed as

ϕ = η̇3
R2

r
cos θ. (7.148)

b) Express the vertical force on the cylinder due
to the pressure component −ρ∂ϕ/∂t. Show that
this leads to the following 2D heave-added mass
and damping coefficients:

a33 = 0.5ρπ R2, b33 = 0.

Explain physically why the damping coefficient
b33 = 0.

c) Assume harmonic heave oscillations and con-
sider a time instant when the heave acceleration
is maximum. Plot the pressure distribution due to
−ρ∂ϕ/∂t on the cylinder. What is the fluid velocity
at this time instant?

Now consider a time instant when the heave
velocity is maximum. Plot the fluid velocity on the
free surface. What is the fluid pressure component
−ρ∂ϕ/∂t?

d) Consider a 2D catamaran consisting of two
semi-submerged cylinders as shown in Figure 7.57.
Assume a high-frequency free-surface condition.
Make an estimation of heave-added mass by the
following steps:

Step 1: Express the flow field as if the two hulls
did not interact with each other.

Step 2: Express an average normal fluid velocity
at the position of one of the hulls caused by the
other hull, based on the result from step 1.

Step 3: Introduce an additional part to the veloc-
ity potential so that the boundary condition on
the hull is satisfied. (Hint: Step 2 has caused a flow
through the hull surface. This must be counter-
acted. The solution of the boundary-value prob-
lem is similar but not identical to the solution at
step 1.)

e) Consider the 2D catamaran in Figure 7.57.
Allow for free-surface waves due to forced heave
motions. We shall now find an approximation
of heave damping by considering interference
between the far-field wave systems generated by
each hull. By interference, we mean that one con-
siders the waves generated by each hull as if
the other hull was not there. The phasing of the
waves generated by each hull will then cause either
amplification or reduction in the far-field wave
amplitude relative to those that arise if we do not
consider the phasing. (Hint: The far-field wave
elevation caused by the hulls can be expressed
as A3 cos (ωt − k |y ± p| + ε) . Explain!) The far-
field wave amplitude A3 without interaction can
be found by means of Figure 7.20 and eq. (7.59).
Then you should once more use eq. (7.59) to com-
pare with the damping results, accounting for the
interaction in Figure 7.20. Of course, you cannot
expect your approximate results to be the same as
those in Figure 7.20.

7.9.3 Linear wavemaker solution

A 2D wave tank with semi-infinite length and
constant water depth h is considered. When the
water is at rest, it occupies the region 0 ≤ x ≤ ∞,

0 ≤ z ≤ −h. The wavemaker is situated along the
z-axis at x = 0 and is assumed to oscillate harmon-
ically with small amplitude in the x-direction. A
linear steady-state solution for the fluid motion is
considered. The horizontal velocity of the wave-
maker is described as

uWM = −ωs (z) sin ωt at x = 0. (7.149)

Here s (z) represents horizontal oscillation ampli-
tude of the wavemaker that varies in general with
z. If the wavemaker is a piston, then s(z) is a con-
stant. If a paddle that is hinged to the bottom
is used to generate waves, then s(z) = α(z + h).



P1: JYD
0521845688c07b1 CB921-Faltinsen 0 521 84568 7 November 5, 2005 12:27

284 • Semi-displacement Vessels

Here α is the angular oscillation amplitude of the
paddle.

Billingham and King (2000) have presented a
solution to this problem. The velocity potential for
the fluid motion is represented as

ϕ = A0 cosh [k0 (z + h)] cos (k0x − ωt)
(7.150)

+
∞∑

n=1

Ane−knx cos [kn (z + h)] sin ωt,

where kn for n ≥ 1 are the positive roots of ω2 =
−gk tan kh and k0 is the unique positive root of
ω2 = gk tanh kh.

a) Confirm that eq. (7.150) satisfies the Laplace
equation, the linearized free-surface condition,
the bottom condition at z = −h, and a radiation
condition ensuring outgoing waves in the far field
of the wavemaker.

b) Show by satisfying the body boundary condi-
tion on the wavemaker that An are determined by

A0k0

0∫
−h

cosh2[k0(z + h)]dz

(7.151)

= −
0∫

−h

ωs(z) cosh[k0(z + h)]dz

Ankn

0∫
−h

cos2[kn(z + h)]dz

(7.152)

=
0∫

−h

ωs(z) cos[kn(z + h)]dz, n ≥ 1,

(Hint: Use that
0∫

−h

cos[kn(z + h)] cos[km(z + h)]dz

= 0 for n �= m
0∫

−h

cosh[k0(z + h)] cos[kn(z + h)]dz

= 0 for n = 1, 2, . . .)

c) Consider a piston wavemaker and show that
the ratio between the amplitude a of the far-field
waves and the amplitude s0 of the piston’s oscilla-
tion is

a
s0

= 4 sinh2 k0h
2k0h + sinh 2k0h

. (7.153)

Figure 7.58. Antiroll damping fin (Seastate).

Discuss this ratio for different water depths and
wavelengths.

d) Consider the linearized hydrodynamic force on
the piston wavemaker by using Bernoulli’s equa-
tion. Show that this can be expressed as

Fh = −
∞∑

n=1

2ρ sin2 knh

k2
n

(
knh + 1

2 sin 2knh
) ẍp

(7.154)

− 2ρω sinh2 k0h

k2
0

(
k0h + 1

2 sinh 2k0h
) ẋp,

where ẋp and ẍp are the piston velocity and accel-
eration, respectively.

Express eq. (7.154) in terms of added mass and
damping.

e) Show that the damping term in eq. (7.154) can
also be derived by considering conservation of
energy.

(Hint: Generalize the derivation of eq. (7.59).)

f) Express the equation of motion of the piston
wavemaker.

7.9.4 Foil-lift damping of vertical motions

a) Foil-lift damping in heave was presented in
eq. (7.80) based on the Theodorsen function.
Generalize the derivation to include a contribu-
tion from the foil to the added mass coefficients
A33,A35,A53, andA55 and the damping coefficients
B35,B53, andB55.

b) In order to use the time-domain solution pre-
sented in section 7.3, one needs to calculate the
retardation function h jk. This means that high-
frequency values of either added mass or damping
are needed. Derive the infinite frequency values of
Ajk and Bjk.

c) We described in section 7.2.10 automatic con-
trol of vertical motions by using controlled flap
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motion. As in section 7.2.10, assume steady-state
heave and pitch in regular head sea waves. Assume
the whole foil can be separately pitched in order to
automatically control the heave and pitch motions.
Generalize the procedure in section 7.2.10, and
use the Theodorsen function to calculate vertical
hydrodynamic forces on the T-foil.

7.9.5 Roll damping fins

Consider a roll damping fin such as the one in Fig-
ure 7.58 on a monohull vessel at forward speed.
Base the dynamic lift force on the fin on a quasi-
steady analysis, strip theory, and the assumption
that the local flow at the ship does not influence
the incident flow on the fin. Choose the strips in
the chordwise direction, that is, in the longitudinal
direction of the ship.

a) Express linear damping terms in sway, roll, and
yaw due to the fin.

b) Consider the ship in regular oblique waves.
Neglect the lifting effect on the added mass coef-
ficients due to the foil. Express the linear dynamic
bending moments about the longitudinal axis at
different cross sections of the fin. (Hint: You must
account for the fin’s mass, added mass, and lifting

loads. The effect of the incident waves also must
be accounted for.)

c) Assume the fins are equipped with flaps that are
automatically controlled to damp the roll motions.
Show how this can be incorporated into the equa-
tions of motions.

7.9.6 Added mass and damping in roll

The axis to which we refer added mass and damp-
ing in roll matters. Let us say that A44, A42, A24,

B44, B42, B24 have been obtained relative to the
coordinate system defined in Figure 7.49. Express
A44 and B44 with respect to center of gravity.

7.9.7 Global wave loads in the deck of a catamaran

a) Derive the mass inertia terms in transverse
vertical bending moment V4 and pitch connecting
moment V5 presented in eqs. (7.142) and (7.143).
(Hint: Start with the mass inertia force on a small
structural element with mass dM and the acceler-
ation using eq. (7.20).)

b) Derive the expression for pitch connecting
moment V5 given by eq. (7.147).
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8 Slamming, Whipping, and
Springing

8.1 Introduction

Slamming (water impact) loads are important in
the structural design of all high-speed vessels. Fur-
ther, the occurrence of slamming is an important
reason for a shipmaster to reduce the ship’s speed.
It is also an important effect in calculating oper-
ational limits (see section 1.1). The probability of
slamming is found by defining a threshold rela-
tive impact velocity for slamming to occur (see eq.
(8.142)). An often-used criterion is that a typical
shipmaster reduces the speed if slams occur more
frequently than three out of 100 waves passing the
ship. It may be misleading to talk about a thresh-
old velocity. There is no threshold for slamming as
a physical process. Further, the conventional way
of defining a threshold velocity does not reflect
the effect of the structural shape. For instance, for
a high-speed vessel with slender lines in the bow,
the procedure may say that slamming occurs on
the bow part of the hull, although, in reality, it is
not a problem. In order to come up with better cri-
teria, it is necessary to study theoretical models for
or perform experiments on water impact against
wetdecks and hull structures typical for high-speed
vessels. This is also necessary in order to develop
rational criteria for operational limits due to slam-
ming. The criteria should be related to slamming
loads used in the structural design or, ideally, to
structural response due to slamming.

Wetdeck slamming (Figure 8.1) is important for
multihull vessels. The wetdeck is the lowest part of
the cross-structure connecting two adjacent side
hulls of a multihull vessel. Figure 8.2 shows an
example of a cross section in the forward part of
a catamaran, where wetdeck slamming is likely to
occur for a vessel with forward speed in head sea
conditions. In this case, the wetdeck has a wedge-
shaped cross section with deadrise angle βW. For
some vessels, this can be zero or as large as it is for
the wave-piercer catamaran shown in Figure 1.3.

When the side hulls come out of the water as
a consequence of the relative vertical motions
between the vessel and the water surface, sub-
sequent slamming on the side hulls will occur.
Because the deadrise angle β in Figure 8.2 is large,
the local slamming loads are not expected to be
important. However, this also depends on the rel-
ative impact velocity VR. When β is larger than
about 5◦, the maximum slamming pressure is pro-
portional to V2

R for constant VR.

A more critical situation for the side hulls is
shown in Figure 8.3, in which a steep wave impacts
on the side hull and the relative angle βR between
the impacting free surface and the hull surface is
small. The presence of roll can, as illustrated in the
figure, decrease βR and thereby cause increased
slamming loads. The slamming loads are sensitive
to βR, particularly for small angles of βR.

Another scenario is green water on deck. This
is illustrated in Figure 8.4 as a consequence of
“dive-in” in following seas, especially when speed
is reduced in large waves and the frequency of
encounter becomes small, but green water on deck
can also happen as a consequence of large relative
vertical motions between the vessel and the water.
The water can then enter the deck as a plunging
breaker, causing slamming loads on the deck. The
subsequent fluid motion can have an impact on
obstructions such as the wheelhouse in Figure 8.4.

Figure 8.5 shows drop tests at DNV (Det Norske
Veritas) of a wedge cross section representing a
typical side hull of an SES (surface effect ship) or a
catamaran. Hayman et al. (1991) presented results
from these drop tests. One model was made of
GRP (glass-reinforced plastic) sandwich and had a
deadrise angle of 30◦; the other was an aluminium
model with a deadrise angle of 28.8◦. The effect of
tilting the models was studied. Experience of ves-
sels with GRP sandwich in severe conditions in ser-
vice has shown that an important mode of failure
is cracking of the core due to shear stresses, gener-
ally followed by delamination. Impact pressures
and structural strains were measured during the
experiments. Negative pressures relative to atmo-
spheric pressure were also seen in the elastic cases.
Why this occurs is explained later in the text.

We see in Figure 8.5 a lot of spray as a conse-
quence of the impact. Figure 8.6, taken during drop
tests of a wedge-formed cross section in model
scale, gives a better view of the spray in combina-
tion with the local uprise of the water. Actually,

286
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Figure 8.1. Wetdeck slamming.

Figure 8.2. Example of a cross section in the forward
part of a catamaran. β = deadrise angle of a demi-hull,
βw = deadrise angle of the wetdeck.

Figure 8.3. Slamming due to a steep wave impacting on
the ship’s hull. η4 = roll.

one should not focus too much on the spray. There
is close to atmospheric pressure in the spray. The
large pressures will typically occur at the “spray
root,” where there is green water meaning that

Figure 8.4. Green water as a consequence of “dive-in” in following sea.

the flow is not aerated here. This is associated with
high free-surface curvature caused by large pres-
sure gradients that accelerate the water into a jet
flow with high velocities. This jet flow then changes
into spray under the action of surface tension.

In order to translate the results from either
numerical or experimental drop tests, we need
information about the relative vertical motions
and velocities between the ship and the water in
the impact area. Figure 8.7 gives calculated relative
vertical motions and velocities in irregular long-
crested head sea waves in a sea state described by
mean wave period T2 and significant wave height
H1/3. A two-parameter JONSWAP (Joint North
Sea Wave Project) wave spectrum recommended
by the ITTC (International Towing Tank Confer-
ence) was used. The calculations were done with-
out accounting for the interactions between slam-
ming loads and ship motions. This is the common
procedure. However, one should ideally account
for this interaction effect.

Slamming causes both local and global effects
(Figure 8.8). The global effect is often called whip-
ping. Hydroelasticity may be important for global
loads but also matters for local effects in the case of
very high slamming pressures of very short dura-
tion. Very high pressures may occur when the
angle between the impacting free surface and hull
surface is small.

Hydroelasticity means that the fluid flow and the
structural elastic reaction are considered simul-
taneously and that we have mutual interaction,
that is,

� The elastic vibrations cause a fluid flow with a
pressure field
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Figure 8.5. Drop tests at DNV of a wedge section of a typical sidehull design of an SES or a catamaran.
The top picture shows the section at its initial drop height of about 9 m above water level. The lower
picture illustrates the large spray created as a consequence of the impact. Note the circular end plates
fitted to reduce the three-dimensional effect.

� The hydrodynamic loading affects the structural
elastic vibrations

The classical book on hydroelasticity of ships is by
Bishop and Price (1979).

A conventional structural analysis without
hydroelasticity or dynamic effects considers the
hydrodynamic loading by assuming a rigid struc-

ture. The loading is then applied in a quasi-steady
manner when the resulting static structural elastic
and plastic deformations and stresses are calcu-
lated. The fluid flow is affected by many physical
features, such as compressibility and air cushions.
However, it is complicated to solve the complete
hydrodynamic problem, and approximations must
be made. The guideline in making simplifications
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Figure 8.6. Drop test of a wedge (Green-
how and Lin 1983).

is to consider what physical features of the fluid
flow have a nonnegligible effect on maximum
slamming-induced structural stresses. This implies,
in general, that the compressibility of the water can
be neglected.

Very high slamming pressures may occur when
the angle between the impacting body and the free
surface is small. If we want to make a “black-
and-white picture,” we can say that very high
slamming pressures are not important for steel
and aluminum structures. The high pressure peaks
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Figure 8.7. Examples of calculated RMS (root mean
square) values of relative vertical motions (σR) and
velocities (σVR) at FP for a catamaran in head sea long-
crested waves. L = ship length, g = acceleration of
gravity, Fn = Froude number, T2 = mean wave period,
H1/3 = significant wave height.

are localized in time and space, and it is the
force impulse that is important for the structural
response. We will make it clearer in the main text
why this is so.

An important message is that

Slamming must always be analyzed as a combina-
tion of hydrodynamics and structural mechanics.

This includes the case in which the impacting body
can be considered rigid in the hydrodynamic anal-
ysis.

We start out in the main text of this chapter
by discussing local slamming effects by first con-
sidering hydroelastic slamming. We then discuss
local slamming loads on a rigid body before whip-
ping is studied. Springing is another global effect
similar to whipping. This is also dealt with in this
chapter. Whereas whipping is a transient vibra-
tion caused by slamming, springing is steady-state
vibration caused by the oscillating wave forces
along the hull. Springing (based on linear the-
ory) is excited by the waves with an encounter
frequency equal to the vertical two-node reso-
nant frequency. Springing is a continuous process.
The vibration amplitude varies in accordance with
the irregular waves. The importance of spring-
ing increases with increasing speed, length, and
hull girder flexibility. The phenomenon is nor-
mally more important for fatigue damage than
for extreme design loads. For multihull vessels or
open monohull vessels, other vibration modes may
have low natural frequencies and may be excited
by the oscillating waves. In addition, springing
and whipping in irregular sea may occur simul-
taneously, making it difficult to separate the two
phenomena.
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Figure 8.8. Artist’s impression of bow slamming causing global elastic vibrations (whipping) of the
ship’s hull. (Artist: Bjarne Stenberg)

8.2 Local hydroelastic slamming effects

Different physical effects occur during slamming.
The effects of viscosity and surface tension are, in
general, negligible. When the local angle between
the water surface and the body surface is small at
the impact position, an air cushion may be formed
between the body and the water. Compressibility
influences the flow of the air in the cushion. The
airflow interacts with the water flow. When the air
cushion collapses, air bubbles are formed.

The large loads that may occur during impact
when the angle between the water surface and
body surface is small, can cause important local
dynamic hydroelastic effects. The vibrations may
lead to subsequent cavitation and ventilation.
These physical effects have different time scales.
The important time scale from a structural point of
view is when maximum stresses occur. This scale
is given by the highest wet natural period (Tn1) for
the local structure.

Table 8.1. Main parameters for plates used in the drop test results presented in Figures 8.9 and 8.10

Parameter Plate I (steel)
Plate II
(aluminum)

Structural mass per unit length and breadth, MB 62 kgm−2 21 kgm−2

Modulus of elasticity, E 210 × 109 Nm−2 70 × 109 Nm−2

Length of plate, L 0.50 m 0.50 m
Breadth of plate, B 0.10 m 0.10 m
Bending stiffness, EI 8960 Nm2m−1 17060 Nm2m−1

Structural mass parameter, MB/ρL 0.124 0.042
Connecting spring parameter, kθ L/(2EI) 2.85 1.50
Distance from neutral axis to strain measurements, za 0.004 m 0.01375 m

Compressibility and the formation and collapse
of an air cushion are important initially, and nor-
mally in a time scale, that is smaller than the
time scale for local maximum stresses to occur.
Hence, the effect of compressibility on maximum
local stress is generally small. However, we can-
not exclude the possibility that the shape of the
impacting free surface generates an air cushion of
sufficiently long duration from a structural reac-
tion point of view (Greco et al. 2003).

Theoretical and experimental studies of wave
impact on horizontal elastic plates of steel and
aluminium are presented in Kvålsvold (1994),
Kvålsvold et al. (1995), Faltinsen (1997), and
Faltinsen et al. (1997). The theoretical studies
were made assuming 2D beam theory for strips
of the plates. Significant dynamic hydroelastic
effects were demonstrated. The main parameters
for plates used in the drop tests are shown in
Table 8.1. The test sections were divided into three
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Figure 8.9. Measured maximum nondimensional strain
amplitude εm in the centers of the horizontal steel and
aluminum plates described in Table 8.1 as function of
nondimensional water entry velocity. V = water entry
velocity, ρ = mass density of water, R = radius of curva-
ture of the waves at the impact position.

parts: one measuring section with a dummy sec-
tion on each side. The measured nondimensional
maximum strains in the middle of the plate are
presented in Figure 8.9 as a function of nondi-
mensional impact velocity V. The scaling assumes
that maximum strain is proportional to V and that
Tn1 is the time scale. The plates have only verti-
cal velocity, ρ means mass density of the water,
and L is the length of the plate. I means the cross-
sectional area moment of inertia about the neutral
axis divided by the cross-sectional plate breadth B.
One may wonder why it is only the mass density of
the water that is involved in the nondimensional
expression and not also the mass density of the
material. Later, it becomes more evident why the
mass density of the material does not have a dom-
inant influence.

The impact position and radius R of curva-
ture of the waves at the impact position were
varied. A wave crest was intended to initially
hit between the plate ends in all cases presented
in Figure 8.9. The experimental results decrease
slightly with decreasing nondimensional impact
velocity. If the largest L/R value is disregarded,
the maximum strain shows small influence of L/R.
The largest L/R value is normally unrealistic for
slamming. Table 8.1 shows that the steel and alu-
minum plates have different structural mass and
connecting spring parameters expressing the end
connection of the plates. The difference, however,
is not significant (Faltinsen 1997). The asymptotic
theory by Faltinsen (1997) agrees well with the
experiments (see Figure 8.14). The theory gives

the nondimensional maximum strain for a given
structural mass and the connecting spring param-
eter that is independent of impact speed and wave
characteristics.

The physics can be explained as follows.
Because it takes time to build up elastic deforma-
tions w of the plate, the pressure loads from either
the water or an air cushion balance the structural
inertia force of the plate initially. This is why it
is called the structural inertia phase. We can for-
mally express the vertical velocity of the plate
as ẇ − V, where V is the rigid-body water entry
velocity of the plate. The plate experiences a large
force impulse during a small time relative to the
highest natural period for the plate vibrations in
the structural inertia phase. This causes the space-
averaged elastic vibration velocity ẇ to be equal to
the water entry velocity V at the end of the initial
phase. Another way of saying is that the space-
averaged velocity of the body is zero. The whole
plate is wetted at the end of the structural iner-
tia phase. The plate then starts to vibrate similarly
to a free vibration of a wet beam with an initial
space-averaged vibration velocity V and zero ini-
tial deflection. Maximum strains occur during the
free vibration phase.

The details of the pressure distribution during
the structural inertia phase are not important, but
the impulse of the impact is. Very large pressures
that are sensitive to small changes in the physi-
cal conditions may occur in this initial phase. This
can be seen from the collection of measured maxi-
mum pressures during the tests (Figure 8.10). They
appear to be stochastic in nature.

Figure 8.10. Measured maximum pressure from differ-
ent drop tests of the horizontal plates described in
Table 8.1 as a function of the water entry velocity V.
Cp = (p − pa)/(0.5ρV2) is the pressure coefficient.
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Figure 8.11. Coordinate system used for local hydro-
elastic analysis of beam of length L. kθ is the spring stiff-
ness of spiral springs at the beam ends.

The measured maximum strains showed a
very small scatter for given impact velocity and
plate, even though the maximum pressure var-
ied strongly. The largest measured pressure was
approximately 80 bar for V equal to 6 ms−1. This is
close to the acoustic pressure ρcV ≈ 1000 · 1500 ·
6 ≈ 90 bar, hence much larger pressures are not
expected using smaller pressure gauges. The diam-
eter of each pressure cell was 4 mm. A sampling
frequency up to 500 kHz was used. These results
document that it can be misleading from a struc-
tural point of view to measure the peak pressures
for the effect of hydrodynamic impact on alu-
minum and steel structures.

Free vibration phase of hydroelastic slamming
We will analyze the free vibration phase of hydro-
elastic slamming. The whole plate is then wetted.
The structure is represented by an Euler beam
model, that is, the load levels do not cause plas-
tic deformations. The analysis by Kvålsvold and
Faltinsen (1995) showed that shear deformation
was insignificant. The structure is in the following
analysis assumed to be a beam of constant thick-
ness and finite breadth. We later generalize the
results to stiffened plates. The beam equation of
motion is written as

MB
∂2w

∂t2
+ EI

∂4w

∂x4
= p (x, w, t) . (8.1)

Here w is the beam deflection, t is the time vari-
able, and x is a longitudinal coordinate with x = 0
in the middle of the beam (Figure 8.11). Further,
p is the hydrodynamic pressure that is a function
of the beam deflection. Because we are analyzing
the free vibration phase, the slamming pressure is
zero. So p is a consequence of the vibrations of the
beam. This means that we expect an added mass
effect. MB (mass of plate per length square) and EI
(bending stiffness per length width) are assumed
constant. Initial conditions are a consequence of

the structural inertia phase, as already mentioned.
The boundary conditions at the ends of the beam
are expressed as

w (x, t) = 0 at x = ±L/2 (8.2)

kθ

EI
∂w

∂x
± ∂2w

∂x2
= 0 at x = ±L/2. (8.3)

Eq. (8.3) consists of two terms. The first term
expresses the effect of a rotational spring at one
of the beam ends (Figure 8.11). The restoring
moments of the spring at x = ±L/2 can be writ-
ten as ∓kθ ∂w/∂x, where kθ is the spring stiffness
and ∂w/∂x is the slope of the beam. The second
term in eq. (8.3) is proportional to the beam bend-
ing moment −EI∂2w/∂x2. Eq. (8.3) follows from
continuity of the bending moment at the rotational
springs at the beam ends. When kθ is zero, we
have zero bending moment at the beam ends. This
means a hinged-hinged beam model. The case of
infinite kθ corresponds to zero slope of the beam
ends, that is, a clamped-clamped beam model. If
we think of the beam as a part of a larger struc-
ture, the rotational springs are simplifications of
the effect of the adjacent structure on the beam.
The fact that eq. (8.2) states that the deflection w

is zero at the beam ends implies that the adjacent
structure to the beam is assumed to be much stiffer
than the beam.

The solution is expressed in terms of dry normal
modes �n, that is,

w (x, t) =
∞∑

n=1

an (t)�n(x). (8.4)

The dry normal modes are a good approximation
of the wet normal modes when the added mass
distribution is similar to the mass distribution. The
eigenfunctions �n are found by first setting p = 0
in eq. (8.1) and assuming a solution on the form
exp (iωnt) �n, where ωn are dry natural frequen-
cies associated with the nth eigenmode �n. This
gives

− ω2
n MB�n + EI

d4�n

dx4
= 0. (8.5)

We consider only modes that are symmetric about
x = 0. The reason is that the considered beam
loading is symmetric about x = 0. This becomes
evident later in the text. Solutions of eq. (8.5) can
then be expressed as

�n = Bn cos pnx + Dn cosh pnx, (8.6)
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where

p4
n = MBω2

n

EI
. (8.7)

We find equations for ωn, Bn, and Dn by requiring
that �n satisfies the same boundary conditions as
w, that is, eqs. (8.2) and (8.3). We cannot deter-
mine both Bn and Dn, only how Bn and Dn depend
on each other. In order to simplify the following
presentation, we assume kθ = 0, implying the case
of a hinged-hinged beam, even though this may
not be the most realistic case. The end conditions
are then that both w and ∂2w/∂x2 are zero. This
gives the mode shapes:

�n = Bn cos (pnx) with pn+1 L/2 = π/2 + nπ,

n = 0, 1, 2, 3, . . .

We can easily control that the end conditions are
satisfied. Further, the experiments showed that
the first mode shape, that is, n = 1, was dominat-
ing. This means that the mode shape that we are
studying is

�1 = B1 cos(p1x), (8.8)

where

p1
L
2

= π

2
. (8.9)

By now combining eqs. (8.7) and (8.9), we have
that the lowest dry natural frequency is

ω1 =
(

EI
MB

)1/2 (π

L

)2
, (8.10)

where we see that L is an important parameter.
We can normalize �1 as we want and choose to set
B1 = 1. The consequence of these simplifications
is that the beam deflection is expressed as

w (x, t) = a 1(t) cos p1x. (8.11)

We now have to introduce the effect of the pres-
sure p in eq. (8.1). This causes an added mass effect
due to the vibrations of the beam. In order to ana-
lyze this, we study first the flow due to unit velocity
ȧ1(t). This can be described by two-dimensional
fluid potential flow theory for an incompress-
ible fluid. The linearized body boundary condition
requiring no flow through the beam is

∂ϕ

∂z
= cos p1x, z = 0, −L/2 < x < L/2.

(8.12)

Because the frequency of oscillations is high, grav-
ity is neglected. The high-frequency free-surface
condition is

ϕ = 0 on z = 0 , |x| > L/2.

An analytical solution to ϕ can be found in
Kvålsvold (1994). However, the solution becomes
particularly simple if we average cos p1x over the
beam length. This means we replace eq. (8.12) with

∂ϕ

∂z
= 1

L

L/2∫
−L/2

cos p1x dx = 2
π

on z = 0,

(8.13)
−L/2 < x < L/2.

The problem then becomes the forced heave prob-
lem. A solution to this problem may be found in
many textbooks (see, e.g., Kochin et al. 1964). It is
also discussed in more detail in section 8.3.1. We
can write the velocity potential on the body as

ϕ = 2
π

((L/2)2 − x2)1/2, |x| < L/2, z = 0.

(8.14)

This means that if the deflection of the body is
represented as in eq. (8.11), the corresponding
velocity potential is ȧ1 (t) times eq. (8.14), that
is, φ = ȧ(t)ϕ(x). The considered problem is lin-
ear in ȧ(t). The corresponding pressure follows
from the Bernoulli equation. We only consider
pressure terms that are linear in ȧ(t). This means
that it is sufficient to consider the pressure term
p = −ρ∂φ/∂t , that is,

p = −ρä 1(t)
2
π

((L/2)2 − x2)1/2, |x| < L/2.

(8.15)

Substituting p and w given by eqs. (8.15) and (8.11)
into eq. (8.1) leads to the following equation:

MBä 1(t) cos p1x + EI · p4
1a1(t) cos p1x

= −ρä1(t)
2
π

((L/2)2 − x2)1/2.

This equation depends on both x and t. In order
to find a solution for a1(t), we follow the standard
solution technique when a solution is represented
in terms of normal modes (Clough and Penzien
1993). This means that we now multiply the equa-
tion above with the lowest mode cos p1x and inte-
grate between −L/2 and L/2. The final equation
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can now be written as

(M11 + A11)
d2a1

dt2
+ C11a1 = 0. (8.16)

Here

M11 = MB

L/2∫
−L/2

cos2 p1x dx = 0.5MBL. (8.17)

This can be interpreted as a generalized structural
mass. Further, we find

C11 = EI p4
1

L/2∫
−L/2

cos2 p1x dx = 0.5ω2
1 MBL. (8.18)

This can be interpreted as a generalized restor-
ing (stiffness) term. Finally, the generalized added
mass A11 can be obtained by

A11 = ρ
2
π

L/2∫
−L/2

((L/2)2 − x2)1/2 cos p1x dx.

(8.19)

Now we have to solve eq. (8.16) with the ini-
tial conditions that followed from the structural
inertia phase. A solution that satisfies zero initial
deflection is

a1 = C sin ωwt, (8.20)

where

ωw =
(

C11

M11 + A11

)1/2

(8.21)

is the wet natural frequency of the lowest mode.
In order to find C in eq. (8.20), we use the ini-
tial condition for the velocity, that is, ẇ |t=0 = V,
where V is the water entry velocity. This can only
be satisfied in an average way, that is,

ωwC cos ωwt |t=0

L/2∫
−L/2

cos2(p1x)dx

= V

L/2∫
−L/2

cos p1x dx.

This means

C = 4V
πωw

. (8.22)

The bending stress σb follows from

σb = −Eza
∂2w

∂x2
, (8.23)

where za is the distance from the neutral axis to
the stress point. This means

σb = Eza
4V
πωw

(π

L

)2
cos

(
π

x
L

)
sin ωwt. (8.24)

We note that this equation tells that bending
stresses are proportional to the impact velocity V
and have a maximum at the middle of the stiffener
for a given za and simply supported beam ends.
Because the slamming pressure is proportional to
V2, a quasi-steady analysis would lead to σb being
proportional to V2. Further, the expression shows
that the first maximum stress for positive za will
occur at time 0.5π/ωw. The hydrodynamic pres-
sure at that time follows from eq. (8.15) and by
noting that

ä1(t) = −4V
π

ωw sin ωwt. (8.25)

This means that the pressure is maximum at the
same time. The hydrodynamic pressure becomes
negative after time π/ωw as a consequence of the
sin ωwt-dependence. Depending on the magnitude
of V and ωw , eq. (8.15) for the hydrodynamic pres-
sure can at a certain time instant be less than minus
atmospheric pressure, or the total pressure is pre-
dicted to be less than zero. However, the total pres-
sure cannot be less than the vapor pressure, which
is close to zero for normal water temperature.
If that happens in our theory, cavitation occurs.
Eq. (8.15) tells that this occurs first in the mid-
dle of the beam. As time increases, the cavity will
spread toward the beam ends. This is illustrated in
Figure 8.12 by using V = 2.94 ms−1, Tw = 0.0262 s,
and a beam length 0.5 m. Here Tw = 2π/ωw is the
wet natural period. Because the submergence of
the beam is low (Vt = 0.06 m at t = 0.02 s), we have
set the total pressure equal to atmospheric pres-
sure for |x| ≥ 0.25 m (outside the beam) in Fig-
ure 8.12. As time increases, there is an increased
probability of ventilation, that is, air is sucked in
under the beam. We can understand this by not-
ing the increase in the pressure gradient from the
air next to the beam ends toward the cavity. When
the beam is fully ventilated, it starts to oscillate as
if it were in air. We can see these phenomena in
Figures 8.13 and 8.14, in which a comparison with
experiments is also made with our simplified the-
ory based on one mode only. However, because
the spring coefficient kθ is different from zero (see
Table 8.1), we used the more general mode shapes
given by eq. (8.6). The experiments confirm that
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Figure 8.12. Total pressure p during the free vibrations of hydroelastic slamming on a horizontal
beam. pa = atmospheric pressure. Beam end conditions: zero displacement and zero moment. Wet
natural period Tw = 0.0262 s. Impact velocity V = 2.94 ms−1. Beam length = 0.5 m. This case shows
how the cavitation length increases toward the beam ends as time t increases.

only the lowest mode is important. Further, we
see that the strains presented in Figure 8.14 do
not react to the very high pressure peaks in the
pressure records in Figure 8.13. The details of the
elastic test plate used during the drop test results
presented in Figure 8.14 are given in Figure 8.15
and Table 8.1.

Figure 8.13. Pressure at two positions of the plate as a
function of time (see Figure 8.15 and Table 8.1). Com-
parison between asymptotic theory and drop tests. Drop
height is 0.5 m. P1 is located at the middle of the plate
and P3 at the quarter length (Faltinsen 1997).

The total pressure can be obtained by adding
atmospheric pressure and the pressure shown
in Figure 8.13. The total pressure equals vapor
pressure, and cavitation starts at approximately
0.01 s after initial impact, according to both the-
ory and experiments. Because the theory does not
account for cavitation, it does not give correct
predictions after that. However, maximum strains
have already occurred. We note that the exper-
iments show that the pressure becomes atmo-
spheric (i.e., ventilation) some time after cavita-
tion has been initiated. Further, Figure 8.14 shows
that the strains have then started to oscillate with a

Figure 8.14. The strains at the locations SG1 and SG3
along the beam as a function of the time (see Figure 8.15
and Table 8.1). Comparison between asymptotic theory
and drop tests. The drop height is 0.5 m (Faltinsen 1997).
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Figure 8.15. Details of the elastic test plate used during
drop tests (Kvålsvold et al. 1995).

higher frequency. This is the dry natural frequency
of the lowest mode. Then the maximum strain
becomes smaller also. This can be understood
from eq. (8.24) by exchanging the wet natural
frequency ωw with the corresponding dry natural
frequency.

Figure 8.14 shows that the oscillation period
for the lowest mode is about 0.018 s. This is also
a representative time scale for local hydroelas-
tic slamming effects on the wetdeck of a full-
scale catamaran. Phenomena occurring on a much
smaller time scale are not important for maxi-
mum local slamming-induced strains for a struc-
ture like this. An example is the effect of the fluid
compressibility. When the structure initially hits
the water, signals are sent out with the speed of
sound, which is about 1500 ms−1 in water without
bubbles, depending on temperature and salinity.
Actually, what we say when we are assuming an
incompressible fluid is that the speed of sound is
infinite and that the fluid everywhere is immedi-
ately affected by the impact. Of course, this effect
decays asymptotically to zero at infinity. Let us
then return to the effect of compressibility. We
then need a length scale to derive a time scale. A
representative length scale is the length of the wet-
ted beam. So we get a time scale that is the order of
10−3 s. This means it is correct for us to assume an
incompressible fluid in our previous hydroelastic
slamming analysis.

Haugen (1999) theoretically and experimen-
tally studied the hydroelastic impact of plates
with three beam elements. Each of the beam ele-
ments was intended to model a longitudinal stiff-
ener with effective flange between two transverse
frames of a wetdeck (see Figure 8.16 for struc-
tural arrangement of a wetdeck). The physics in
the initial impact phase of three beam elements
is somewhat different from that described above
for one beam element. The wetting of the plates
lasts relatively longer and air cushion effects mat-
ter more. Further, there is one dominant high
natural period for one beam element whereas
there are several for three beam elements. The
final results in terms of maximum strains are sim-
ilar, but somewhat higher for three beams than
for one.

Arai and Myanchi (1998) presented a numeri-
cal and experimental hydroelastic study of water
impact on cylindrical shells. Ulstein and Faltinsen
(1996) analyzed the hydroelastic impact between
the stern seal bag of an SES and the water sur-
face representative for low sea states, in which cob-
blestone oscillations may matter. A high forward
speed was assumed. The elastic structural behavior
is dominated by membrane effects. Examples of
mode shapes are shown in Figure 5.11. The hydro-
dynamic behavior is analogous to transient oscilla-
tions of a lifting elastic foil with a time-dependent
length.

Although most theoretical and experimental
approaches to hydroelasticity have been per-
formed for two-dimensional bodies, Scolan and
Korobkin (2003) performed hydroelastic slam-
ming analysis of a three-dimensional cone using
Wagner’s approach. The results show significant
influence of the elasticity compared with the rigid
case.

Longitudinal stiffener z
y

x

L

Transverse frame
Wave profile

Wetdeck

Figure 8.16. A detail of the wetdeck structure of a mul-
tihull vessel.



P1: GDZ
0521845688c08a CB921-Faltinsen 0 521 84568 7 November 5, 2005 14:38

8.2 Local hydroelastic slamming effects • 297

Scaling
When we want to scale the results to other types of
materials or to other length scales, it is important
to introduce nondimensional variables that reflect
the physics of the problem. We show how to do
that and start with the wet natural frequency ωw

given by eq. (8.21). We can use eq. (8.10) to rewrite
C11 given by eq. (8.18) to express how C11 depends
on L and EI. This gives

C11 = EI
(π

L

)4
(

L
2

)
. (8.26)

We then use eq. (8.17) for M11 and find that we can
write eq. (8.21) as

ωw =

 EIπ4

ρL5
(

MB
ρL + 2 A11

ρL2

)



1/2

. (8.27)

Because both MB/(ρL) and A11/(ρL2) are nondi-
mensional, it follows from eq. (8.27) that

ωw

(
ρL5

EI

)1/2

(8.28)

is a nondimensional wet natural frequency. If we
then use the more general mode shape given by
eq. (8.6), it will also lead to a nondimensional
frequency, as in eq. (8.28). This means eq. (8.28)
is a proper way to nondimensionalize ωw. There
are, of course, other ways to nondimensionalize
frequency, but the way we do it must be rele-
vant to our problem. For instance, ωw(L/g)1/2 is a
nondimensional frequency following from Froude
scaling, but as we have seen from our analysis,
the gravitational acceleration does not appear.
This means ωw(L/g)1/2 is not a physically rel-
evant way to nondimensionalize frequency for
hydroelastic slamming. However, it is a relevant
way to nondimensionalize frequency when we
consider the effect of gravity waves on added
mass and damping in the equations of motions of
the ship.

Let us then continue our work concerning
nondimensional variables. Eq. (8.24) shows that

σbaωw L2

Eza V
(8.29)

is nondimensional. The use of eq. (8.28) gives that

σba( za
L

)
V

(
ρL3 E

I

)1/2 (8.30)

is nondimensional. Because σ = Eε, where σ is
stress and ε is strain and ε is nondimensional,
σba/E will be nondimensional. Using this in
expression eq. (8.30) means that

V
(

ρL3

EI

)1/2

(8.31)

is a relevant nondimensional velocity for our
problem. Now we are able to recognize the
nondimensional strains and velocities used in
Figure 8.9.

Table 8.2 shows by means of the theoreti-
cal model how nondimensional bending stress
as in eq. (8.30) and nondimensional natural fre-
quencies as in eq. (8.28) are influenced by the
nondimensional spring stiffness and structural
mass ratio MB/ρL. Because a realistic range
of MB/ρL has been used, it means that max-
imum nondimensional bending stress is more
dependent on beam end conditions (i.e., kθ ) than
on MB/ρL.

What we have done in the previous analysis is to
use the mathematical model to introduce nondi-
mensional variables. If the mathematical model
does not properly describe the phenomena, the
scaling would obviously be wrong. For instance,
the theory only predicts the initiation of the cavi-
tation, not the detailed behavior leading to venti-
lation. We must then introduce a cavitation num-
ber σ = (pamb − pv)/(0.5ρU2), where pamb is the
ambient pressure, pv is the vapor pressure, and U
is a characteristic velocity. For our problem, we can
set pamb equal to atmospheric pressure and choose
U equal to the water entry velocity V. However,
because we were interested in maximum strains,
and cavitation has not yet occurred, σ is not a
parameter in this context.

An alternative to introducing dimensionless
parameters is to use the Pi-theorem (Bucking-
ham 1915, see section 2.2.4). This does not require
a mathematical model, but does require a good
physical understanding of relevant variables.

It is common for engineers to dislike nondimen-
sional variables. One needs to have a quantitative
measure of dimensions to understand what they
means. However, nondimensional parameters are
particularly useful in model testing and scaling
up to full-scale. This may be the only approach
for certain physical problems for which reliable
numerical tools are not available.
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Table 8.2. Generalized added mass A11 , lowest wet natural frequency ωw , and bending
stress σb as a function of mode shape

σba

(za/L) V

√
I/ (ρL3 E)

x/L =

MB/ (ρL)
kθ L
2EI

A11

ρL2
ωw

√
ρL5/ (EI) 0.0 0.2 0.4 0.5

0.02 0.0 0.21 14.76 0.85 0.69 0.26 0.0
0.5 0.23 17.3 0.78 0.59 0.09 −0.21
1.75 0.24 21.27 0.72 0.48 −0.12 −0.48
2.85 0.24 23.43 0.70 0.44 −0.22 −0.61
5.0 0.23 26.04 0.68 0.40 −0.32 −0.75

0.124 0.0 0.21 13.29 0.95 0.76 0.29 0.0
0.5 0.23 15.57 0.87 0.66 0.10 −0.23
1.75 0.24 19.15 0.80 0.54 −0.13 −0.53
2.85 0.24 21.08 0.77 0.49 −0.24 −0.68
5.0 0.23 23.42 0.76 0.44 −0.36 −0.83

20.0 0.22 27.97 0.74 0.37 −0.55 −1.09
104 0.21 30.68 0.74 0.33 −0.65 −1.21

σb = σba sin ωw t , x = coordinate along the beam, beam ends at x = ±L/2 , V = water entry velocity,
ρ = mass density of water. Other variables are defined in Table 8.1 (Faltinsen 1997).

8.2.1 Example: Local hydroelastic slamming on
horizontal wetdeck

Consider the details of the wetdeck structure of a
multihull vessel shown in Figure 8.16. The trans-
verse frames can be considered much stiffer than
the longitudinal stiffeners. We assume that the
wetdeck is horizontal when it hits the water. The
main concern here is to find the maximum bend-
ing stress in a longitudinal stiffener supported by
transverse frames. We then consider one longitudi-
nal stiffener together with its plate flange, as shown
in Figure 8.17. The width of the plate flange corre-
sponds to the distance between two longitudinal
stiffeners. When we want to apply the results in
Figure 8.9, we have to calculate the area moment
of inertia about the neutral axis of the cross sec-
tion shown in Figure 8.17 and divide this by the

Figure 8.17. The cross-section of a lon-
gitudinal stiffener and the plate flange.
Dimensions are in millimeters.

width of the flange. This gives I = 11 · 10−6 m4/m
neglecting the effective flange effect. The distance
za from neutral axis to maximum strain position is
0.12 m and the lengthLof the longitudinal stiffener
between two transverse frames is 1 m.

The wetdeck material is aluminum, with E =
70 · 109 Nm−2. Let us assume the impact velocity
V is 1 ms−1 and set the mass density ρ of water
equal to 1000 kgm−3. This gives a nondimensional
impact velocity

V

√
ρL3

EI
= 0.036.

We disregard the effect of the radius of curvature
R of the impacting free surface and use a value

εm

za V

√
EI
ρL

= 0.5
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Figure 8.18. Water entry of a wedge-
shaped elastic cross section.

based on Figure 8.9. This gives a maximum strain
in the longitudinal stiffener midway between two
transverse frames that is equal to

εm = 2.16 · 10−3.

This corresponds to a stress

σm = Eεm = 151 MPa.

This is also the maximum stress anywhere along
the longitudinal stiffener for realistic end condi-
tions of the longitudinal stiffener at the transverse
frames.

The yield stress of aluminum may vary signif-
icantly, for example, from 200 to 300 MPa. It is
important to design against the yield strength in
the heat-affected zone (HAZ) of the welds, which
may be of significant size for aluminum, and not
against the yield strength in the weld material
or in the base material outside the HAZ. Allow-
able nominal bending stress on a stiffener accord-
ing to DNV’s rules for direct strength calcula-
tions is 142 MPa. So we are not satisfying this
requirement. A more complete analysis is needed
for slamming-induced buckling. The local analysis
must then be combined with a global analysis.

The relative impact velocity may very well be
higher than 1 ms−1. This implies that operational
restrictions of the vessel are necessary. An alter-
native is to change the dimensions of the wetdeck.
The simple results given by Figure 8.9 tell us how to
do that for a given design value of the impact veloc-
ity. However, it may be more practical to avoid
the wetdeck being horizontal or to increase the
wetdeck height above the mean free surface. An
alternative is to have a wedge-shaped cross section
of the wetdeck. We will present relevant results
later in the text.

8.2.2 Relative importance of local hydroelasticity

Faltinsen (1999) studied the relative importance
of hydroelasticity for an elastic hull with wedge-
shaped cross sections penetrating an initially calm

water surface (Figure 8.18). Wagner’s theory was
generalized to include elastic vibrations. In the fol-
lowing section, it is pointed out that the Wagner
theory is approximate for large deadrise angles.
However, it is believed that the approximate
theory demonstrates the main parameter depen-
dence. Stiffened plating between two rigid trans-
verse frames was examined (Figure 8.19). A
hydrodynamic strip theory in combination with
orthotropic plate theory was used. The water entry
velocity was assumed constant.

The importance of hydroelasticity for the local
slamming-induced maximum stresses increased
with decreasing deadrise angle β and increasing
impact velocity V. The nondimensional parame-
ter ξ = tan β/[V(ρL3/EI)1/2] was introduced. L
is the length of the analyzed longitudinal stiffener
between the two transverse frames. EI is the bend-
ing stiffness per width of the longitudinal stiffener
including the effective plate flange. The parame-
ter ξ is proportional to the ratio between the wet-
ting time of the rigid wedge and the highest nat-
ural period of the longitudinal stiffener. We can
see this as follows. If Wagner’s theory is used (see
eq. (8.52)), the wetting time of a rigid wedge with
beam B is B tan β/(πV). Because ωw

√
ρL5/EI is

a constant (see eq. (8.28)) and Tw = 2π/ωw is the
wet naturla structural period, Tw is proportional

Figure 8.19. Stiffened plating consisting of plate and
longitudinal stiffeners.
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Quasi-steady orthotropic plate theory
Hydroelastic beam theory,

VND = 0.715

VND = 0.178

VND = 0.089

VND = 0.467

 β ≈ 0

0
0

0.5

0.05

0.1

0.15

0.2

0.25

1 1.5 2 2.5
tan β

V    L3/EI

   mEI tan β
zaV2   L2

Figure 8.20. Nondimensional maximum
strain εm in the middle of the second longi-
tudinal stiffener from the keel. The strain
is presented as a function of a parameter
that is proportional to the ratio between
wetting time of a rigid wedge and nat-
ural period of the longitudinal stiffener
based on beam theory. Different nondi-
mensional constant impact velocities VND

(see eq. (8.32)) are given. β = dead-
rise angle. Calculations by hydroelastic
orthotropic plate theory (Faltinsen 1999)
are shown.

to
√

ρL5/EI. Assuming B/L is a constant gives
the desired result. We can associate the wetting
time of the wedge with the duration of the load-
ing. If we make an analogy to a simple mechan-
ical system consisting of a mass and a spring,
then we know that the duration of the loading
relative to the natural period characterizes the
dynamic effects of a transient system (see sec-
tion 7.1.4). Nondimensional results are presented
in Figure 8.20. Also presented are results based
on quasi-steady analysis and asymptotic hydro-
elastic analysis for small deadrise angles β. The
quasi-steady analysis assumes the structure is rigid
in the hydrodynamic calculations. The pressure
is then proportional to V2. The analysis of the
structural deformations due to the water impact
gives that εmEI tan β/(za V2ρL2) is independent
of the abscissa tan β/(V

√
ρL3/EI) in Figure 8.20.

The asymptotic hydroelastic analysis is based on
writing the ordinate in Figure 8.20 as a function of
the abscissa, that is,

εm
EI · tan β

za V2ρL2
= EHE

tan β

V
√

ρL3/EI
,

where

EHE = εm

za V

√
EI
ρL3

is estimated by Faltinsen’s (1997) hydroelastic
analysis for β = 0. Examples of EHE-values can
be found in Table 8.2 by noting that the bending

stress σ is equal to Eε, where ε is the strain. A rep-
resentative value of EHE equal to 0.7 was used in
presenting the results in Figure 8.20. This is based
on setting MB/(ρL) = 0.015 and kθ L/(2EI) =
3.0. This means that the results by the asymptotic
hydroelastic analysis appear as a straight line in
Figure 8.20.

The particular way of nondimensioning the
results gives small explicit dependence on the
dimensionless impact velocity

VND = V

√
ρL3

EI
. (8.32)

Figure 8.20 illustrates that hydroelastic effects
are present when tan β < ≈1.5 V(ρL3/EI)1/2 for
the studied stiffened plating. The stress from
the hydroelastic case may also exceed the
stress from the quasi-steady case. A large influ-
ence of hydroelasticity occurs when tan β <

≈0.25 V(ρL3/EI)1/2. By independently varying
terms in ξ = tan β/(V

√
ρL3/EI), we see that

small ξ -values are obtained when

� The deadrise angle β is small.
� The water entry velocity V is large.
�

√
ρL3/EI is large. Because ωw L

√
ρL3/EI is a

constant (see eq. (8.28)), this means that large√
ρL3/EI corresponds to small values of ωw L,

where ωw is the lowest wet natural frequency. If
L is a constant, large

√
ρL3/EI corresponds to

a high wet natural period 2π/ωw.



P1: GDZ
0521845688c08a CB921-Faltinsen 0 521 84568 7 November 5, 2005 14:38

8.3 Slamming on rigid bodies • 301

If hydroelasticity is not important, maximum
strain εm is proportional to V2. This is a conse-
quence of the fact that the impact pressure is pro-
portional to V2.

The parameter study assumed constant V during
the impact. The relative impact velocity between
the vessel velocity and the ambient water veloc-
ity, V, may, in reality, vary substantially during the
impact of a wedge section with finite β. This hap-
pened in the comparative studies with full-scale
experiments of local slamming-induced strains in
the wetdeck of a 30 m–long catamaran reported by
Faltinsen (1999). Fair agreement between theory
and experiments was documented, but the pre-
dicted strains were sensitive to the time-varying
impact velocity. The impact velocity was not
measured and is strongly dependent on speed
and frequency-dependent nonlinear hull and free-
surface effects.

The wetdeck of the 30-m catamaran had a
wedge-shaped cross-sectional form with deadrise
angle of 14◦ in the initial impact area. Local
hydroelasticity is then insignificant, as in the case
of bow flare slamming studied by Kapsenberg and
Brizzolara (1999). The measured maximum strains
corresponded to about half the yield stress. This
occurred in head seas with significant wave height
H1/3 = 1.5 m and a ship speed of 18 knots. The
ship was allowed to operate up to H1/3 = 3.5 m.
The classification rules did not predict well that
the ship had sufficient height of the wetdeck above
sea level to avoid wetdeck slamming. In contrast to
computer simulations, the full-scale tests demon-
strated that a change in ship course was effective
in avoiding heavy wetdeck slamming. In general,
proper operational criteria due to wetdeck slam-
ming are lacking.

8.3 Slamming on rigid bodies

When the local angle between the water sur-
face and the body surface is not very small at
the impact position, slamming pressures can be
used in a static structural response analysis to
find local slamming-induced stresses. The body
can be assumed rigid in the hydrodynamic cal-
culations. Several approximations can be made
in the analysis. The airflow is usually unimpor-
tant, and irrotational flow of incompressible water
can be assumed. Because the local flow acceler-
ation is large relative to gravitational accelera-

tion when slamming pressures matter, gravity is
neglected.

The terms Wagner method and von Karman
method are often mentioned in the following text.
A von Karman method neglects the local uprise of
the water, whereas a Wagner method accounts for
that. However, a Wagner method assumes impact
of a blunt body.

Most theoretical studies assume 2D vertical
water entry of a symmetric body. An indicator
of the importance of 3D flow effects is the ratio
64/π4 ≈ 0.66 between maximum pressures during
water entry of a cone and a wedge with constant
velocity and small deadrise angles (Faltinsen and
Zhao 1998b). A cone represents an extreme case
of 3D flow. We cannot say without further investi-
gation whether it is the most extreme case. Scolan
and Korobkin (2001) used the Wagner method
to study the impact of a three-dimensional body
with elliptical contact line on the free surface. By
Wagner method, we mean that the body bound-
ary condition is transferred to a disc. The free-
surface conditions are the same as those Wagner
used in the outer flow domain. Chezhian (2003)
has investigated the impact of a more general 3D
geometry using a generalized Wagner’s approach.
Comparisons were made with model tests. Beukel-
man (1991) presented experimental results for
three-dimensional models that showed that for-
ward speed has a strong influence on the pressure
level when the deadrise angle was lower than ≈ 2◦.

When the exact nonlinear free-surface condi-
tions are used, it is difficult numerically to handle
the intersection between the body and the free sur-
face for small local deadrise angles. Small errors
in the predicted, very small intersection angle
between the free surface and the body may cause
large errors in the predictions of the intersection
points and destroy the numerical solution. The 2D
boundary element method (BEM) by Zhao and
Faltinsen (1993) avoided this by introducing a con-
trol surface normal to the body surface at the spray
root. Because the pressure is approximately atmo-
spheric in the spray, this control surface can be
handled similarly to a free surface. This method is
applicable to a broad class of body shapes as well
as time-varying water entry velocity. General 3D
geometry, forward speed with incident waves, and
ship-generated steady and unsteady waves further
complicate the impact analysis to a situation that
does not seem feasible to solve numerically at the
moment.
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Figure 8.21. Predictions of pressure (p) distribution
during water entry of a rigid wedge with constant verti-
cal velocity V. pa = atmospheric pressure, β = deadrise
angle (Zhao and Faltinsen 1993).

Pressure distribution
Numerical results based on the similarity solu-
tion by Dobrovol’skaya (1969) for water entry of
rigid wedges with constant entry velocity was pre-
sented by Zhao and Faltinsen (1993) for 4◦ < β <

81◦. Figure 8.21 shows the predicted pressures for
20◦ ≤ β ≤ 81◦. The pressure distribution becomes

Pressure

Cpmax

0.5Cpmax ∆Ss

z

Vt

y

β

(ymax, zmax)

Figure 8.22. Definition of parameters characterizing slamming pressure during water entry of a blunt
2D rigid body. Cp = pressure coefficient = (p − pa)/(0.5ρV2).

pronouncedly peaked and concentrated close to
the spray root whenβ < ≈20◦.The smallerβ is, the
more sensitive slamming loads are to β. A conse-
quence is that large rolling may have an important
effect on slamming loads on a bow flare section.
The higher the local angle between the water sur-
face and the body, the more uniformly spaced the
impact pressure. The maximum pressure occurs at
the apex (or keel) when β > 45◦. For larger angles
and low impact velocities, other pressure contribu-
tions may be as important as the slamming part.

Parameters characterizing slamming on a rigid
body with small deadrise angles are the position
and value of the maximum pressure, the time dura-
tion, and the spatial extent of high slamming pres-
sures. A measure of the spatial extent �Ss of the
high slamming pressure is explained in Figure 8.22.
The results by Zhao and Faltinsen (1993) show
that �Ss has meaning only when β ≤ ≈20◦.
Table 8.3 shows predictions of Cpmax , zmax, and �Ss

up to β = 40◦ by the similarity solution of Dobro-
vol’skaya (1969). zmax is defined in Figure 8.22,
and Cpmax is the maximum value of the pressure
coefficient (p − pa)/(0.5ρV2) (ρ = mass density
of the water). Results for nondimensional water
entry force F3 are also presented in Table 8.3. A
similarity solution implies that the pressure, force,
and coordinates can be made nondimensional in
such a way that the time is not an explicit parame-
ter. For instance, Cpmax , zmax/ (Vt), and F3/(ρV3t)
presented in Table 8.3 are not a function of time.
However, the dimensional variables are obviously
a function of time.

The fact that the pressure distribution becomes
very peaked and concentrated close to the spray
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Table 8.3. Calculation of slamming parameters by similarity solution during
water entry of a wedge with constant vertical velocity V

β Cpmax

zmax

Vt
�Ss

c
F3

ρV3t

4◦ 503.030 0.5695 0.01499 1503.638
7.5◦ 140.587 0.5623 0.05129 399.816
10◦ 77.847 0.5556 0.09088 213.980
15◦ 33.271 0.5361 0.2136 85.522
20◦ 17.774 0.5087 0.4418 42.485
25◦ 10.691 0.4709 23.657
30◦ 6.927 0.4243 14.139
40◦ 3.266 0.2866 5.477

β = deadrise angle, Cpmax = pressure coefficient at maximum pressure, zmax= z-
coordinate of maximum pressure (see Figure 8.22), �Ss = spatial extent of slamming
pressure (see Figure 8.22), c = 0.5πVt cot β, F3 = vertical hydrodynamic force on the
wedge, t = time (Zhao and Faltinsen, 1993).

root at small values of β illustrates that measure-
ment of slamming pressure requires high sam-
pling frequency and “small” pressure gauges. In
the literature, several reported experimental val-
ues exist for the maximum pressure for wedges,
and opinions vary on how well theory for the max-
imum pressure agrees with experimental results.
However, experimental error sources due to the
size of the pressure gauge and the change of the
body velocity during drop tests are not always
taken sufficiently into account. Takemoto (1984)
and Yamamoto et al. (1984) did that and showed
good agreement with Wagner’s (1932) theory for
maximum pressure when the deadrise angle was
between ≈3◦ and 15◦. The reason for the disagree-
ment for β < ≈3◦ is the creation of an air cushion
when the wedge enters the water. Another mat-
ter is that hydroelasticity should be considered for
small deadrise angles.

One should be careful in applying the results for
wedges to other cross sections. The local deadrise
angle is not the only important body parameter.
For instance, the local curvature as well as the time
history of the angle and curvature also matter. Fur-
ther, a time-varying water entry velocity occurs in
reality and the water surface is not calm either.

Zhao et al. (1996) presented a generalized
Wagner theory that is a simplification of the more
exact solution of the water entry problem by Zhao
and Faltinsen (1993). The generalized Wagner
method is more numerically robust and faster than
the original exact solution. It gives satisfactory
results and is therefore preferred in engineering

practice. Generalized Wagner theory means that
the exact body boundary conditions are satisfied.
The free-surface conditions are approximated as
Wagner (1932) did in the outer flow domain, that
is, not for the details at the spray roots. The wet-
ted body surface is found by integrating in time the
vertical velocity of the fluid particles on the free
surface and determining when the particles inter-
sect with the body surface. This is done by prede-
termining the intersection points on the body and
then determining the time to reach these points
in a time-stepping procedure. Because the veloc-
ity in the generalized Wagner method is singu-
lar at the body-water surface intersection, special
care is shown by using a local singular solution.
Direct pressure integration is used to predict the
water entry force. All terms in Bernoulli’s equa-
tion are included except the hydrostatic pressure
term. If the predicted pressure becomes less than
the atmospheric pressure, pa , the pressure is sim-
ply set equal to pa .This occurs at the spray root and
is caused by the velocity-square term in Bernoulli’s
equation.

Water entry force
Theoretical slamming force results for wedges are
presented in Figure 8.23. Constant water entry
velocity is assumed. Different methods are used
and related to an exact solution of the potential
flow incompressible water entry problem with-
out gravity. Wagner’s flat plate approximation is
only good for small deadrise angles, whereas the
generalized Wagner solution can be applied to
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Wagner (1932)

Exact solution
( Zhao & Faltinsen, 1993)

Generalized Wagner
solution

Von Karman (1929)

β(degrees)0.00
0.0

2.0

4.0

6.0

8.0

10.0

10.0 20.0 30.0 40.0 50.0 60.0

F3

ρV3t
(tan β)2

Figure 8.23. The vertical slamming force, F3, on sym-
metric wedges during water entry with constant ver-
tical drop (water entry) velocity, V. β = deadrise
angle, ρ = mass density of the fluid, t = time vari-
able, Vt = instantaneous draft relative to calm water.
Exact vertical slamming force (Zhao and Faltinsen
1993) ����; generalized Wagner solution–––––––––––;
Wagner solution---------; von Karman------------------; von
Karman-momentum----•-------•------•------. (Zhao et al.
1996).

large deadrise angles. A von Karman type of solu-
tion clearly underpredicts the force for β < ≈30◦

to 40◦.

Separation from knuckles (chines)
Zhao et al. (1996) extended the method by Zhao
and Faltinsen (1993) to include separation from
knuckles. The hydrodynamic water entry force
cannot be neglected after the flow has separated
from the knuckles (Figure 8.24). The peak in the
vertical force with constant water entry velocity
occurs when the spray roots are at the knuck-
les. If the hydrodynamic vertical water entry force
is expressed in terms of the time derivative of
infinite-frequency added mass as a function of sub-
mergence relative to undisturbed free surface (von
Karman method), the force part after flow separa-
tion will be negligible. This is common in commer-
cial computer programs for nonlinear wave load
analysis. An approach like this will also give a too-
low maximum force and a wrong time history of
the force. The reason is that the force is propor-
tional to the time rate of change of the wetted area.
The local water rise-up, neglected by the von Kar-
man method, implies a larger rate of change of the
wetted area.

Because gravity is neglected in the previous
water entry studies, the generation of surface
waves as well as the Froude-Kriloff and hydro-
static forces are disregarded. The latter two force
components can easily be added, which is com-
mon in commercial computer programs. The non-
linear Froude-Kriloff and hydrostatic forces on a
flared section increase their importance relative
to slamming forces with decreasing relative verti-
cal velocity between the ship cross section and the
water. The relative importance is also influenced
by the local deadrise angle slamming being more
important for small angles.

Assuming zero gravity in the present case is sim-
ilar to assuming zero cavitation number flow in
which there is an infinite cavity behind the body in
steady flow. Gravity may cause a finite-length air
cavity behind an impacting body, which may cause
secondary impact and possible entrapped air. The
cavity will collapse after some time, and the whole
body surface becomes wet.

Asymmetric impact
A hull structure may have asymmetric transverse
sections, the hull structure may be tilted, the water
surface may be sloping, and/or the structure may
have both a horizontal and vertical velocity during
an impact. If asymmetric water entry of a wedge
is considered, the occurrence of cross-flow at the
apex is always expected initially to cause a venti-
lated area near the apex of the wedge. One side of
the wedge could be fully ventilated, depending on

Figure 8.24. Vertical slamming force F3 on a wedge with
knuckles. The deadrise angle is 20◦. Constant water entry
velocity V. B = maximum wedge breadth. The nondi-
mensional time between the predicted peaks by the dif-
ferent methods is an effect of the uprise of water.
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the heel angle, the deadrise angle, and the velocity
direction of the body. If partial ventilation occurs
only initially, flow separation from the apex asso-
ciated with viscosity may occur at a later stage.

de Divitiis and Socio (2002) studied the unsym-
metric impact of wedges with constant velocity by
means of a similarity solution. Irrotational flow
of an incompressible fluid was assumed. The sym-
metry axis of the wedge is vertical, and the water
entry velocity has a horizontal component U and
a vertical component V. Depending on the dead-
rise angle β and the direction of the velocity,
α = tan−1 V/U, the flow can separate from the
wedge apex and be fully ventilated on the leeward
side of the wedge. If β > 45◦, the critical value α∗

of α for separation to occur is very small, whereas
α∗ = 60◦ for β = 7.5◦. When the flow separates
from the wedge, it is similar to water entry of a
flat plate. The latter problem has been studied for
small values of β and κ = π − α by Sedov (1940)
and Ulstein and Faltinsen (1996).

8.3.1 Wagner’s slamming model

We give a more detailed description of Wag-
ner’s (1932) slamming model in this section. Even
though this model assumes a local small deadrise
angle, it is useful because it provides simple ana-
lytical results. These can be used to assess how
slamming pressures depend on structural form
and time-dependent water entry velocity. Further,
this model will be used to show that it is the
space-averaged pressure that matters for struc-
tural stresses.

Wagner’s detailed description of the flow at the
intersections between the free surface and the
body surface will not be presented. This local flow
describes a jet flow that, in practice, ends up as
spray. We focus on what is called the outer flow
domain. This is located below (outside) the inner
and jet domains shown in Figure 8.25. There are

Figure 8.25. Water entry of a wedge with constant veloc-
ity V. Definition of inner and jetflow domains.

Figure 8.26. Definition of parameters in the analysis of
impact forces and pressures on a body by means of
Wagner’s outer flow domain solution. Constant water
entry velocity V is assumed. Vt is the instantaneous draft
relative to the undisturbed free surface.

then no details on the spatially rapidly varying
flow at the spray roots (inner domain). The pre-
dicted intersections between the free surface and
the body surface in the outer flow domain model
are in a very close vicinity of the spray roots.

Figure 8.26 presents the impacting symmetric
body and the free surface in the outer flow domain.
The water entry velocity V is constant, and Vt rep-
resents the submergence of the lowest point of
the body relative to the calm water surface. How-
ever, as we see from Figure 8.26, there is an uprise
of the water caused by the impact. The volume of
the water above z = 0 is equal to the volume of
water that the body displaces for z ≤ 0. The differ-
ence between the von Karman and Wagner meth-
ods is that a von Karman method neglects the
local uprise of the water (hence the wetted sur-
face length is smaller).

Figure 8.27 describes the boundary-value prob-
lem that must be solved at each time instant.
The body boundary condition requiring no flow
through the body surface is transferred to a
straight line between x = −c (t) and c (t) using
Taylor expansion. This can be done because the
body is blunt, which means the local deadrise angle
is small. This angle is the angle between the x-axis
and the tangent to the body surface. The end points
x = ±c correspond to the instantaneous intersec-
tions between the outer flow free surface and the
body surface (see Figure 8.26). We note in Fig-
ure 8.27 that the free-surface condition ϕ = 0 on
z = 0 has been used. This is a consequence of fluid
accelerations in the vicinity of the body dominat-
ing over gravitational acceleration during impact
of a blunt body. Let us express this by first exam-
ining Euler’s equations, which are a basis when
deriving Bernoulli’s equation. In an Earth-fixed
(inertial) coordinate system with positive z-axis
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Figure 8.27. Boundary-value problem for the velocity
potential ϕ in a simplified analysis of the impact between
a two-dimensional body and the water.

upward, Euler equation states that

∂u
∂t

+ u · ∇u = −∇ p
ρ

− gk.

Here u is the fluid velocity, p is the pressure, and k
is the unit vector along the z-axis. Saying that fluid
accelerations dominate means that both u · ∇u and
gk are small relative to ∂u/∂t, that is, we can set

ρ
∂u
∂t

= −∇ p

as a first approximation. Substituting u = ∇ϕ gives
that

∇
(

ρ
∂ϕ

∂t
+ p

)
= 0.

This means that ρ∂ϕ/∂t + p is a constant. If we
assume no surface tension and atmospheric pres-
sure pa on the free surface, this gives

p − pa = −ρ
∂ϕ

∂t
. (8.33)

Because p = pa on the free surface, we get that
∂ϕ/∂t = 0 on the free surface. If we now follow
fluid particles on the free surface, they start at
initial time with ϕ = 0. Because ∂ϕ/∂t = 0, ϕ = 0
remains for all time as a condition on the free
surface. However, the free surface moves because
∂ϕ/∂n �= 0. The final step then is to assume small
deviations between ϕ on z = 0 and the free sur-
face and transfer this condition to z = 0, again by
Taylor expansion. The reason for this is that it sim-
plifies considerably the solution to our problem.
The same is true for transferring the body bound-
ary condition to z = 0.

The solution to the boundary-value problem
shown in Figure 8.27 may be found in many text-
books. Complex variables Z = x + iz, in which i is
the complex unit, are then introduced. The com-
plex velocity potential can be expressed as (Kochin

et al. 1964)

� = ϕ + iψ = iVZ − i V(Z2 − c2)1/2, (8.34)

where ϕ is the velocity potential and ψ is the
stream function. The complex velocity is

d�

dZ
= u − iw = iV − i V

Z

(Z 2 − c2)1/2 . (8.35)

Let us control that the boundary conditions are
satisfied. Care must then be shown in evaluat-
ing the complex function (Z2 − c2)1/2 which has
a branch cut along the line from Z = −c to c. We
introduce Z − c = r1eiθ1 and Z + c = r2eiθ2 , where
θ1 and θ2 vary from −π to π (Figure 8.28). This
means

(Z2 − c2)1/2 = √
r1r2 ei 1

2 (θ1+θ2).

We can write θ1 = −π and θ2 = 0 when |x| < c and
z = 0−. This gives

(Z2−c2)1/2 = −i(c2 − x2)1/2 for |x| < c, z = 0−.

(8.36)

Here z = 0− corresponds to the underside of the
body. When x > c and z = 0, both θ1 and θ2 are
zero, that is,

(Z2 − c2)1/2 = (x2 − c2)1/2 for x > c, z = 0.

(8.37)

Further, x < −c and z = 0 means that θ1 = θ2 = π ,
that is,

(Z2 − c2)1/2 = −(x2 − c2)1/2 for x < −c, z = 0.

(8.38)
Eq. (8.34) gives, then, ϕ = 0 for |x| > c on z =

0. Further, eq. (8.35) gives

d�

dZ
= u − iw = iV + V

x

(c2 − x2)1/2

for |x| < c on z = 0−. (8.39)

Figure 8.28. Definition of polar coordinates (r1, θ1)
and (r2, θ2) used in evaluating the complex function
(Z2 − c2)1/2. The angles θi vary from −π to π .
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Because w = ∂ϕ/∂z, we see from eq. (8.39) that
the body boundary condition is satisfied. Further,
eq. (8.35) gives that the fluid velocity goes asymp-
totically to zero when |Z| → ∞.

Eq. (8.34) gives

� = ϕ + iψ = iVx − V(c2 − x2)1/2

for |x| < c(t), z = 0−. (8.40)

We can then write the velocity potential on the
body as

ϕ = −V(c2 − x2)1/2, |x| < c(t). (8.41)

Eq. (8.33) gives the hydrodynamic pressure.
There is nothing in our derivations so far that pre-
vents us from letting V be time-dependent except
that the vertical distance of the lowest point on
the body is

∫ t
0 V(τ ) dτ relative to the calm free

surface. This gives

p − pa = ρV
c

(c2 − x2)1/2

dc
dt

+ ρ
dV
dt

(c2 − x2)1/2.

(8.42)

The first term is denoted as the slamming pres-
sure. It is associated with the rate of change of
the wetted surface which is approximately 2dc/dt .
Why the second term is called the added mass
pressure will be more evident when we later con-
sider the resulting hydrodynamic force. We note
that the slamming pressure is infinite at x = ± c.
This is unphysical. A detailed analysis near the
spray roots (inner domain solution) is needed to
find the correct pressure near x = ±c. If V is con-
stant, this gives a maximum pressure of p − pa =
0.5ρ (dc/dt)2

. Armand and Cointe (1986) and
Howison et al. (1991) showed how to match the
inner and outer domain solutions. A composite
expression for the pressure that is valid in both
domains can then be constructed. Cointe (1991)
also studied the details of the solution in the jet
domains defined in Figure 8.25. However, in the
next section, we see that in practice, we are inter-
ested in space-averaged pressures. Because eq.
(8.42) is integrable, the singularity appearing in
the outer domain solution is not serious.

Let us now derive the two-dimensional vertical
force acting on the impacting body. This can be

expressed as

F3 =
c∫

−c

p dx = ρVc
dc
dt

c∫
−c

dx√
c2 − x2

+ ρ
dV
dt

c∫
−c

(
c2 − x2)1/2

dx (8.43)

= ρπVc
dc
dt

+ ρ
π

2
c2 dV

dt
.

The term ρπc2/2 appearing in the last term is the
two-dimensional added mass in heave a33 for the
plate shown in Figure 8.27. We can understand this
by returning to our definition of added mass in
eq. (7.39). We studied forced oscillations of a body,
linearized the problem, and defined added mass in
terms of resulting linear hydrodynamic forces. The
slamming term in eq. (8.43) is nonlinear in V. This
will be evident later when we express c. Another
way of saying it is that in a linearized problem, we
should not allow for a change in the wetted area,
that is, dc/dt should be zero. By now noting that V
is positive downward, we have by the definition in
eq. (7.39) that ρπc2/2 is the added mass in heave.
Eq. (7.39) also includes a damping term. Because
the damping is caused by wave radiation and we
have here the free-surface condition ϕ = 0, which
implies that no waves can be generated, it is consis-
tent that we find here that the damping is zero. In
order to develop waves, we had to include either
surface tension or gravity.

We should note that the added mass that we
have found is half the heave-added mass of a plate
in infinite fluid. We can understand this by study-
ing forced oscillations in the heave of the plate in
infinite fluid. Because the velocity potential then
is antisymmetric about the x-axis, it implies that
ϕ = 0 on the x-axis for |x| > c. This is the same
condition as the one we have used in solving our
problem. When we find the resulting hydrody-
namic force on the plate in infinite fluid, we have
to integrate pressure on both sides of the plate. In
our problem, we have only to integrate pressures
on the lower side. It then follows that ρπc2/2 is
half the heave-added mass of the plate in infinite
fluid.

We see from eq. (8.43) that the force can also
be expressed as

F3 = d
dt

(a33V) = a33
dV
dt

+ V
da33

dt
, (8.44)
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Figure 8.29. Relative vertical fluid velocity wr between the fluid particles on the free surface and the
body due to an impacting blunt symmetric body. V = water entry velocity, 2c(t) = instantaneous beam.

where Vda33/dt is the slamming force. This is a
common way to express the slamming force in
connection with the von Karman method. When
this is done, one does not necessarily use a flat
plate approximation, as we have done. Further,
eq. (8.44) is also applied to a 3D body by replacing
the 2D heave-added mass a33 with the 3D heave-
added mass A33. So what one does is to calculate
“infinite frequency” – added mass as a function
of submergence. Infinite frequency means that the
free-surface condition is ϕ = 0.

If a flat plate approximation is made, as in
Wagner’s 2D case, and the instantaneous contact
line between the body and the free surface is ellip-
tic, we can express (Scolan and Korobkin 2001)
the three-dimensional heave-added mass as

A33 (t) = 2π

3
ρa2b
E (e)

. (8.45)

Here a (t) and b (t) are, respectively, the short-
est and longest semi-axes of the ellipse. Further,
e = (1 − (a/b)2)0.5 is the ellipse eccentricity and E
is the complete elliptic integral of the second kind
(Abramowitz and Stegun 1964). In the particular
case of a circular disk, that is, a = b, we get that
A33 = 4ρa3/3. Using eqs. (8.44) and (8.45) in com-
bination with a von Karman method is straightfor-
ward. This provides a simple way to qualitatively
assess the importance of 3D flow effects during
impact.

When eq. (8.44) is used in practice, the rela-
tive impact velocity between the body velocity and
the ambient water velocity is introduced. Further,
it is common to add hydrostatic force and forces
due to the pressure in the incident waves (Froude-
Kriloff forces). Because this has to account for the
instantaneous submergence, which is not necessar-
ily small, the Froude-Kriloff and hydrostatic forces
are evaluated exactly. We will demonstrate this

when we later consider wetdeck slamming loads
in the context of a catamaran and bow flare forces.

Prediction of wetted surface
Let us now return to our 2D slamming problem. If
we use von Karman’s method, c (t) is determined
by the geometrical intersection between the undis-
turbed free surface and body surface. If we use
Wagner’s method, then we need to follow fluid
particles on the free surface and see when they
intersect with the body surface. Because ϕ = 0 on
the free surface, the horizontal velocity ∂ϕ/∂x is
zero on the free surface. We can use eqs. (8.35),
(8.37), and (8.38) to express the vertical velocity
w = ∂ϕ/∂z on the free surface. This gives

∂ϕ

∂z
= V |x|√

x2 − c2 (t)
− V on z = 0, |x| > c (t) .

(8.46)

It should be stressed that this expression does
not apply to z = 0, |x| < c (t) where ∂ϕ/∂z = −V.

We need to know the relative vertical velocities
wr = ∂ϕ/∂z + V between the fluid particles on the
free surface and the body. This relative velocity
is presented in Figure 8.29. We now focus on one
fluid particle with a given |x| > c and express when
this particle intersects the body surface. It has then
moved a vertical distance ηb (x) (see Figure 8.26)
relative to the body. This means

ηb (x) =
t∫

0

V |x|√
x2 − c2 (t)

dt. (8.47)

Here t = 0 corresponds to initial impact and ηb (x)
is a known function. Eq. (8.47) is an integral equa-
tion that determines c (t) . We will now derive the
details. We consider positive x and introduce c as
an integration variable instead of t. c varies from
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0 to x. This gives

ηb (x) =
x∫

0

xµ (c) dc√
x2 − c2

, (8.48)

where

µ (c) dc = V dt. (8.49)

We do not know µ(c). Eq. (8.48) is therefore an
integral equation that determines µ(c). When µ(c)
is found, we can use eq. (8.49) to find c as a function
of time. We will try to find an approximate solution
to eq. (8.48) by guessing that

µ (c) ≈ A0 + A1c. (8.50)

Here A0 and A1 are unknown constants. By inte-
grating the right-hand side of eq. (8.48), it follows
that

ηb (x) = A0
π

2
x + A1x2. (8.51)

If ηb (x) is given as a second-order polynomial, we
can determine A0 and A1 from eq. (8.51). Having
determined µ (c), we can now integrate eq. (8.49)
to find c as a function of time. We illustrate this for
a wedge and a parabola.

The solution to symmetric impact on a wedge
with deadrise angle β, ηb(x) = |x| tan β and con-
stant V is

c(t) = πVt
2 tan β

. (8.52)

The solution to a parabola with ηb(x) = 0.5x2/R
and constant V is

c (t) = 2
√

Vt R. (8.53)

If one wants to find c(t) for time varying V as well
as a body shape defined by ηb(x) = Ax + Bx2, one
has to solve the equation(

2A
π

c + B
2

c2

)
=

t∫
0

V dt (8.54)

following from eq. (8.49). Assuming a linearly
changing impact velocity, V (t) = V0 + V1t, the
expression for c becomes

c (t) = − 2A
π B

+
√

(2A/π)2 + 2BV0t + BV1t2

B
.

(8.55)

It requires, of course, that c is real and positive.
Wagner’s method does not work for water exit,

that is, diminishing wetted surface. One will not
find intersection points. This is a consequence of

the free-surface condition ϕ = 0. It means that
fluid accelerations are, for instance, no longer
dominant relative to gravitational acceleration.
One should, in principle, use the exact free-surface
conditions given in section 3.2.1. This requires a
numerical method, which by no means is trivial to
apply. von Karman’s method provides a solution
during water exit, but how correct it is depends
on the duration Td of the sum of the water entry
and exit phases relative to a characteristic time. If
we consider wave impact, this characteristic time
is the wave encounter period Te. This ratio Td/Te

should be small. We can exemplify what small
means by referring to two examples. Ge (2002)
showed good agreement between a von Karman
model and experimental results of vertical forces
during wetdeck slamming. The ratio Td/Te was less
than 0.2. Baarholm (2001) also examined wetdeck
slamming loads. However, the time duration of the
water exit phase was not satisfactorily predicted by
a von Karman model. The ratio Td/Te was about
0.65 in this case.

It is common in a von Karman method to neglect
the slamming term VdA33/dt during water exit.
When we later study global effects due to slam-
ming, both water entry and water exit phases have
to be considered.

8.3.2 Design pressure on rigid bodies

When the deadrise angle is small, one should not
put too much emphasis on the peak pressures.
It is the pressure integrated over a given area
that is of interest in structural design as long as
hydroelasticity does not matter. When hydroelas-
ticity matters, maximum pressures cannot be used
to estimate structural response (see Figures 8.9
and 8.10). In designing experiments on slamming
loads, one should have in mind what the results
should be used for.

Let us illustrate how we can obtain average pres-
sures appropriate for the design of a local rigid
structure. Consider a structural part like those in
Figures 8.18 and 8.19 with longitudinal stiffeners
and transverse frames and the outside shell plat-
ing of the hull. By assuming the transverse frame
to be much stiffer than the longitudinal stiffener,
the resulting stresses in the longitudinal stiffener
are normally more important than those in the
transverse frame (the stresses in the transverse
frame are, of course, also important depending
on its size and length versus the total loading,
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and sometimes in accidental cases, the frame has
been deformed without deforming the stiffeners).
If the x-direction means the longitudinal direction
of the ship, the instantaneous slamming pressure
does not vary much with the position x between
two transverse frames. A first approximation of
the instantaneous slamming loads of importance
for the stresses in the longitudinal stiffener num-
ber i is then the space-averaged slamming pres-
sure between yi and yi+1 (see Figure 8.18). This
space-averaged pressure varies with time, and it is
the largest value that is of prime importance. We
will use Wagner’s (1932) solution for water entry
of a wedge to find the space-averaged pressure.
This assumes the deadrise angle to be small. The
so-called outer solution is used, which means the
details of the spray root are not described. When
the water entry velocity V is constant, the intersec-
tion point y = ±c between the free surface and the
body surface is given by eq. (8.52). The pressure p
on the wedge is given by eq. (8.42). We assume V
is constant.

Eq. (8.42) can be integrated analytically to
obtain space-averaged pressures pav and the total
force. The space-averaged pressure from yi to yi+1

(see Figure 8.18) has a maximum when c = yi+1. It
follows that the maximum value is

pmax
av − pa = 0.5ρV2 π

tan β

(
yi+1

yi+1 − yi

)
(8.56)

×
(

π

2
− sin−1

(
yi

yi+1

))
.

It should be noted that eq. (8.42) gives infinite
pressure when y = ±c but this is not true for
eq. (8.56).

8.3.3 Example: Local slamming-induced stresses in
longitudinal stiffener by quasi-steady beam theory

Consider water entry of a body with a wedge-
shaped cross section, as in Figure 8.18, and stiff-
ened platings, as in Figure 8.19. We examine the
bending stress in the second longitudinal stiff-
ener from the keel by using steady beam theory.
This means the longitudinal stiffener together with
the plate flange is considered, that is, similar to
Figure 8.17 but with other dimensions. The effec-
tive flange should in reality be accounted for in
the bending stiffness, whereas the pressure acts
on the whole flange. The stiffener is assumed to
be independent of the rest of the plating, and sec-
ondary stresses, such as plate stresses with Pois-

son effect, are neglected. The maximum space-
averaged impact pressure loading is obtained by
eq. (8.56). The resulting stress distribution from
the stiffener bending is found by

σ = za (pmax
av − pa)
2I (8.57)

×
[(

L
2

)2 (1 + α/3)
(1 + α)

− (x − 0.5L)2

]
,

where x is defined in Figure 8.19. Further, za is the
distance from the neutral axis to where the stress
is evaluated and

α = 0.5kθ L/EI.

Here kθ is a spring stiffness that is related to the
restoring beam end moment Mr by Mr = −kθ θb. θb

is the rotation angle at the beam end (see
also eq. (8.3) and accompanying discussion).
We use the following values in eqs. (8.56) and
(8.57): ρ = 1000 kgm−3, V = 1 ms−1, β = 15◦, yi =
0.317 m, yi+1 = 0.634 m, za = 0.045 m, I = 8.73 ·
10−7 m4m−1, α = 3, and L = 1.25 m. This gives

pmax
av − pa = 12.3 kNm−2

and the following stress at x = L/2:

σ = 62 MPa.

This is an acceptable stress level provided V is the
design value. The impact velocity V as a design
value would be related to a probability level of
exceedance. V and β are crucial parameters for the
results and should be determined with significant
confidence.

8.3.4 Effect of air cushions on slamming

When a body with a horizontal flat bottom or a
small deadrise angle hits a horizontal free surface,
a compressible air pocket is created between the
body and the free surface in an initial phase (Fig-
ure 8.30). This has been numerically investigated
by Koehler and Kettleborough (1977) for a rigid
structure. The air flow causes the water to rise at
the edges of the body and encloses an air pocket.
The cushioning effect of the air pocket reduces the
pressure on the structure.

The pressure in the air cushion will in real-
ity deform both the structure and the free sur-
face. The scenario in Figure 8.30 for an air
cushion may have too short a duration for the
detailed behavior to influence the maximum
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AIR

WATER

V

Figure 8.30. Deformation of the free surface and forma-
tion of an air pocket during entry of a rigid body with
horizontal flat bottom. The thickness of the air layer is
exaggerated.

FREE SURFACE AIR CUSHION

Ω(t)
n

∂ϕ
∂n

= Un
T

Figure 8.31. Formation of air pocket as a consequence
of the shape of the impacting free surface. ϕ = velocity
potential for the water motion, UT

n = normal velocity of
air pocket.

slamming-induced structural stresses. However,
air pockets may be created as a consequence of the
shape of the impacting free surface. One scenario
could be plunging breaking waves against the ship
side. This causes an air cushion in a 2D flow sit-
uation (Zhang et al. 1996). However, the air has
the possibility to escape in a 3D flow situation.
Another scenario is in connection with wetdeck
slamming (Figure 8.31).

Let us study a situation like the one in Fig-
ure 8.31. An impact on the bottom of a semi-
infinite long flat plate is examined, and an air cush-
ion with volume � (t) is created. The air cushion
dimensions are assumed to be sufficiently large
so that surface tension effects can be neglected.
Two-dimensional flow in the (x, z) plane is con-
sidered with the origin of the coordinate system
at the leading edge of the plate (Figure 8.32). The
plate is assumed rigid and situated at x ≥ 0, z = 0.
The presence of the air cushion influences the flow
in the water, which will be described by potential
flow of an incompressible fluid. The total velocity
potential for the water flow can be divided into sev-
eral parts. For instance, if this were the linear ship
motion problem, the decomposition of the total
velocity potential would be given by eq. (7.99).

The boundary-value problem for a velocity
potential ϕ caused by the air pocket is shown
in Figure 8.32. A free-surface condition ϕ = 0 is

imposed on z = 0 for x < 0. The body boundary
condition on the wetted part of the flat plate is
∂ϕ/∂z = 0. On the air cavity surface, we must sat-
isfy ∂ϕ/∂n = Un, where Un is the normal velocity
of the air cushion surface SA. The positive nor-
mal direction is into the water. In Figure 8.32,
this condition is transferred to the plate between
x = a and b. In Figures 8.31 and 8.32, we use nota-
tions UT

n and Un for the normal velocity of the air
cushion surface. Here UT

n means the total normal
velocity of the air cushion surface. This includes
the effect of the incident waves. However, the
situation in Figure 8.32 is similar to an eigen-
value problem. There is no excitation. We just
assume that an air cushion is formed and will
look for eigenvalues for the oscillation of the air
pocket.

On the air cushion surface, we must also require
that the pressure in the air cushion be the same
as the pressure on the water surface. We assume
spatially constant pressure p inside the air cush-
ion. The air must be considered compressible. The
continuity equation for the air cushion can be
expressed as

ρ
d�

dt
+ dρ

dt
� = 0, (8.58)

where ρ is the mass density of the air and � (t) is
the air cushion volume. We can also write

d�

dt
=

∫
SA

Un ds. (8.59)

An adiabatic pressure-density relationship

p
pa

=
(

ρ

ρa

)γ

(8.60)

with γ = 1.4 is assumed. Here pa and ρa are val-
ues of p and ρ without an air cushion, that is, at the
time of the closure of the air pocket. Eqs. (8.58)
and (8.60) are similar to the equations used in
Chapter 5 to describe cobblestone oscillations of

ϕ = 0

z

x

a b

∂ϕ ∂ϕ ∂ϕ
∂z ∂z ∂z

= 0 = 0= −Un

Figure 8.32. Boundary-value problem for the velocity
potential ϕ due to the air cushion between x = a and b.
The body is assumed rigid and nonmoving.
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Figure 8.33. Two-dimensional added
mass a33 due to an oscillating air cushion
of length (b−a) on the bottom of a
semi-infinitely long plate. a and b with
b > a are distances from the leading
edge of the plate (see Figure 8.32). The
high-frequency free-surface condition is
used. ρw = mass density of the water.

an SES. However, in the latter case, we accounted
for leakage and inflow to the air cushion.

Eqs. (8.58), (8.59), and (8.60) are now linearized
by expressing p = pa + p1, where p1/pa<<1. It
follows from eq. (8.60) by first writing ρ/ρa =
(p/pa)1/γ and then using a Taylor series expansion
that

ρ

ρa
≈ 1 + 1

γ

p1

pa
. (8.61)

Further, eq. (8.59) can be approximated as

d�

dt
≈ Un(b − a). (8.62)

This implies that constant Un is assumed. The
following linearized equation follows from eqs.
(8.58), (8.61), and (8.62):

ρaUn(b − a) + �0
1
γ

ρa

pa

dp1

dt
= 0. (8.63)

Here �0 is an average air cushion volume and
(b − a) an average length of the air cushion. We
still have two unknowns, that is, Un and p1. How-
ever, they can be related as follows. We consider
the boundary-value problem in Figure 8.32. We
could say this is the same as the problem for a heav-
ing flat plate between x = a and b in combination
with a free surface from x = −∞ to 0, and fixed
flat plates from x = 0 to a and from x = b to ∞.
We can solve this problem for unit Un by a numer-
ical method or conformal mapping. We will not
show the details on how to solve the problem, but
instead recall from Chapter 7 how added mass is
defined. This means that forced oscillation of the

plate with velocity Un will cause a vertical force
on the plate that can be expressed as a33dUn/dt,
where a33 is the two-dimensional added mass in
heave. (Note that the sign of the force is consis-
tent with the fact that positive Un is in the negative
z-direction.) This force comes from integrating a
dynamic pressure. This pressure is the same as p1,
which is approximated as a uniform pressure from
the force, that is,

p1 = a33

b − a
dUn

dt
. (8.64)

We can express a33 in a nondimensional way as
follows

a33

ρw (π/8) (b − a)2 = K. (8.65)

Here ρw means mass density of the water. Calcu-
lated values of K based on conformal mapping are
presented in Figure 8.33. The added mass is

a33 = 2b
π

ρw

b∫
a

dx
{

0.5
(a

b
− x

b

)

× ln
[(( x

b

)0.5
−

(a
b

)0.5
)/(( x

b

)0.5
+

(a
b

)0.5
)]

+
( x

b

)0.5
(

1 −
(a

b

)0.5
)

+ 0.5
(

1 − x
b

)

× ln
[(

1 +
( x

b

)0.5
) / (

1 −
( x

b

)0.5
)]}

(8.66)

The value when a = 0 is a33 = ρwb22/π . When
a/b → 1, a33 → ∞ because of the free surface,
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Figure 8.34. Two-dimensional water-on-
deck experiments. Water impact with the
deck and cavity formation during the initial
stages of the water shipping (Greco 2001).

which is infinitely far away on the scale of (b − a).
The problem is then mathematically similar
to solving the added mass problem with rigid
free-surface condition. This gives infinite two-
dimensional added mass in heave.

We should note that there is a conflict between
assuming both Un and p1 to be constant between
x = a and b. So we must consider our analysis
approximate from this point of view.

We substitute eq. (8.64) into eq. (8.63) and
assume harmonic oscillations. This gives the natu-
ral frequency

ωn =
√

8γ pa

π Kρw�0
, (8.67)

where K is defined by eq. (8.65). This equation also
gives the time scaling; that is, we should present
results in nondimensional form as a function of
nondimensional time

t∗ = t
√

pa

ρw L2
, (8.68)

where L is a length scale of the body. In other
words, we must introduce the finite dimensions of
the body.

Let us then study the scaling of the dynamic
pressure p1. We express then Un = Una cos ωnt ,
where Una is the initial normal velocity at t = 0.
This velocity is Froude scaled. By using eqs. (8.64)
and (8.65), we can now write

p1√
ρwgLpa

= −
√

π

8
Kγ

(
b − a

L

)2 L2

�0

Una√
gL

sin ωnt.

(8.69)

Let us then consider a model test based on Froude
scaling. Una/

√
gL, (b − a) /L, and �0/L2 would be

the same in model and full scales. Eq. (8.69) says
then that p1/

√
ρwgLpa is the same in model and

full scales. If we call Lm the model length and Lf

the full-scale length, the pressure in full scale will
be (Lf /Lm)0.5 times the pressure in model scale.
If Froude scaling of pressure had been used, the
pressure in full scale would be Lf /Lm times the
pressure in model scale. This means Froude scal-
ing is clearly conservative when slamming pres-
sures associated with air cushions are scaled. This
was also documented numerically by Greco et al.
(2003), who also showed that the linear behavior
described in this section is appropriate in model
tests. However, the oscillations of the air cushion
had a strong nonlinear behavior in full scale.

Figure 8.34 shows another case in which an
air cushion is created during impact. A plung-
ing breaker hits the top of a deck structure. This
can be an initial scenario for green water on deck
(Barcellona et al. 2003). The results in Figure 8.34
are two-dimensional results by Greco (2001). The
air cushion will, in this case, collapse into bubbles.

8.3.5 Impact of a fluid wedge and green water

Figure 8.35 shows theoretical results for slamming
pressures on a rigid vertical wall due to an impact-
ing fluid wedge with interior angle β and velocity
V. The results are based on a similarity solution,
which neglects gravity. This means that it does not
need to be a vertical wall but can be any flat surface
perpendicular to the impacting fluid wedge. When
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Figure 8.35. Left: sketch of the equivalent problem of a fluid (half) wedge impacting a flat wall at
90◦. Center: maximum pressure on a wall due to the water impact. Right: pressure distribution along
the vertical wall for 5◦ ≤ β ≤ 75◦ with increment �β = 10◦. The results are numerically obtained by
neglecting gravity and using the similarity solution by Zhang et al. (1996) (Greco 2001).

the interior angle β is close to 90◦, we could obtain
similar results by using a Wagner-type analysis.

The results in Figure 8.35 are of relevance, for
instance, in studying the impact on a deck house
of green water on deck (Greco 2001). A scenario
causing green water is shown in Figure 8.36. The
relative vertical motions between the ship and
the waves cause a vertical wall of water around the
bow. The behavior of the water later on is similar

Figure 8.36. Illustration of green water when the tanker Siri met Typhoon Judy southeast of Okinawa
in 1963. The relative vertical motions between the ship and the waves caused a vertical wall of water
around the bow. The behavior of the water later on was similar to the breaking of a dam. This caused
water flowing with large velocity along the deck. Secondary slamming effects may occur when the
water flows from the forecastle, shown on the picture, and hits the main deck (Photo: Per Meidel).

to the breaking of a dam. This causes water to flow
with large velocities along the deck and to induce
loading on the deck as well as on deck houses and
equipment (Barcellona et al. 2003). The front of
the water can locally be approximated as a fluid
wedge with a small angle β. There are, of course,
three-dimensional effects modifying this picture.

If the relative vertical velocity is not dominant in
comparison with the relative longitudinal velocity,
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Figure 8.37. 2D and 3D experiments of green water on the deck of a stationary ship that is restrained
from oscillating (Greco 2001, Barcellona et al. 2003).

the water may flow onto the deck in a manner
similar to a plunging breaker (Greco 2001, see
Figure 8.34). An extreme situation may be that
a plunging breaker hits directly on a deck house
in the forward part of the ship.

Figure 8.37 shows 2D and 3D experiments of
green water on the deck of a stationary ship. The
results in Figure 8.35 are directly applicable in the
2D case in the initial phase after the water has hit
the vertical wall. This has been extensively studied
numerically and experimentally by Greco (2001),
who also described the strong interaction between
the flow on the deck and exterior to the ship hull.
The water in her case came initially as a plung-
ing breaker hitting the front of the deck. The sub-
sequent fluid motion on the deck resembled but
was not equal to the flow due to the breaking of
a dam.

Obviously, the results in Figure 8.35 cannot be
valid for the entire time after the impact with the
vertical wall, because the vertically moving fluid
is influenced by gravity. The water near the wall
will at some stage overturn, as illustrated in Fig-
ure 8.37. The overturning water will then impact
on the underlying water, causing important pres-

sure loading on the deck and the wall. Figure 8.37
shows the water after this impact of the overturn-
ing water. It illustrates also that the 3D flow situ-
ation is only qualitatively the same as for the 2D
flow. The results in the figure are for a stationary
and nonoscillating ship. However, large forward
speed, wave-induced ship motions, and bow geom-
etry typical for a high-speed vessel are expected to
have a clear influence on the results.

Figure 8.38 shows experimental waterfront
velocity along the deck centerline for three sta-
tionary ship models that are restrained from mov-
ing in head sea. If the initial height of the water
above the deck, H-f, is set equal to 10 m, the
waterfront velocity along the deck centerline once
the flow is almost fully developed varies between
11 ms−1, for kca = 0.125, and 17 ms−1, for kca =
0.225. Here kca means the incoming wave steep-
ness. These values can be used to get a rough esti-
mate of the maximum pressure on a vertical wall,
associated with an initial water-superstructure
impact. At the beginning of the impact, the water-
front velocity (impact velocity, V) and the angle
β represent the impact parameters. Actually, if,
as expected, β is sufficiently small (less than 40◦),
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Figure 8.38. Experimental waterfront velocity v∗ = v/ (g (H − f ))0.5 along the deck centerline x∗-coordinate =
x/ (H − f ). x = 0 is the bow. The influence of incoming-wave steepness kca and bow shape are examined in head
sea. Left : ESSO Osaka; center: circular bow; right: elliptical bow. The ship models are restrained from moving.
H-f = initial height of the water above the deck at the bow (Barcellona et al. 2003).

the impact is dominated by the impact velocity
only, and the pressure will depend on it as a
square power. For 0◦ < β < 40◦, the maximum
pressure varies between 1/2ρV2 and ≈1.4ρV2,

respectively. For kca = 0.225, this means pressure
of 145 kPa and 405 kPa, respectively. Both val-
ues are of concern for the superstructure, their
time duration and spatial concentration being not
very small relative to relevant local structural
natural periods and structural dimensions. The
angle β will be reduced as the water flows along
the deck.

The superstructure of a high-speed vessel tends
to be streamlined. This means it is more relevant
to study impact against an inclined wall. Numeri-
cal results by Greco (2001) are presented in Fig-
ures 8.39 and 8.40. The initial conditions corre-
sponding to the breaking of a dam with height
h and an impacting fluid wedge with apex angle
β = 11◦ and impacting velocity V = 1.983 (gh)0.5

were examined. The shallow-water solution to

Figure 8.39. Water impacting against an inclined wall. Left: sketch of the problem. Right: time evo-
lution of the normal force acting on the structure for increasing α. β = 11◦, V = 1.983 (gh)0.5, h =
initial dam height. �τimp = (t − timp)(g/h)0.5. The results are obtained by numerically solving the
exact dam-breaking problem (Greco 2001).

the dam-breaking problem differs from this (see
Stoker 1958) and would give V = 2 (gh)0.5 and an
apex angle equal to zero. This means the shallow-
water solution does not solve the dam-breaking
problem exactly.

Greco (2001) varied the slope of the wall α

(see sketch in Figure 8.39) between 0◦ and 40◦.
The right-hand plot in Figure 8.39 shows the nor-
mal force acting on the wall for increasing val-
ues of α. In particular, as α increases, the force
component decreases at a smaller rate, resulting
in a weaker load for a given time. As an exam-
ple, when α = 40◦, at the end of the simulation,
F α

n,max is about 50% of the value F 0
n,max obtained

for the vertical wall (α = 0◦). In general, the ratio
F α

n,max/F 0
n,max decreases almost linearly with α. The

pressure values along the wall (Figure 8.40), and
in particular the maximum pressure occurring at
the position of the first impact, decreases as α

increases. The difference among the pressure pro-
files reduces as time increases.
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Figure 8.40. Water flow impacting a structure with angle β = 11◦ and impact velocity V =
1.983 (gh)0.5. The wall has an arbitrary slope α. Pressure (p) distributions, related to the values of α

considered in Figure 8.39, are shown at three time instants after the impact. �τimp = (t − timp)(g/h)0.5,
h = initial dam height, s = coordinate along the inclined wall defined in Figure 8.39 (Greco 2001).

8.4 Global wetdeck slamming effects

Slamming also causes global effects on the ship.
For monohull vessels, these effects are associated
with bow flare slamming, whereas catamarans and
SES are dominated by wetdeck slamming effects.
An SES that has suffered severe speed loss in
heavy seas and in practice is off-cushion represents
a risky scenario. Transient heave, pitch, and global
vertical elastic vibrations are excited because
of the wetdeck slamming. The dominant elastic
vibrations in head sea are in terms of two-node
longitudinal vertical bending. The phenomenon
is called whipping and also induces global shear
forces, bending moments, and stresses. Global lon-
gitudinal vertical bending is of concern for ves-
sels of lengths larger than 50 m, but we also
observe the effect on smaller vessels. Figure 8.41
shows a full-scale measurement of vertical accel-
erations at the bow of the 30 m–long Ulstein test
catamaran in head sea conditions with significant
wave height H1/3 = 1.5 m. The forward speed was
18 knots and the vessel was allowed to operate up
to H1/3 = 3.5 m. Local slamming-induced bend-
ing stress in a longitudinal stiffener (located in
the wetdeck at the bow area) corresponding to
approximately half the yield stress was recorded
at the same time. The high-frequency oscillations
in Figure 8.41 have a period corresponding to the
global two-node bending. Because the largest ver-
tical accelerations in Figure 8.41 are about 2g, a
shipmaster may have avoided the situation during
passenger transportation by reducing the speed
and/or changing the course.

The natural period of the global two-node bend-
ing is of the order of 1 s when whipping matters.
Because local hydroelastic slamming has typically

a time scale of the order of 10−2s, we can consider
the structure locally rigid in the global structural
analysis. There are also other modes to be con-
sidered in a practical evaluation. Our focus is on
head sea and longitudinal vertical bending about
a transverse axis.

Figure 8.41. Measured vertical acceleration at the for-
ward perpendicular (FP) of the Ulstein test catamaran;
test no. 204. Significant wave heightH1/3 = 1.5 m. Modal
wave period T0 = 6 s. Head sea. U = 18 knots (Faltinsen
1999).
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Figure 8.42. Position of slamming on the wetdeck of a catamaran in regular head sea waves as a function of wave-
length λ. The figure shows a longitudinal cross section at the centerplane of the catamaran. The bow ramp is seen
in the fore part. Fn = 0.5, ζa = ζslam = lowest incident wave amplitude when slamming occurs, L = LPP = length
between perpendiculars (Zhao and Faltinsen 1992).
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It matters how the water hits the wetdeck. Fig-
ure 8.42 from Zhao and Faltinsen (1992) shows
how the impact position depends on the wave
period in regular head sea waves for a given cata-
maran and Froude number. The water always hits
the forward part of the wet deck. This follows from
the fact that the relative vertical motions of the
catamaran are always largest in the forward part
of the ship at forward speed in head sea. Interac-
tion between the demihulls are often disregarded
at high speed. However, this cannot be assumed
at low speed. Generally, we cannot for all speeds
and wave headings say that the water will always
impact on the forward part of the wetdeck. Fig-
ure 8.42 shows that the longer the wavelengths
are, the closer to the bow the initial impact occurs.
The figure also presents the minimum wave ampli-
tude ζa for slamming to occur for a given incident
wavelength λ. This minimum wave amplitude is
smallest for λ/L = 1.26 for the cases presented in
Figure 8.42. The smaller the minimum wave ampli-
tude, the larger the amplitude of the relative ver-
tical motion divided by ζa . When the water does
not initially hit at the end of the forward deck, the
water surface has to be initially tangential to the
wetdeck surface at the impact position. Let us con-
sider a wetdeck with a plane transverse horizon-
tal cross section, long-crested incident head waves,
and a forward speed that is not small. The water
surface at the initial impact position can then be
approximated by the incident waves, and the flow
due to slamming can be assumed two-dimensional
in the longitudinal cross-sectional plane of the ves-
sel. It can be shown by using Wagner’s (1932) the-
ory, that the initial slamming force F3 is equal to

F3 = 2ρπV2
R RB. (8.70)

Here VR is the relative velocity normal to the deck
surface at initial impact, R is the radius of curva-
ture of the incident waves at the impact position,
and B is the breadth of the wetdeck at the impact
position. For linear incident regular waves, R can
be expressed as 1/(k2ζa) at the wave crest. Here
k and ζa are, respectively, wave number and wave
amplitude. If VR is proportional to ζa , it implies
that F3 is proportional to ζa .

Let us prove eq. (8.70). We then use eq. (8.43)
and multiply it with B to get the vertical force,
exchange V with −VR, and assume constant VR. We
use eq. (8.53) for c(t). Actually this was derived
for a rigid body with parabolic shape hitting an

initially horizontal free surface. However, follow-
ing an analysis in which the impacting free surface
has a parabolic shape and the body is flat gives the
same expression for c(t). This implies that

dc
dt

=
√

−VRR
t

.

Here we should note that VR is negative during
the impact. The expression for dc/dt is initially
infinite, but the product c(dc/dt) = −2VRR is ini-
tially finite. The final expression gives eq. (8.70).

If the water instead hits initially at the forward
end of the deck, there will be a small angle α

between the free surface and the deck surface. This
implies initially zero slamming force. The increase
in the slamming force on wedges is sensitive to α

in a similar way as water entry forces on wedges
are sensitive to the deadrise angle β for small β. If
the wetdeck has a wedge-shaped transverse cross
section, the slamming loads are for the same rea-
son smaller than those for a plane horizontal wet-
deck. It is also beneficial to have a bow ramp. This
reduces the probability of slamming. A trim angle
has a similar effect. The trim can be significantly
increased (i.e., the bow rises) at Froude numbers
larger than 0.35 (Molland et al. 1996). This is
physically caused by the increased importance of
the velocity square term in the steady Bernoulli’s
equation for the pressure relative to the hydro-
static pressure. Another way of saying this is that
the increased trim is associated with the wavemak-
ing of the ship in calm water. Nonlinear unsteady
wave-body interaction will also cause a mean trim
angle. However, Lugni et al. (2004) showed a small
unsteady effect on the trim in their experimen-
tal studies. The same physical effects also cause
a sinkage.

8.4.1 Water entry and exit loads

The global slamming analysis requires considera-
tion of both the water entry and water exit phases.
Because a Wagner method cannot be used during
the water exit phase, we will base the slamming
load analysis on a von Karman method. The fol-
lowing assumptions are made:

– Incident regular head sea waves act on a cata-
maran at forward speed

– The wetdeck has a plane horizontal transverse
cross section
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Figure 8.43. Two-dimensional boundary-value problem
for velocity potential ϕ due to wetdeck slamming.
a(t), b(t) and l(t) are ship fixed x-coordinates. X-Z is the
local 2D coordinate system on the wetted part of the deck
(Ge 2002).

Because the initial impact occurs in the forward
part of the wetdeck in the following analysis, we
can assume that the free surface can be described
by the incident waves. The wetted area with a von
Karman method can then be found by examining
the relative vertical displacement

ηR = ηB(x, t) − ζa sin(ωet − kx) + h(x). (8.71)

Here h(x) is the time-independent wetdeck height
above calm water and ηB (x, t) is the vertical ship
motion, which includes global elastic vibrations in
addition to rigid body heave and pitch motions.
The incident wave part of eq. (8.71) is consistent
with eq. (7.21). If ηR is less than zero, slamming
occurs.

Our assumptions imply that the flow caused by
the impact can be assumed two-dimensional in the
longitudinal cross-sectional planes. This would not
be true if the wetdeck did not have a flat hori-
zontal transverse cross section. Figure 8.43 illus-
trates the boundary-value problem that we have
to solve for each time instant to find the velocity
potential ϕ due to slamming. We note from Fig-
ure 8.43 that 2c(t) is the wetted length of the deck,
X and Z are local coordinates with X = x − l(t).
Further, b(t) − l(t) = l(t) − a(t) = c(t). The coor-
dinates x = a(t) and x = b(t) follow by solving
eq. (8.71) with ηR = 0. The free-surface condition
ϕ = 0 is the same as the one we used earlier for
slamming studies. The relative impact velocity VR

can be expressed as

VR = ∂ηB

∂t
− U

(
τ − ∂ηB

∂x

)
− ω0ζa cos(ωet − kx).

(8.72)
Here ηB = η3 − xη5 and ∂ηB/∂x = −η5 in the case
of no global elastic vibrations. The second term
U(τ − ∂ηB/∂x) in eq. (8.72) is the velocity com-
ponent of U normal to the wetdeck. τ is the local

time-averaged inclination of the wetdeck relative
to the mean free surface. Positive τ and η5 corre-
spond to bow up. The angle τ expresses the local
geometry, for instance, due to the bow ramp. It also
includes the trim due to hydrostatic and steady for-
ward speed–dependent hydrodynamic forces on
the vessel in calm water. There is also a contri-
bution due to time-averaged nonlinear hydrody-
namic loads by unsteady wave-body interaction.
The latter effect is normally neglected.

Because the wetted length is small relative to
the incident wavelength, eq. (8.72) can be approx-
imated on the wetted area as

VR = V1 + V2 X. (8.73)

This follows by keeping the constant and linearly
varying terms of a Taylor expansion of VR about
X = 0. Because the flow associated with V2 X in
eq. (8.73) is antisymmetric about X = 0, V2 does
not contribute to the vertical force. This means we
can multiply eq. (8.43) by the breadth B of the
wetdeck to get the vertical water entry and water
exit forces on the wetdeck. We must just remember
that in eq. (8.43), V is positive downward, that is,
V = −V1, and that during the water exit phase, we
include only the added mass force.

Froude-Kriloff and hydrostatic forces on the
wetdeck will also contribute, but they are gener-
ally smaller than the slamming and added mass
forces previously described. It is a good approx-
imation to consider incident linear waves, which
we already have done when evaluating relative
vertical motions and velocities. A clear under-
standing of the pressure distribution in incident
waves is needed. This will be discussed in an Earth-
fixed coordinate system. We must consider both
−ρ∂ϕ/∂t and −ρgz in the pressure calculation.
When we derive the linear theory, we assume
implicitly that ϕ is constant from the mean free-
surface level to the instantaneous free-surface
level. It is the hydrostatic component that makes
the pressure atmospheric at the free surface. This
is consistent with the dynamic free-surface condi-
tion gζ + ∂ϕ/∂t = 0 on z = 0.

We have illustrated in Figure 3.5 how the two
terms −ρ∂ϕ/∂t and −ρgz give the total pres-
sure variation with depth. We should, of course,
note that −ρgz also includes the conventional
hydrostatic pressure for z ≤ 0, but we need −ρgz
to describe the dynamic pressure distribution in
the free-surface zone. What this illustrates is that
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Figure 8.44. Outline of the experimental hull arrange-
ments (top view) (Ge 2002).

pressure in the vicinity of the instantaneous free-
surface level ζ behaves as −ρg (z − ζ ) + pa . We
can use this information to evaluate the hydro-
dynamic pressure at the wetdeck, that is, at z =
ηB + h(x). Here ηB is the vertical ship motion
and h(x) is the time-independent wetdeck height
above calm water. Assuming that the incident
free-surface ζ = ζa sin (ωet − kx) is higher than
ηB + h(x), we get the following “buoyancy” force:

F3,buoy = ρgB

b(t)∫
a(t)

[ζa sin(ωet − kx)−ηB − h(x)] dx.

(8.74)

8.4.2 Three-body model

Ge (2002) (see also Ge et al. 2005) studied numer-
ically and experimentally wetdeck slamming-
induced global loads on a catamaran in head sea
deep-water regular waves. The vessel model is
shown in Figure 8.44. The overall length is 4.1 m.
Each side hull consists of three rigid sections. The
hull sections are connected by steel springs and
aluminum transducers longitudinally and trans-
versely. These elastic connections then model the
global elastic behavior of a catamaran. However,
this can only be approximate. The wetdeck con-
sists of four rigid flat sections. Deck 1, where wet-
deck slamming mainly occurs, has a ramp angle
of 3.72◦ with minimum and maximum heights of
0.34 m and 0.39 m, respectively, from the baseline.
The draft at zero speed is 0.225 m and 0.220 m at
FP and AP, respectively.

The catamaran in Figure 8.44 was theoretically
modeled as three rigid bodies with longitudinal
connections of elastic beams (Figure 8.45). The
transverse flexibility between the two hulls was not
accounted for. A reason for neglecting the trans-
verse connecting springs and beams is that long-
crested head sea waves are considered. The split

moment (transverse vertical bending moment in
Figure 7.48) will be small, but not zero because
of different transverse centers for the hydrody-
namic and structural inertia loads. The longitu-
dinal vertical bending modes will then be domi-
nant relative to transverse bending and torsional
modes. Each rigid ship segment has two degrees
of freedom, namely heave and pitch. So in total,
there are six degrees of freedom in this system, and
each degree of motion is referred to its local COG.
The connecting beams are denoted as AB and CD,
respectively.

The slamming-induced flow was described by
a von Karman method as described in the previ-
ous section. Froude-Kriloff and hydrostatic forces
were included when wetdeck loads were calcu-
lated. The hydrodynamic loads on the side hulls
were described by a modification of the lin-
ear frequency-domain strip theory by Salvesen
et al. (1970). Hydrodynamic hull interaction was
neglected. The general equation system for the
motion of the hull segments can be expressed as

Mgenr̈ + Bgenṙ + Kgenr = Fgen (r, ṙ, r̈, t) . (8.75)

Here r is the displacement matrix of this six-
degrees-of-freedom system, containing the heave
and pitch for each segment. Mgen and Bgen are
the mass and damping matrices. Here mass refers
to both the segment mass and the added mass.
Kgen is the restoring (stiffness) matrix, including
the hydrostatic restoring terms from the ship seg-
ments as well as the coupling terms from the spring
beams. Fgen constitutes the forces due to wetdeck
slamming and linear wave excitation loads on the
side hulls.

We now describe how the elastic connections
between the three hulls were accounted for and
start with the static beam equation with zero load-
ing, that is,

EI
d4w

dx4
= 0, (8.76)

Figure 8.45. Degrees of freedom of segmented model
(side view) (Ge 2002).
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Figure 8.46. Elastic beam connection between two adja-
cent rigid-body segments (side view) (Ge 2002).

Figure 8.47. Rotational sign illustration for beam and
adjacent bodies (Ge 2002).

where EI is the bending stiffness of a beam
connection and w is the elastic deflection of this
beam. The connecting beam AB between body 1
and body 2 is used to illustrate the procedure (Fig-
ure 8.46). x = 0 and L correspond to, respectively,
point A and point B. Integration of eq. (8.76) gives

w(x) = 1
EI

(
1
6

ax3 + 1
2

bx2 + cx + d
)

. (8.77)

The boundary conditions of the beam require that
the vertical and rotational displacements at the
ends of A and B match those at the adjacent ends
of body 1 and body 2. Hence,

w|A = η1
3 − O1 Aη1

5

w|B = η2
3 + O2 Bη2

5

∂w

∂x

∣∣∣∣
A

= −η1
5 (8.78)

∂w

∂x

∣∣∣∣
B

= −η2
5

where ηi
3 and ηi

5 are heave at COG and pitch of
body-number i. Further, Oi Xdenotes the distance
from the beam end X to the local COG of the adja-
cent body-number i. One should notice the differ-
ent sign definition between ∂w/∂x and η5. This
means ∂w/∂x = −η5, as illustrated in Figure 8.47.
The coefficients in eq. (8.77) can then be expressed
in terms of the six degrees of freedom of the three-
body system as




a
b
c
d


 = EI

L3




12 −6(L+ 2O1 A) −12 −6(L+ 2O2 B)
−6L 2(2L+ 3O1 A)L 6L 2(L+ 3O2 B)L

0 −L3 0 0
L3 −O1 AL3 0 0







η1
3

η1
5

η2
3

η2
5


. (8.79)

The longitudinal distribution of vertical shear
force Q(x) and bending moment M(x) at the right-
hand side of the beam element, Figure 8.46, can be
expressed as

Q(x) = −EI ∂3w

∂x3 = −a

M(x) = −EI ∂2w

∂x2 = −ax − b
(8.80)

The sign definition is given in Figure 8.46. The con-
stants a and b can now be expressed in terms of
ηi

j by means of eq. (8.79). By evaluating eq. (8.80)
at x = 0 and L, we find the shear forces QA and
QB and the bending moments MA and MB at A
and B. A similar formulation can be obtained for
the second connecting beam between body 2 and
body 3 with ends named C and D, respectively.
The loads acting on the three rigid bodies due to
the connecting beams can then be expressed as


F1
3

F1
5

F2
3

F2
5

F3
3

F3
5




=




QA

MA − QAO1 A
QC − QB

MC − MB − QBO2 B − QC O2C
−QD

−MD − QDO3 D




= kr.

(8.81)

Here F j
i with i = 3,5 represent heave force and

pitch moment, respectively, and j = 1,2,3 mean
body 1, body 2, and body 3. The vector r is
[η1

3 η1
5 η2

3 η2
5 η3

3 η3
5]T, where the superscript T

indicates matrix transposition. The matrix k is
symmetric and is part of the restoring matrix in
eq. (8.75).

There are six degrees of freedom and thus
six pairs of eigenmodes and frequencies. The
undamped natural frequencies and eigenmodes
are obtained by setting Fgen = 0 and Bgen = 0 in
eq. (8.75) and assuming harmonic time depen-
dence exp(iωt). The two lowest modes with low-
est natural frequencies are the coupled heave and
pitch modes for the whole catamaran. This means
modes that are very close to rigid-body modes for
the whole catamaran. The important stiffnesses
of these modes are the result of the hydrostatic
restoring coefficients. The third and fourth modes
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Three-noded vertical deflections Two-noded vertical deflections

Figure 8.48. Calculated shapes of eigenmodes for the three-body model shown in Figure 8.44 (Økland
2002).

are the two-node and three-node bending modes
in the longitudinal vertical plane and are illus-
trated in Figure 8.48. The illustration is based on
a finite-element model, which is really not nec-
essary for finding the required modes for a seg-
mented model such as this. However, a finite-
element model is needed to find the modes for
a real ship. The fifth and sixth modes (shear vibra-
tion modes) have very high natural frequencies
relative to the other modes and are in reality highly
structurally damped. They are not physically rep-
resentative for the shear deformation of a true
ship. This structural damping is not included in
eq. (8.75). The experiments did not show any evi-
dence of the fifth and sixth modes. The effects of

Figure 8.49. Comparisons between experimental and numerical values of vertical shear force (VSF) and vertical
bending moment (VBM) at cut 1 (see Figure 8.44) in regular head sea waves for case 1114; The range of experimental
data is based on the relative error in Table 8.4; E means that the experimental data are obtained by adding the values
of the starboard and port sides. Values that are fractions of E are presented to give experimental error bands. Only
three modes (heave, pitch, and two-node bending) were included (Ge 2002).

them were in the theoretical model eliminated by
using the modal decomposition method.

Figure 8.49 presents steady-state experimental
and numerical vertical shear force (VSF) and ver-
tical bending moment (VBM) at cut 1 (of Fig-
ure 8.44) in regular head sea waves for the most
severe slamming case obtained for the model. The
dominant contributions are the result of the two-
node bending mode, but there are also notice-
able rigid-body effects. The Froude number is
Fn = 0.29, the wave period is T = 1.8 s, and the
incident wave amplitude is 0.041 m. It is referred
to as case 1114 in Ge’s analysis. The results in
Figure 8.49 include experimental error estimates
(Table 8.4). The wave amplitude error is caused by
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Table 8.4. Relative error in global loads due to individual error sources as well as combined
experimental relative error due to these error sources; case 1114 (Ge 2002)

Error source VSF cut 1 (N) VBM cut 1 (Nm) VSF cut 2 (N) VBM cut 2 (Nm)

Speed 0.033 0.032 0.029 0.030
Wave amplitude 0.055 0.102 0.087 0.057
Seiching (sloshing) ≈0.0 ≈0.0 ≈0.0 ≈0.0
Wave measurement 0.055 0.102 0.087 0.057
Roll, yaw, and sway 0.091 0.076 0.123 0.055
Sinkage 0.019 0.037 0.029 0.020
Trim 0.128 0.228 0.189 0.137
COMBINED 0.179 0.285 0.260 0.172

the change in the incident wave amplitude in the
model basin along the sailing track of the model.
Errors due to lateral motions were caused by the
autopilot system and an unintended asymmetry in
the mass distribution about the centerplane. The
error due to trim is large and a consequence of the
fact that the trim was not properly measured at
forward speed.

Figure 8.50 shows fair agreement between the
experimental and numerical slamming forces on
deck 1 for case 1114. Because mass inertia force on
deck 1 due to the vessel motions is included, there
is also a non-zero force after the deck wetting has
finished. However, the magnitude is not large rel-
ative to maximum slamming force. The wetdeck
force is mainly upward during the entry phase,
whereas it is mainly negative during the exit phase.
The maximum value and the absolute value of the
minimum wetdeck force have comparable mag-
nitudes. The reason for the large negative force

Figure 8.50. Theoretical ( ) and experimental (-----)
predictions of slamming force on deck 1 (see Figure
8.44) for case 1114; structural inertia force of deck 1 is
included. Theoretical results are 0.07 s shifted left com-
pared with the results in Figure 8.49. Only three modes
(heave, pitch, and two-node bending) were included
(Ge 2002).

during the water exit is the added mass force. We
can understand this added mass force from Figure
8.51, which shows the calculated wetted length and
relative impact acceleration as a function of time.
The water entry phase ends when the increase in
the wetted length has stopped. Because the rel-
ative impact acceleration aR is positive and the
added mass force is −ρ0.5πc2 BaR, we see that the
force is negative. Because the wetted length, 2c, is

0.8

0.7

0.6

0.5

0.4

0.3

0.2

18

16

14

12

10

8

6

4

2

0

−2

0.1

11.5

11.5

11.55

11.55

11.6

11.6

11.65

11.65

11.7

11.7

11.75

11.75

11.8

11.8

11.85

11.85

0

time (s)

time (s)

1114
1111
1115

1114
1111
1115

W
et

te
d 

le
ng

th
 2

c(
t)

 (
m

)
R

el
at

iv
e 

V
er

tic
al

 A
cc

el
er

at
io

n 
(m

/s
2 )

Figure 8.51. Calculated wetted length and relative
impact acceleration at the midpoint of the wetted length
for cases 1111, 1114, and 1115 (Ge 2002).
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maximum when the water entry phase ends and c
keeps a high value during a large part of the sub-
sequent water exit phase, the added mass force is
then largest.

Both the water entry and water exit phases are
important for the global response. Ge (2002) doc-
umented by using alternative slamming models,
such as the Wagner method and a Kutta condition
method, that the global loads are not sensitive to
the wetdeck load model. The Wagner model can
be used only during the water entry phase and was
therefore combined with a von Karman method
during the water exit phase. The Kutta condition
model assumes a smooth detachment of the flow
at the aft intersection line between the free surface
and the wetdeck. However, there is spray occur-
ring at the forward intersection line. The Wagner
and von Karman methods will lead to spray at both
intersection lines. Because we consider an outer
flow domain solution, the spray is not explicitly
dealt with.

The theoretical duration Td of the sum of the
water entry and exit phase was 0.22 s for case 1114.
The ratios between Td and the natural periods
TN for the two coupled global heave and pitch
modes were 0.22 and 0.25, whereas Td/TN was
1.1 for two-node bending. The maximum response
is proportional to the force impulse if Td/TN <

≈0.25 for a single excitation event (Clough and
Penzien 1993). Because the water entry and exit
phases give strongly canceling contributions to
the force impulse, this gives one reason why the
response due to two-node bending dominates over
the response due to global heave and pitch modes.

The studies showed that the elastic vibra-
tions gave significant contributions to the relative
motions, impact velocities, and accelerations. The
vibrations are more important for velocities than
for motions and more important for accelerations
than for velocities. This can be understood by first
approximating the contribution to relative motion
from the elastic vibrations as A sin(ωnt + ε). Here
ωn is the natural frequency for two-node vibra-
tion. The contribution to relative impact veloc-
ity becomes then ωn A cos(ωnt + ε). Because ωn

is clearly higher than the frequency of encounter
with which the rigid-body response oscillates, we
understand why the contributions from elastic
vibrations are more important for velocities than
for motions. A similar argument may be followed
when comparing accelerations and velocities. The

consequence of this is that we cannot consider the
wetdeck slamming loads on a rigid ship and then
later do an elastic response analysis. This has con-
sequences both for the numerical analysis and the
experiments.

In order to explain the differences between
experimental and theoretical results in Figure 8.49,
one must, for instance, investigate the importance
of hull interaction. Eq. (7.58) shows that waves
generated by one of the hulls will be incident to
the other hull at a distance of 0.66LPP from AP.
However, using hull interaction in a strip theory
model means that hull interaction must be consid-
ered over the whole length of the catamaran. This
can give worse results than neglecting hull inter-
action. If we use eq. (7.64) for the piston mode
resonance frequency for the midships section, as
Ronæss (2002) did, we will find that the test case
1114 is sufficiently far away from piston mode res-
onance between the two hulls.

Because we have several frequencies, namely
frequency of encounter and the natural frequen-
cies of the elastic hull, Figure 8.49 illustrates that
a time-domain model should be used instead of a
frequency-domain model for the side hull hydro-
dynamics. Both the frequency of encounter and
the natural frequency of two-node bending mat-
ter. The theoretical and experimental two-node
bending modes show different oscillation periods.
A better prediction of the oscillation period of the
two-node bending mode is obtained by calculat-
ing the added mass of the side hulls at infinite
frequency instead of frequency of encounter. 3D
effects might also matter.

Nonlinear side hull loads should also have been
considered. This would, for instance, alter the rel-
ative vertical motions and velocities in the impact
region.

8.5 Global hydroelastic effects on monohulls

We will use the beam equation to describe the
global hydroelastic effects on monohulls. There
exist both the Timoshenko and Euler beam mod-
els. The Timoshenko model accounts for the shear
deformation and rotational inertia, but is more
complicated than the Euler beam model and
does not predict much difference when it comes
to bending moments. Alternatively, one can use
finite element beam formulation. In the stiffness
matrix of each beam element, the effect of shear
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Figure 8.52. Exaggerated drawing of a ship vibrating with vertical two-node deformation w. The x-axis
is in the direction of the inflow velocity U. U = ship speed.

deformation may be included without difficul-
ties. The effect of shear deformation should
be included, especially when higher modes are
important.

We will use the Euler beam model, which can
be expressed as

m(x)
∂2w

∂t2
+ ∂2

∂x2

[
EI(x)

∂2w

∂x2

]
= f3(x, t).

(8.82)

This equation assumes that the deformation is
small or rather that ∂w/∂x � 1, which should
be sufficient for the bending of ship hull girders.
Here x is the longitudinal coordinate of the ship,
w is vertical deflection, m(x) is the body mass
per unit length, and EI(x) is the bending stiff-
ness. Further, f3 is time-dependent vertical hydro-
dynamic force per unit length. This implies that
we exclude static forces due to weight, mg, and
buoyancy forces. This can be done by a separate
analysis by also including steady hydrodynamic
forces, which are important for high-speed vessels.
Eq. (8.82) requires end conditions and initial con-
ditions. The end conditions are zero shear force
and bending moment at the forward and aft ends of
the ship. By using the fact that the shear force and
the bending moment are proportional to, respec-
tively, ∂3w/∂x3 and ∂2w/∂x2 (see eq. (8.80)), we
get that

∂3w

∂x3
= 0 and

∂2w

∂x2
= 0 at the ends of the ship.

(8.83)

We will first neglect excitation and express the
contributions to f3 due to linear hull vibrations.
This means that we consider added mass, damping,
and restoring loads in a similar, but generalized,

way to that described for a rigid body. Because we
are interested in oscillations with clearly higher
frequencies than typical frequencies of encounter
due to incident waves, it is appropriate to use the
free-surface condition ϕ = 0 on the mean free sur-
face z = 0. Here ϕ is the velocity potential due to
the ship’s vibrations. This implies that no waves
are generated due to the vibrating ship. Because
the ship can be assumed slender, ϕ satisfies the 2D
Laplace equation in the transverse cross-sectional
plane of the ship. Then we need body boundary
conditions. As before, we use a coordinate sys-
tem translating with the forward speed U of the
ship (Figure 8.52). The ship speed appears in this
coordinate system as a steady flow with velocity
U in the x-direction. Let us consider a cross sec-
tion of the vibrating ship. The vibrations cause a
local angle ∂w/∂x of the ship relative to the x-
axis. This angle implies that the steady flow with
velocity U along the x-axis has a velocity compo-
nent −U∂w/∂x in the cross-sectional plane of the
vibrating ship (Figure 8.52). In order to satisfy no
flow through the hull surface, the ship must coun-
teract this component of the incident flow. (We
should note that ∂w/∂x is negative, as presented in
Figure 8.52). In addition, we must account for the
vibrating velocity ∂w/∂t in formulating that there
is no flow through the hull surface. This gives the
following linear body boundary condition

∂ϕ

∂n
= n3

(
∂w

∂t
+ U

∂w

∂x

)
on C (x) . (8.84)

Here C(x) is the mean submerged cross-sectional
curve of the hull surface. Further, n = (n1, n2, n3)
is, as usual, the normal vector to the hull sur-
face with positive direction into the fluid. We have
implicitly assumed a slender ship in formulating
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eq. (8.84). This means n1 � n2 and n3, and
∂/∂n ≈ n2∂/∂y + n3∂/∂z.

A normalized velocity potential ϕ3 is now intro-
duced by

ϕ = ϕ3

(
∂w

∂t
+ U

∂w

∂x

)
. (8.85)

This means ϕ3 is the velocity potential due to
forced heave with unit velocity. The next step is to
calculate the linear hydrodynamic pressure p on
the hull. The effect of hydrostatic pressure is left
out for the time being. We can write (see eq. (3.6))

p = −ρ
∂ϕ

∂t
− ρU

∂ϕ

∂x
. (8.86)

The interaction with the local steady flow
has been neglected in formulating eqs. (8.84)
and (8.86). The 2D vertical force f HD

3 on the
hull due to the dynamic pressure, p given by
eq. (8.86), induced by the hull vibrations can now
be expressed as

f HD
3 = ρ

∫
C(x)

n3

(
∂

∂t
+ U

∂

∂x

)

×
[
ϕ3

(
∂w

∂t
+ U

∂w

∂x

)]
ds.

Interchanging integration and differentiation and
using eq. (7.39) gives

f HD
3 = −

(
∂

∂t
+ U

∂

∂x

) [
a33

(
∂w

∂t
+ U

∂w

∂x

)]
,

(8.87)

where a33 is the 2D infinite-frequency added
mass in heave. This equation has been derived
by Lighthill (1960) in analyzing the swimming
motion of a slender fish and by Newman (1977) in
ship maneuvering studies. However, because ship
maneuvering analysis uses a ship-fixed coordinate
system, the velocity component U∂w/∂x does not
appear (see section 10.3).

Introducing the change of buoyancy due to the
beam deflection, we get the following version of
eq. (8.82):

(m + a33)
∂2w

∂t2
+ 2a33U

∂2w

∂x∂t
+ U

da33

dx
∂w

∂t

+ U2 ∂

∂x

(
a33

∂w

∂x

)
+ ρgbw. (8.88)

+ ∂2

∂2x

(
EI

∂2w

∂x2

)
= f exc

3 .
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Figure 8.53. Two-dimensional added mass in heave a33

for Lewis form sections when the frequency of oscillation
ω → ∞. Infinite water depth. A = cross-sectional area,
B = beam, D = draft, ϕ = velocity potential (Faltinsen
1990).

Here b means sectional beam and f exc
3 is the

hydrodynamic excitation load per unit length. The
Lewis form technique is a simple way to estimate
a33. The expression for infinite frequency is

a33 = ρ 0.5π((a + aa 1)2 + 3(aa3)2), (8.89)

where

aa 1 = 0.5 (0.5b − d)

aa3 = − 0.25(0.5b + d)

+ 0.25
√

(0.5b + d)2 − 8 (2A/π − 0.5bd)

a = 0.5(0.5b + d) − aa3

Here A is the submerged cross-sectional area and
d is the sectional draft. In order for a Lewis
form to exist, it is necessary for CB = A/(bd)
to be less than π(0.5b/d + 2d/b + 10)/32 and
for CB to be larger than 3π(2 − 0.5b/d)/32 and
3π(2 − 2d/b)/32 for, respectively, 0.5b/d ≤ 1
and 0.5b/d > 1 (von Kerczek and Tuck 1969).
Added mass results based on eq. (8.89) are pre-
sented in Figure 8.53. For cross sections with
sharp corners – for instance, rectangular sec-
tions – the results are only approximate. Exact
solutions for rectangular sections have been pre-
sented by Riabouchinski (1920). Barringer (1998)
presented a curve fit to those results over the
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range 0 < 2d
b < 2. His formula is

a33

ρπ (b/2)2 = 0.505589 + 0.26405
(

2d
b

)1/2

− 0.0251687
2d
b

+ 0.00104839
(

2d
b

)3/2

− 0.000014487
(

2d
b

)2

. (8.90)

8.5.1 Special case: Rigid body

The beam equation is also applicable to high-
frequency rigid-body oscillations due to heave and
pitch. We can use the equation to derive global
added mass and damping coefficients Ai j and Bi j

for heave and pitch.
a)Forced heave w = η3

By excluding the hydrostatic term, the hydro-
dynamic terms in eq. (8.88) are equal to

a33
d2η3

dt2
+ U

da33

dx
dη3

dt
. (8.91)

We integrate this over the ship length L, assume
the flow separates from the transom stern, and
get by following the definition of added mass and
damping

A33 =
∫
L

a33 dx (8.92)

B33 = Ua 33(xT). (8.93)

Here xT is the x-coordinate of the transom stern.
The expression for B33 is the same as the one we
have already derived in eq. (7.73).

We now take the pitch moment of eq. (8.91),
that is, we multiply by −x and integrate over the
ship length. We then get

A53 = −
∫
L

xa33 dx (8.94)

B53 = U A33 − UxTa33(xT). (8.95)

B53 is a consequence of integration by parts. The
term U A33 in B53 is associated with the Munk
moment U2 A33( dη3/dt

U ) (see p. 197 in Faltinsen
1990).

b)Forced pitch w = −xη5

By excluding the hydrostatic term, the hydro-
dynamic terms in eq. (8.88) are equal to

− xa33
d2η5

dt2
−2a33U

dη5

dt
−U

da33

dx
x

dη5

dt
−U2 da33

dx
η5.

(8.96)

By integrating this over the length of the ship, we
get A35 and B35.We should note that the last term is

proportional to η5, that is, it is a restoring term. We
can always switch between including it as a restor-
ing term or an added mass term. This is simply
done by noting that d2η5/dt2 = −ω2η5. Because
we have decided only to have hydrostatic effects
in the restoring terms, we therefore include the
last term in eq. (8.96) in the corresponding added
mass term.

We now get

A35 = −
∫
L

xa33dx + U2

ω2
a33(xT) (8.97)

B35 = −U A33 − UxTa33(xT). (8.98)

We note a certain similarity between B35 and B53.
If we disregard the end terms, then B53 = −B35.
We now take the pitch moment of eq. (8.96); that
is, we multiply it by −x and integrate over the ship
length. This gives

A55 =
∫
L

x2a33 dx + U2

ω2
[A33 − xTa33(xT)]

(8.99)

B55 = Ux2
Ta33(xT). (8.100)

These results for Ai j and Bi j , i = 3, 5, j = 3, 5
are the same as those obtained by the strip
theory by Salvesen et al. (1970) when the fre-
quency of oscillation is high and wave radiation
damping is zero. However, when comparing, we
should note that Salvesen et al. used a differ-
ent coordinate system, with x pointing forward.
This implies differences in the signs of some of
the terms.

The hydrostatic term ρgbw in eq. (8.88) gives
the restoring terms Cjk by following the same pro-
cedure as the one used in deriving the added mass
and damping terms above. C33, C35, and C53 are
the same as given by eq. (7.41). C55 will not include
the term ρg∇(zB − zG) in eq. (7.41). However, this
term is relatively small and is commonly neglected
in strip theory calculations.

Further, by integrating the body mass term in
eq. (8.88) as we did for the added mass and damp-
ing terms, we get the elements M33, M35, M53, and
M55 in the body mass matrix given by eq. (7.36).

The end conditions given by eq. (8.83) are auto-
matically satisfied for rigid-body motions. So we
now have shown that rigid-body motions are solu-
tions of the presented beam equation.
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8.5.2 Uniform beam

It is possible to derive analytical expressions for
natural frequencies and eigenmodes if a uniform
beam is assumed. This means m, a33, I, and b are
assumed independent of x. Because an eigenvalue
problem is considered, there is no excitation; that
is, f exc

3 is zero. We will consider undamped modes;
that is, all terms associated with ∂w/∂t in eq. (8.88)
are disregarded. Harmonic oscillations written as
exp (iωt) are assumed. This leads to

EI
∂4w

∂x4
+ U2a33

∂2w

∂x2

− (ω2(m + a33) − ρgb)w = 0. (8.101)

We choose x = 0 to be midships.
We have already seen that the beam equa-

tion can describe rigid-body heave and pitch
motions and so exclude that in our discussion here.
This means we focus on elastic vibrations. The
fourth-order linear differential equation given by
eq. (8.101) has solutions of the form sin(px),
cos(px), sinh(px), and cosh(px). We focus on
two-noded vibrations, that is, a solution that is
symmetric about x = 0. This means we write w =
Acos px + Bcosh px. In order to satisfy the end
conditions given by eq. (8.83), it is convenient to
write

w = cos px
2 cos(0.5pL)

+ cosh px
2 cosh(0.5pL)

, (8.102)

where the condition ∂2w/∂x2 = 0 on x = ±0.5L
is directly satisfied. We also want to satisfy
∂3w/∂x3 = 0 on x = ±0.5L. This gives

tan(0.5pL) = −tanh(0.5pL). (8.103)

This equation has an infinite number of solu-
tions corresponding to the different modes. We are
interested in the lowest modes, that is, the lowest
value of solution of p, which we call p1. The solu-
tion is approximately

p1 = π

2L
· 3.01. (8.104)

The corresponding mode shape expressed by eq.
(8.102) is shown in Figure 8.54. The dynamic
response is often on the order of centimeters for
a real ship. The two-node mode will be the gov-
erning dynamic mode in whipping and springing.
However, to include quasi-static response, more
modes should be included, because the bending
moment from this mode shape does not represent
the vertical bending moment distribution along

Figure 8.54. Eigenmode for two-node vertical vibration
of a uniform beam.

the ship for any load distribution. In order to find
the corresponding eigenfrequency ωn, we first sub-
stitute eq. (8.102) into eq. (8.101). We multiply
eq. (8.101) with eq. (8.102) and integrate from
x = −0.5L to x = 0.5L. We can use the fact that

L/2∫
−L/2

�2
1 (x) dx≈L/4,

where �1 is the same as eq. (8.102) with p given
by eq. (8.104). Further, we need

L/2∫
−L/2

d4�1

dx4
�1 dx ≈ p4

1 L/4

L/2∫
−L/2

d2�1

dx2
�1 dx ≈ −p2

10.14L.

This means eq. (8.82) becomes

EI p4
1

L
4

− U2a33 p2
10.14L

− (
ω2

n (m + a33) − ρgb
) L

4
= 0

or that

ωn =
√

EI p4
1 − U2a33 p2

10.56 + ρgb
m + a33

. (8.105)

In order to assess the relative importance of the
different terms in the nominator of eq. (8.105) and
how ωn varies with ship length, we need first to
select representative values of EI. We consider
a beam with height equal to the molded depth
D (draft + freeboard) midships. The maximum
stresses can be expressed as

σ = M
I

D
2

, (8.106)

where M is vertical bending moment midships.
This is specified in class society rules and is inde-
pendent of material. The rule values are empirical
values and account for still water and wave bend-
ing moment. By introducing the allowable stress
σ� we get from eq. (8.106) that

EI = M
(

E
σ�

)
0.5D. (8.107)
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Figure 8.55. Natural period Tn for two-
node vertical vibration as a function of ship
length for a high-speed monohull vessel,
based on uniform beam approximation.

We set the Young modulus, E, equal to 210 GPa
and 70 GPa for, respectively, steel and aluminum.
The yield stress σy is 235 MPa and 355 MPa
for, respectively, normal-strength steel and high-
strength steel. The allowable stress is, according to
the DNV Rules for High-Speed and Light Craft,
175 MPa for normal-strength steel and 1.39 · 175
MPa=243 MPa for high-strength steel. σy is typi-
cally 220 MPa for aluminum used in the hull girder.
The corresponding allowable global stress σ� is
0.89 · 175 MPa=156 MPa. This gives a variation
of E/σ� between 0.4 · 103 and 1.2 · 103. We will use
E/σ� = 103 in the following example. Because ωn

is approximately proportional to
√

E/σ�, E/σ� val-
ues of 0.4 · 103 and 1.2 · 103 will give, respectively,
37% lower and 10% higher ωn than those we will
estimate in the following text.

We express M in kilo-newton-meter (kNm) as

M = 0.3CW L2 BCB, (8.108)

where CW = 0.08L for L < 100 m and CW = 6 +
0.02L for L > 100 m. This is consistent with the
hogging bending moment in DNV Rules for Clas-
sification of High-Speed, Light Craft and Naval
Surface Vessels, July 2002, according to Class nota-
tion R0 and R1. This implies that there is no reduc-
tion of CW for restricted service. We note that CW

appears to have a dimension, but it should be inter-
preted as without dimension in eq. (8.108) for the
bending moment to have correct dimension. This
requires that L in the formula for CW be given in
meters.

We use the data in Table 7.1 as a basis for
selecting dimensions. Mean values for beam and

draft are used. That means the beam-to-draft ratio
is 6.04 and the length-to-beam ratio is 5.68. The
molded depth D is selected as 0.115 times the
ship length. This corresponds to the mean value
of the sum of the draft and the bow height given
in Table 7.1. CB is selected as 0.5. This is some-
what high according to Table 7.1. The reason is
simply that eq. (8.89) is used to calculate a33. This
requires CB to be above a minimum value. The
EI p4

1-term in the denominator of eq. (8.105) will
be completely dominant, also if shear deformation
had been included.

Because the EI-term is dominant, we can
approximate eq. (8.105) as

ωn = 22.4
L2

(
EI

m + a33

)1/2

. (8.109)

Figure 8.55 presents the natural period Tn for two-
node vertical bending as a function of ship length
between 50 m and 170 m. Because CW has a kink
at L = 100 m, Tn has a kink at L = 100 m. Tn

varies nearly linearly for L below 100 m and for
L above 100 m. Tn for L = 100 m is about 0.9 s.
For shorter ships, the stiffness is commonly higher
than required by the rules, hence the period would
be less.

8.6 Global bow flare effects

Our focus is on head sea. Bow flare slamming
affects heave and pitch motions and global elas-
tic vibrations of the hull. The problem has to
be solved in the time domain, and there will
be coupling between rigid-body motions and
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elastic vibrations. We showed previously in the text
that the beam equation, eq. (8.88), could describe
rigid-body motions and elastic vibrations. How-
ever, this is a frequency-domain solution based on
an infinite-frequency approximation. This means,
for instance, that wave radiation damping, which
is crucial for rigid-body resonant heave and pitch
motions, is not accounted for. Let us say we
accounted for a finite frequency and that wave
radiation damping was included. Then this will
cause inaccurate predictions of the elastic vibra-
tions. For instance, we pointed this out in con-
nection with natural frequency of two-node bend-
ing mode in the wetdeck slamming results by Ge
(2002). This means that the linear part of the prob-
lem must be formulated in the time domain, as
Cummins (1962) and Ogilvie (1964) did, as was
described in section 7.3. This leads to another set of
equations involving convolution integrals, which
require information about either added mass or
damping for all frequencies. We will not pursue
this in this context and rather make the following
major approximations:

a) Relative vertical motions and impact veloci-
ties are determined by assuming a rigid body.

b) The global elastic effects are in terms of two-
node vertical bending vibration.

c) The elastic motions are decoupled from the
rigid-body motions.

d) Rigid-body motions are not influenced by
the slamming loads.

Our focus is on two-node bending vibration and
we use eq. (8.88) to describe this. However, we
can, as previously discussed, disregard the terms
U2∂ (a33∂w/∂x) /∂x and ρgbw in the derivation
of the natural frequency and mode shape. We
will represent the solution in terms of undamped
normal modes. This means we have to find the
solution of

(m + a33)
∂2w

∂t2
+ ∂2

∂x2

(
EI

∂2w

∂x2

)
= 0 (8.110)

with the boundary conditions given by eq. (8.83)
and when w has the harmonic time dependence
exp (iωt) . We discussed this for a uniform beam,
for which analytical solutions exist. There is an
infinite number of modes, but we concentrate on
the lowest mode �1 and corresponding wet natural
frequency ω1. The modes and natural frequencies
have to be found by a numerical method for a real-

istic ship. We assume this has been done. Then we
proceed with eq. (8.88) and represent the solution
as w = a 1 (t) �1 (x) , where a 1 (t) is unknown at
this stage. Because the damping will in reality be
small and will not affect the maximum response
due to a single transient loading, we neglect the
damping terms, that is, the terms associated with
∂w/∂t. Another matter is if the harmonic excita-
tion frequency is in the vicinity of ω1. The damping
is then crucial. We now have the following version
of eq. (8.88):

(m + a33)�1(x)
d2a 1

dt2
+ a 1

d2

dx2

(
EI

d2�1

dx2

)
(8.111)

= f BF
3 (t).

The superscript BF means bow flare. We multiply
now eq. (8.111) by �1 (x) and integrate over the
length of the ship, that is,

d2a 1

dt2


∫

L

(m + a33) �2
1 (x) dx




+ a 1


∫

L

�1(x)
d2

dx2

(
EI(x)

d2�1

dx2

)
dx




=
∫
L

f BF
3 (t)�1(x) dx. (8.112)

This can be rewritten by noting once more that
eigenvalues are found by assuming harmonic oscil-
lations and no excitation. This gives, by using
eq. (8.110), that

−ω2
1


∫

L

(m + a33)�2
1 (x) dx




+

∫

L

�1(x)
d2

dx2

(
EI(x)

d2�1

dx2

)
dx


 = 0.

(8.113)

Eq. (8.111) can therefore be written as

d2a1

dt2
+ ω2

1a1 = FV(t), (8.114)

where

FV(t) =
∫

L f BF
3 (t)�1(x) dx∫

L (m + a33)�2
1 (x) dx

. (8.115)

Eq. (8.114) represents the response for a simple
mass-spring system with a transient loading. We
know from many textbooks (see, e.g., Clough and
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Figure 8.56. Wedge-shaped bow flare section. Hb = bow
height.

Penzien 1993) that the ratio between the time
duration of loading Td and the natural period T1 =
2π/ω1 is an important parameter. For instance, if
Td/T1 < ≈0.25, then a1(t) is proportional to the
force impulse

I =
Td∫

0

FV (t) dt, (8.116)

where t = 0 corresponds to the initial impact.
The bow flare slamming force can be derived by

first generalizing eq. (8.87) by also accounting for
the incident waves. We can write

f HD
3 = −

(
∂

∂t
+ U

∂

∂x

)
(a33VR) , (8.117)

where the relative impact velocity VR is given by
eq. (8.72) in the case of regular waves. The super-
script HD means that f HD

3 is a hydrodynamic
force per unit length. We earlier discussed slam-
ming loads by neglecting the effect of U∂/∂x in
eq. (8.117). We then pointed out that the slam-
ming term VR da33/dt is set equal to zero during
the water exit phase. In addition, we must account
for hydrostatic and Froude-Kriloff forces.

We follow a von Karman approach and write
a33 = 0.5ρπc2 K1, where 2c is the instantaneous
beam at the intersection between the incident
wave and the cross section. Here K1 = 1 if the local
deadrise angle is small. Otherwise, K1 has to be
numerically determined by assuming an infinite-
frequency free-surface condition. Values of a33 (or
K1) for wedges are presented in eq. (9.63) and
Figure 9.27. We can express the vertical force per
unit length f3 due to the water as

f3 = −ρπVR c
dc
dt

K1 K2 − ρ
π

2
c2 K1

dVR

dt

− U
∂

∂x

[
ρ

π

2
c2 K1VR

]
(8.118)

+ ρg A(x, t)

Here K2 is 1 during the water entry phase and 0
during the water exit phase. Further, ηB is the ver-
tical body motion, ζ is the incident wave elevation,
and A(x, t) is the submerged cross-sectional area.
The last term in eq. (8.118) represents the hydro-
static and Froude-Kriloff forces. VR and ηB in eq.
(8.118) include both vertical elastic vibrations and
rigid-body motions in the general case with cou-
pling between all modes. We must then realize that
eq. (8.118) also includes linear terms due to the
body motions. These terms must not be accounted
for twice.

In our simplified case, we have decoupled
the rigid-body motions and elastic vibration
and assumed that VR and ηB are expressed by
rigid motions. f3 is then the same as f BF

3 in
eq. (8.111).

Let us exemplify the different terms in eq.
(8.118) by considering the wedge-formed cross
section in Figure 8.56. We call Hb the bow height,
and B is the beam at the deck. We consider incident
head sea waves and express ζ − ηB as AR sin ωet ,
where ωe is the frequency of encounter and AR is
the relative motion amplitude. If we neglect the
contribution from Uη5 in VR, we can express VR

as −ωe AR cos ωet . The instantaneous draft of the
wedge is

d = AR sin ωet − h, (8.119)

where h is the vertical distance between the apex of
the wedge and mean free surface when there are
no waves and body motions. Because d must be
positive, sin ωet > h/AR. Further, c in eq. (8.118)
equals d cot β, where β is the deadrise angle. This
means A(x) in eq. (8.118) is d2 cot β.

We will have a ship length L=100 m in mind
and use Figure 8.7 with Fn = 0.53 as a basis.
This means that the ship speed is U = 16.6 ms−1.

We select the nondimensional mean wave period
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T2
√

g/L as 2.4. This is close to where the RMS
of relative vertical motion ηR has a maximum.
This means that the zero-upcrossing period T2 =
7.7 s. If a Pierson-Moskowitz (PM) wave spec-
trum is used, the modal (peak) period of the
spectrum will be T0 = 1.408T2, that is, T0 = 10.8 s.
In order to find the frequency of encounter, we
use that ωe = ω0 + Uω2

0/g for head sea and set
ω0 = 2π/T0. This gives Te = 2π/ωe = 5.4 s. From
Figure 8.7, we see that σR = 0.95H1/3 at the mean
wave period and Froude number that we con-
sider. The value of H1/3 depends on the opera-
tional limitations and sea area. The most proba-
ble largest value follows from eq. (7.113) and is
approximately 4σR.

We illustrate the relative importance of the dif-
ferent slamming terms in eq. (8.118) by neglect-
ing the U∂/∂x-term. There are many parameters
to be selected. Table 7.1 gives some guidance.
For instance, a 100 m–long monohull may have
a beam between 15 and 18 m. The bow height
Hb may be between 6 and 9 m. Operational lim-
its could be H1/3 between 4.5 and 6 m. Using
σR = 0.95H1/3 leads to the most probable largest
relative motion equal to about 23 m based on
H1/3 = 6 m. This would certainly lead to green
water on deck. However, there are several rea-
sons why this estimate is too conservative. The
calculations leading to Figure 8.7 are based on lin-
ear theory. A motion control system as described
in section 7.1.3 is not accounted for. Nonlinear-
ities tend to decrease heave and pitch. Further,
the results of Figure 8.7 are for a catamaran. The
large beam-to-draft ratio of a high-speed mono-
hull is an advantage from a heave and pitch point
of view relative to a catamaran, which has side
hulls with a much smaller beam-to-draft ratio com-
pared with a monohull. Further, too-large rela-
tive motions would lead to voluntary speed reduc-
tion due to green water. We will instead choose
AR = Hb. Then we prevent green water coming
onto the deck. Green water or AR > Hb does also
mean that we should reconsider the load expres-
sion. We assume Hb = 9 m, AR = 9 m, Te = 5 s,
and a maximum sectional breadth B = 8 m (see
Figure 8.56). Results for β = 20◦ and 40◦ with
K1 = 1 in eq. (8.118) are shown in Figure 8.57. The
hydrostatic and Froude-Kriloff forces are always
positive and become increasingly significant with
increasing β. The added mass force is always neg-
ative and is the reason the total force is negative
in the water exit phase and also at the end of
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Figure 8.57. 2D bow flare slamming force on a wedge-
shaped cross section. FK = Froude-Kriloff force, β =
deadrise angle. Bow height is Hb = 9 m. Relative motion
amplitude is AR = 9 m. Sectional maximal breadth is B =
8 m (see Figure 8.56).

the water entry phase. The time instant when the
water entry phase ends can be seen from the slam-
ming force, which is zero in the water exit phase.
The duration Td of the force depends on β and is
from 1.7 to 1.9 s in Figure 8.57. The representa-
tive natural period for two-node bending vibra-
tion is T1 = 1 s, which makes Td/T1 = 1.7 − 1.9.

This means that it is not an impulse type of
transient load, which would require Td/T1 < 0.25.

Because a representative natural period for heave
and pitch would be 5 s, we note that it is closer
to being an impulse type of response when the
effects of bow flare loads on heave and pitch are
considered. In the same way as Ge (2002)
showed for wetdeck slamming, both the water
entry and exit phase will matter for the
response.



P1: GDZ
0521845688c08b CB921-Faltinsen 0 521 84568 7 November 5, 2005 15:25

334 • Slamming, Whipping, and Springing

8.7 Springing

Springing is steady-state resonant elastic vibra-
tions due to continuous wave loading. If slamming
occurs frequently, springing may be difficult to dis-
tinguish from whipping. The reason is that the
small damping causes slow decay of the whipping-
induced response. Both springing and whipping in
head sea are mainly related to the two-node bend-
ing of the hull. We now concentrate on springing;
both linear and nonlinear wave loads have to be
considered. Our focus is on head sea, but other
headings may also matter. When the linear wave
effects are important, the frequency of encounter
ωe is in the vicinity of the natural frequency ω1 for
two-node bending.

In addition to high-speed vessels, springing is
a well-known effect for conventional ships. It
is described for Great Lakes bulk carriers by
Matthews (1967) and Cleary et al. (1971) and for
large ocean-going ships of full form by Goodman
(1971). Storhaug et al. (2003) documented that the
springing may contribute to approximately 50%
of the accumulated fatigue damage based on full-
scale measurements of a 300 m–long bulk carrier.

Because springing is a resonant phenomenon,
the damping is crucial. The hydrodynamic damp-
ing is the result of the terms 2a33U∂2w/∂x∂t and
U(da33/dx)∂w/∂t in eq. (8.88). These terms have
a small effect for conventional ships, and other
damping mechanisms, such as structural, cargo,
and viscous damping, must be considered as well.
However, there are uncertainties related to the
magnitude of the damping that should be used,
and it may be necessary to determine it from
full-scale measurements (Storhaug et al. 2003).
The total damping may vary between 0.5% and
2% of the critical damping for ships at moderate
speed. Because the total damping is small, strong
amplification of the response occurs in resonant
conditions.

In order to see what wave conditions cause sig-
nificant springing, we note ωe = ω0 + Uω2

0/g for
head seas and consider a case in which the two-
node natural frequency ω1 = 2π rad/s and U =
20 ms−1. Linear springing effects are important
when ω1 = ωe. This gives a wave period T0 =
2π/ω0 = 4.1 s, which means a wavelength of 26.2
m or about 4 wavelengths along a 100 m–long ship.

In reality, we have to consider a wave spec-
trum. It may then be more illustrative to present a

“frequency-of-encounter” wave spectrum Se (ωe) .

We will show how this can be derived for head sea.
It follows by energy consideration that

Se(ωe)dωe = S(ω0) dω0. (8.120)

This ensures that the areas under the wave spec-
trum and the frequency-of-encounter wave spec-
trum are the same. Eq. (8.120) assumes implic-
itly that there is a one-to-one correspondence
between the wave frequency ω0 and the frequency
of encounter ωe. This is, for instance, not true
for all frequencies for following sea. Given ωe =
ω0 + Uω2

0/g for head seas, it follows that

Se(ωe) = S(ω0)
1 + 2Uω0/g

(8.121)

and

ω0 = g
2U

(
−1 +

√
1 + 4Uωe/g

)
. (8.122)

We now use the modified Pierson-Moskowitz
(PM) spectrum given by eq. (3.55) to illustrate
Se (ωe) . Instead of using the mean wave period
T1 as a parameter, we use the modal period T0,
which corresponds to the peak period of the spec-
trum. By using eqs. (3.59) and (3.60), we write
T1 = 0.77 T0 for a Pierson-Moskowitz spectrum.
We now consider U = 20 ms−1 and T0 = 4.1 s. Fig-
ure 8.58 shows Se(ωe)/H2

1/3 as a function of ωe. As
expected from our discussion of regular waves, the
maximum spectral value occurs at ωe = 2πrad/s.
In order to see whether there is sufficient wave
energy to excite springing when ωe = ω1, it is bet-
ter to present the wave spectrum as a frequency-of-
encounter wave spectrum like that illustrated for
head sea. Obviously we should vary T0 and H1/3

in accordance with scatter diagrams showing the
frequency of occurrence of T0 and H1/3 for given
operational areas of the vessel.

Normally, the resonance frequency occurs in the
high-frequency tail of the sea spectra. It is there-
fore of concern how the tail is represented. As seen
from the PM spectrum, the decay is represented by
ω−5, whereas Torsethaugen’s (1996) two-peaked
wind- and swell-generated spectra may have ω−4.

The wave energy in the high-frequency tail is an
important uncertainty for prediction of springing
response.

A simple way to illustrate the presence of non-
linear wave excitation is to consider the quadratic
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Figure 8.58. Frequency-of-encounter
wave spectrum Se(ωe) for head sea. U =
20 ms−1. Modal wave period T0 = 4.1 s.

velocity term in Bernoulli’s equation for the fluid
pressure. We can write this term as

− ρ

2
(u2 + v2 + w2) = −ρ

2
|∇ϕ|2 , (8.123)

where u = (u, v, w) is the fluid velocity vector. We
emphasize that eq. (8.123) provides only one of
the nonlinear effects. Other contributions may be
equally important. They arise because we have to

a) Satisfy body boundary conditions on the
exact wetted ship surface. Body boundary
conditions are satisfied on the mean wetted
surface in a linear theory.

b) Satisfy nonlinear free-surface conditions.
c) Integrate the pressure on the instantaneous

position of the wetted surface of the ship. In a
linear theory, we integrate the pressure com-
ponent −ρ (∂ϕ/∂t + U∂ϕ/∂x) over the mean
wetted surface. (It is here assumed there is
no interaction between local steady flow and
unsteady flow.) In addition, we consider a
linearized effect of the hydrostatic pressure
−ρgz.

We will return to eq. (8.123) and consider an
idealized sea state consisting of two wave compo-
nents ω j and ωk. Associated with ω j and ωk, there
are two frequencies of encounter ωej and ωek. A
linear approximation for the x-component of the
velocity can be written as

u = Aj cos(ωej t + ε j ) + Ak cos(ωekt + εk),

(8.124)

so

− ρ

2
u2 = −ρ

2

[
A2

j

2
+ A2

k

2
+ A2

j

2
cos(2ωej t + 2ε j )

+ A2
k

2
cos(2ωekt + 2εk) (8.125)

+ Aj Ak cos((ωej − ωek)t + ε j − εk)

+ Aj Ak cos((ωej + ωek)t + ε j + εk)
]
.

This means that we have found the presence of
pressure terms oscillating with 2ωej , 2ωek, ωej +
ωek, and ωej − ωek. For a more realistic represen-
tation of the seaway, and considering the wave as
the sum of N components of waves with different
frequencies, we will find pressure terms with sum-
frequencies ωej + ωek (k, j = 1, N). These nonlin-
ear interaction terms produce sum-frequency exci-
tation loads that may cause resonant springing.
The energy in these waves is also significantly
higher than in those that contribute to excitation
at an encounter frequency corresponding to the
springing frequency.

The depth decay of these pressure terms plays
an important role. For instance, if we consider
an analysis like the one in eq. (8.125), the depth
decay of the pressure will be like exp((kj + kk)z),
where kj are wave numbers associated with
ωej . However, there are terms associated with a
second-order approximation of the velocity poten-
tial that decay much more slowly with depth.
This can be illustrated with an example from
pages 168 to 169 in Faltinsen (1990). Consider
two linear regular waves of same frequency but
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with opposite propagation directions. The second-
order pressure field will then oscillate with the
sum-frequency and not decay with depth. Sea
states with waves traveling in opposite directions
with the same dominant frequencies are not typ-
ical in the open sea, but you may have swell
from one direction and wind-generated sea from
another.

Experiments in regular waves were carried out
by Troesch (1984) on a model jointed amidships
to measure both wave excitation and springing
response. The dominant effect was linear, but he
found a measurable springing excitation at 2ωe

and sometimes 3ωe. Let us illustrate what wave
conditions cause 2ωe = ω1 with ω1 = 2π rad/s,
U = 20 ms−1, and head seas. This gives a wave
period T0 = 6.2 s, that is, a larger wavelength
than that causing linear springing. The springing
excitation with 2ωe-oscillations will be approx-
imately quadratic in wave amplitude. This dis-
cussion shows that linear springing excitation is
important for small sea states and that nonlinear
excitation due to sum-frequency effect is impor-
tant for higher, but still small, sea states. Because
small sea states frequently occur, springing is of
concern from a fatigue point of view, whereas
whipping is more common in larger sea states
and is of more concern for ultimate strength. We
must always have in mind that springing and whip-
ping responses must be combined with rigid-body
ship motion responses due to continuous wave
loading.

There is not much literature on springing for
high-speed ships. However, Jensen (1996) and
Hansen et al. (1994, 1995) have studied the impor-
tance of springing for high-speed monohull ships.
The quadratic strip theory described by Jensen and
Pedersen (1978, 1981) and Jensen and Dogliani
(1996) was used. Second-order nonlinear hydro-
dynamic effects are accounted for in an approx-
imate way. An advantage from a computational
efficiency and accuracy point of view is that a
frequency-domain solution is used. Jensen (1996)
found that nonlinear wave load effects on spring-
ing are important for a proper estimate of the
fatigue damage, whereas Hansen et al. (1994)
stated that springing is especially important for
ships made of GRP (glass-reinforced plastic) or
aluminum. In Jensen and Wang (1998), springing
was found to be unimportant in more extreme
sea conditions, whereas whipping was important

for fatigue damage. Hermundstad (1995) and
Hermundstad et al. (1995, 1997) showed compar-
isons between numerical predictions by a 2.5D
high-speed theory and experimental results for
a catamaran. Significant springing response was
found in the transfer functions of the vertical bend-
ing moment due to (artificial) low springing fre-
quency. Evidence of higher-order harmonics was
also found.

8.7.1 Linear springing

We exemplify linearly excited two-node springing
by using a uniform beam model. This means m,
a33, and EI are assumed constant along the ship.
Further, f exc

3 in eq. (8.88) is approximated by only
considering the linear Froude-Kriloff loads. This
means

f exc
3 = −iρgζae−kDbei(ωe t−kx), (8.126)

where it is understood that it is the real part that
has physical meaning. Eq. (8.126) is consistent
with the pressure given in Table 3.1. Because we
operate with a linear system, it is convenient to
use complex formulation, as in eq. (8.126). Using
eq. (8.126) is a large simplification, but it enables
us to derive analytical solutions for further discus-
sions. We express the solution of eq. (8.88) as

w = a 1(t)�1(x).

Here �1 is the same as w expressed in eq. (8.102),
with the constant p = p1 given by eq. (8.104). In
the discussion of the wet natural frequency ω1

given by eq. (8.105), we noted that the restoring
effect of the terms U2∂ (a33∂w/∂x) /∂x and ρgbw

in eq. (8.88) can be neglected. This will therefore
be done here. Then eq. (8.88) becomes

(m + a33)�1
d2a 1

dt2
+ 2a33U

d�1 (x)
dx

da 1

dt

+ U
da33

dx
�1(x)

da 1

dt
+ EI

d4�1

dx4
a 1 = f̄ exc

3 eiωe t ,

(8.127)

where f̄ exc
3 eiωe t is the same as eq. (8.126).

Eq. (8.127) is solved by multiplying the equa-
tion by �1(x) and integrating over the ship
length. This is similar to what we did when we
found ω1. Because �1(x) and d�1/dx are, respec-
tively, symmetric and antisymmetric about x = 0,∫ L/2

−L/2 (�1d�1/dx) dx = 0. This means the second
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Figure 8.59. I(k)
L given by eq. (8.135) as a

function of λ/L. λ = incident wavelength,
L = ship length.

term on the left-hand side of eq. (8.127) does not
contribute. The third term involves the integral

L/2∫
−L/2

da33

dx
�2

1 dx = a33(xT). (8.128)

Here x = xT is the transom stern. Eq. (8.128)
follows by partial integration and use of∫ L/2

−L/2 (�1 d�1/dx) dx = 0. The generalized excita-
tion force involves the integral

I(k) =
L/2∫

−L/2

e−ikx�1 dx =
L/2∫

−L/2

cos(kx)�1dx.

(8.129)

Eq. (8.127) can now be written as

d2a 1

dt2
+ bd

da 1

dt
+ ω2

1a 1 = F(k)ζaeiωe t ,

(8.130)

where

F(k) = −iρge−kDb
0.25L(m + a33)

L/2∫
−L/2

cos(kx)�1 (x) dx

(8.131)

bd = Ua 33

0.25L(m + a33)
. (8.132)

This means

a 1 = F(k)ζaeiωe t

−ω2
e + bdiωe + ω2

1

. (8.133)

The damping bd can be assessed by comparing
it with critical damping; that is, we consider the
fraction ξ between damping and critical damping.
Using eq. (7.9) gives

ξ = U
0.5L(m/a33 + 1) ω1

. (8.134)

Let us choose U = 20 ms−1,L = 100 m, a33 = m,
and ω1 = 2π rad/s. This gives a damping ratio of
0.03 (structural damping comes in addition). This
means small damping and strong amplification of
the response. F (k) oscillates with the wavelength
λ = 2π/k. To illustrate this, we rewrite I (k) given
by eq. (8.129) as

I (k)
L

=
0.5∫

−0.5

cos(kLu)

×
(

cos(p1 Lu)
2 cos(0.5p1 L)

+ cosh(p1 Lu)
2 cosh(0.5p1 L)

)
du,

(8.135)

where p1 L = 0.5π · 3.01 according to eq. (8.104).
I (k) /L is plotted as a function of λ/L in Figure
8.59. We note the oscillatory values of I (k) /L
and that I(k)/L becomes zero for certain values
of λ/L. If these values for a given U correspond
to when ωe = ω1, we get no excitation at the nat-
ural frequency. Because our theoretical model is
strongly simplified, we must look only at the ten-
dency, that is, that the excitation force tends to
become small for certain wavelengths.
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Even though Figure 8.59 shows a cancellation at
a specific λ/L, a change of heading or speed may
change the overall picture.

When regular waves of small wavelength rela-
tive to the ship length are propagating along the
ship hull in head sea, the total wave elevation will
decay along the ship. This 3D effect was accounted
for in the linear springing studies by Skjørdal and
Faltinsen (1980). For short waves compared with
the ship length, this might be important. It may be
understood from introducing in the integrand of
eq. (8.131) a varying force along the ship. Hence
any significant changes in forces at the ends and
middle of the ship will then contribute, possibly
significantly.

8.8 Scaling of global hydroelastic effects

When model testing with an elastic model is made
in waves, we must check both Froude scaling and
that the elastic properties are properly scaled.
Froude scaling means that the frequency of the
waves must satisfy that ω0

√
L/g is the same in

model scale and full scale. Further, the Froude
number U/

√
Lg is the same in model scale and full

scale. Let us use the subscripts m and f to indicate
model and full scale. This means Froude scaling
gives

ωm = ω f (L)1/2, (8.136)

where L = Lf /Lm is the geometrical scale factor.
In order to find out how to scale elastic properties
associated with bending stiffness EI, we can use
eq. (8.109) as a basis. We note that the mass m and
a33 are proportional to ρL2. This means

ω

√
ρL6

EI
(8.137)

is a nondimensional frequency associated with
elastic vibrations due to bending stiffness. For-
mula (8.111) was based on a uniform beam, but
eq. (8.137) is a general way to nondimensionalize
the bending stiffness effect. Eq. (8.137) must be
the same in model and full scale. This means

ωm = ω f
[
6

L(EI)m/(EI) f
]1/2

. (8.138)

In order to satisfy both eqs. (8.136) and (8.138),
we must require that

(EI)m = (EI) f /
5
L. (8.139)

We have not considered the shear rigidity kAG.
However, this will lead to (Maeda 1991)

(kAG)m = (kAG) f /3
L. (8.140)

Because structural damping matters for springing,
the scaling of structural damping must also be con-
sidered; that is, the ratio between damping b and
critical damping must be the same in model and
full scales. This gives bm = bf 

−2.5
L .

Neither the damping nor the scaling of the fre-
quency is always properly assessed in model test-
ing with flexible models. One reason for this may
be that the quality of the waves for small wave-
lengths may be rather poor in a model basin.
Hence one chooses to lower the eigenfrequency
to have more control over the excitation. It is,
however, then more difficult to come to valid con-
clusions for full-scale cases based on experiments
only.

8.9 Exercises

8.9.1 Probability of wetdeck slamming

Consider an irregular sea state and head sea long-
crested waves. According to Ochi (1964), the prob-
ability of bottom slamming can be written as

P(slamming) = exp
(

−
(

V2
cr

2σ 2
v

+ d2

2σ 2
r

))
.

(8.141)

Here d is the ship draft at the impact position and

Vcr = 0.093(gL)1/2, (8.142)

where L is the ship length. Vcr is a threshold veloc-
ity for slamming to occur. Further, σ 2

v and σ 2
r are

variances of, respectively, relative impact velocity
(see eq. (8.72)) and relative vertical motion at the
impact position. If P(slamming) ≥ 0.03, a typical
shipmaster will reduce the speed.

We will apply this to wetdeck slamming, where
d then means the vertical distance between the
wetdeck and the steady free-surface elevation.

Consider a 70 m–long catamaran by scaling the
data for the catamaran in section 7.1.2. Assume
the waves hit at the front end of the wetdeck. Use
the data in Figure 8.7 for σv and σr , and consider
a Froude number of 0.71.
a) How high must the significant wave height
(Hlim

1/3 ) be for P(slamming) ≥ 0.03 when T2 = 8 s.
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Figure 8.60. Top: Subdomains A and B at bottom
impact. Bottom: Boundary-value problem for ϕ due to
bottom-slamming in subdomain A. x = 0 front edge of
bottom, 2c (t) = wetted length.

b) Consider different mean wave periods and
Fn = 0.71. Discuss, based on Figure 8.7, whether
the ship can satisfy P(slamming) < 0.03 for Hlim

1/3

by reducing the speed.

c) Express the slamming pressure as p =
0.5ρCpV2

R, where VR is the relative impact velocity
and Cp is a constant slamming pressure coefficient.
Generalize eq. (8.141) and express the probability
that the slamming pressure is higher than a given
value p.

8.9.2 Wave impact at the front of a wetdeck

A wave hits the front edge of a rigid wetdeck (Fig-
ure 8.60). The following assumptions are made :

� The free surface can be approximated as a
straight line. There is an angle β between the
free surface and wetdeck.

� The relative impact velocity V0 is constant in
time and space (positive V0 is upward).

The flow due to the impact can be solved as in
Wagner (1932) (see section 8.3.1) for two-
dimensional impact of a rigid body on an initially
calm free surface. The boundary-value problem
for the velocity potential ϕ due to the impact is
shown in Figure 8.60. The details of the jet flow
at x = 2c are not considered. An important differ-
ence from Wagner’s analysis is that the body–free-
surface intersection point corresponding to the
front edge of the bottom (x = 0) does not change

with time. The solution of the velocity potential ϕ

on the wetted surface is

ϕ = −V0

√
x (2c − x), 0 < x < 2c. (8.143)

The wetted length 2c (t) can be found by the kine-
matic free-surface condition. It results in an inte-
gral equation that is solved in a way similar to the
one Wagner used.

a) Show that

c = 2V0t
3 tan β

, (8.144)

where t = 0 corresponds to initial impact.

b) Show that the free-surface elevation due to
slamming is

ηs = V0

t∫
0

∣∣x − c (t ′)
∣∣√

x (x − 2c)
dt ′ − V0t

(8.145)

= 1
2

tan β

[
(c − 2x)

√
x − 2c

x
+ 2x

]
− V0t.

We note that ηs is infinite at x = 0, which means
that the finite vertical distance of the wetdeck at
the front edge has to be considered (Faltinsen
et al. 2004).

c) Express the impact pressure and vertical force
on the wetdeck.

8.9.3 Water entry of rigid wedge

Consider water entry of a rigid wedge with dead-
rise angle β. The water entry velocity is

V = V0 + V1t. (8.146)

Consider the average pressure pav from y = yi to
yi+1 in Figure 8.18.

a) Show by using Wagner’s theory that

pav − pa = ρV2 cπ
2 tan β

I1 + ρV1 I2, (8.147)

where

I1 = 1
yi+1 − yi

(
sin−1

( yi+1

c

)
− sin−1

( yi

c

))
(8.148)
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Figure 8.61. Water entry of a wedge.

I2 = c2

(yi+1−yi )


 yi+1

2c

(
1 − y2

i+1

c2

)1/2

− yi

2c

(
1− y2

i

c2

)1/2

+ 0.5 sin−1
( yi+1

c

)
− 0.5 sin−1

( yi

c

)}
(8.149)

when

c = π

2 tan β
(Vot + 0.5V1t2) > yi+1 (8.150)

and V ≥ 0, c ≤ b.

b) Express pav for other time instants than those
described in a) when V ≥ 0.

c) Use V = 1.8 – 6.8 t (ms−1). Set tan β = 0.25, and
b in Figure 8.18 equal to 1.3 m. Make a computer
program to solve this problem.

� How long does it take for the spray root to be
at b, that is, c = b?

� Set yi = 0.317 m and yi+1 = 0.634 m. When is
the average pressure pav largest?

� Judge the relative importance of hydroelastic-
ity by using the structural data in section 8.3.3
in combination with Figure 8.20. Because Fig-
ure 8.20 is for constant water entry velocity V,

you may use V at the instant when c = yi .

8.9.4 Drop test of a wedge

a) Consider drop tests of a symmetric wedge with
deadrise angle β and instantaneous submergence
ζ (t) relative to undisturbed free surface. The max-
imum beam is B (Figure 8.61). The body mass per
unit length is m. Use von Karman’s theory with a
flat plate approximation for the added mass and
show that the differential equation for ζ when
ζ < 0.5 B tan β and the wetted length increases is

d2ζ

dt2
+ α

d
dt

(
ζ 2 dζ

dt

)
+ γ ζ 2 = g, (8.151)

where

α = 0.5ρπ cot2β/m (8.152)

γ = ρg cotβ/m. (8.153)

Further, dζ/dt = V = (2gh)0.5 when ζ = 0. Here
h is the initial height of the wedge apex above the
horizontal free surface. It is common to set the
slamming part of the hydrodynamic force equal
to zero when the wetted length decreases. How
would you then modify eq. (8.151)?

b) What do the expressions look like if Wagner’s
theory is used? Discuss your choice of buoyancy
force.

c) We want to do a drop test with constant water
entry velocity. However, this can only be obtained
approximately in an experiment. Let us consider
an example in which B = 1 m and β = 20◦ in
Figure 8.61. The initial water entry velocity is 1
ms−1. Use Wagner’s theory and consider when the
spray root has a vertical distance 0.5B tan β from
the apex of the wedge. We want the water entry
velocity to be 0.999 ms−1 at that time. How large a
body mass per unit length must be used? You may
want to make a computer program to solve this
problem.

8.9.5 Generalized Wagner method

Zhao et al. (1996) presented a generalized Wag-
ner method in which the exact body boundary
condition is satisfied. However, the dynamic free-
surface condition is the same as in Wagner’s outer
flow domain solution. All terms in Bernoulli’s
equation are included except the hydrostatic pres-
sure term. Further, predicted pressures less than
atmospheric pressure are set equal to atmospheric
pressure.

A further simplification will be made in this
exercise. We will use the flat plate approxima-
tion by Wagner to find the velocity potential. This
means that we do not satisfy the exact body bound-
ary condition. Now study water entry of a wedge
with constant entry velocity by using the idea
of Zhao et al. (1996) about keeping all tems in
Bernoulli’s equation except the hydrostatic pres-
sure term.

Derive an expression for the vertical water entry
force as a function of the deadrise angle and com-
pare the results with Figure 8.23.

8.9.6 3D flow effects during slamming

Consider the water impact of an ellipsoid of rev-
olution (spheroid) with a horizontal axis. Assume
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the water entry velocity is constant and use a von
Karman method with a flat plate approximation
to calculate water impact loads. Assess the impor-
tance of 3D flow effects on the slamming loads by
using both eq. (8.45) and a strip theory formula-
tion to calculate heave-added mass.

8.9.7 Whipping studies by a three-body model

The three-body model used in the theoretical
and experimental studies of wetdeck slamming-
induced global loads on a catamaran in head sea
regular waves is described in section 8.4.2. The
hydrodynamic loads on the side hulls were calcu-
lated by strip theory. Hydrodynamic interaction
between the side hulls was neglected.

a) Consider now the high-frequency model used
in section 8.5.1 and apply this to each of the
three rigid bodies. Derive added mass and damp-
ing coefficients in heave and pitch for each of the
three bodies, as was done for a single body in sec-
tion 8.5.1.

b) Explain why it is necessary to account for end
terms at both the front and aft ends of the second
and third bodies.

8.9.8 Frequency-of-encounter wave spectrum in
following sea

Because there is not a one-to-one correspondence
between wave frequency ω0 and frequency of
encounter ωe for all values of ωe in following seas,
eq. (8.120) is not generally valid for following sea.
Suppose that ωe should always be a positive quan-
tity and use that ωe = ∣∣ω0 − Uω2

0/g
∣∣ for following

sea. Show for ωe < 0.25g/U that

Se(ωe) = S(ω1) + S(ω2)√
1 − 4Uωe

g

+ S(ω3)√
1 + 4Uωe

g

, (8.154)

where

ω1,2 = g
2U

[
1 ±

√
1 − 4Uωe

g

]
(8.155)

and ω3 is the solution of ω0 following from

ωe = ω2
0

g
U − ω0. (8.156)

Hint: Write

Se(ωe) = S(ω1)
∣∣∣∣dω0

dωe

∣∣∣∣
ω=ω1

+ S(ω2)
∣∣∣∣dω0

dωe

∣∣∣∣
ω=ω2

+ S(ω3)
∣∣∣∣dω0

dωe

∣∣∣∣
ω=ω3

(8.157)

Discuss the phase velocities of the wave compo-
nents ωi , i = 1, 2, 3 relative to the ship velocity U.
Show for ωe > 0.25g/U that

Se (ωe) = S(ω3)√
1 + 4Uωe

g

. (8.158)

What is now the phase velocity relative to the ship
velocity?

We note from eq. (8.154) that Se(ωe) is singular
at ωe = 0.25g/U. Is Se (ωe) integrable?

8.9.9 Springing

Faltinsen (1972) analyzed head sea regular waves
on a restrained ship when the wavelength was
small relative to the ship length. He showed that
the total velocity potential at the ship could be
expressed as

ϕ = ϕ0eiπ/4� (y, z; x) (x + 0.5L)−1/2
. (8.159)

Here ϕ0 is the incident wave potential and � is a
function depending on the cross-sectional shape,
ship speed, and wave number. Further, x = −0.5L
corresponds to the ship bow. Because the expres-
sion is singular at the bow, it is, strictly speaking,
not valid there, but we are going to use the expres-
sion over the whole ship length.

Consider the generalized wave excitation force
F(k) for linear springing of a ship with constant
cross section. This was expressed as eq. (8.131)
when only the Froude-Kriloff loads were consid-
ered, which led to wavelengths in which F(k) was
zero as shown in Figure 8.59.

Show how this behavior is modified when the
x-dependence given by eq. (8.159) is used to cal-
culate the generalized force F(k). It would be too
much work to calculate �, so just set � to be an
unspecified constant in the calculations.
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9 Planing Vessels

9.1 Introduction

Planing vessels are used as patrol boats, sportfish-
ing vessels, service craft, ambulance craft, recre-
ational craft, and for sport competitions. The Ital-
ian vessel Distriero, designed by Donald L. Blount
and Associates, won in 1992 the Blue Riband
Award for the fastest transatlantic passage without
refueling. The average speed was 53.1 knots. The
vessel is a 67 m–long planing monohull equipped
with gas turbines and three waterjets with a com-
bined horsepower of 60,000. Use of hydrody-
namic test facilities was an important part of the
design. However, the amount of research on plan-
ing vessels is relatively small, considering the large
amount of different recreational craft that exist.
Our focus is on monohull vessels, but catamaran
types also exist. Most of the planing vessels have
lengths smaller than 30 m. Recreational craft are
typically smaller than that.

A vessel is planing when the length Froude num-
ber Fn > 1.2 (Savitsky 1992). However, Fn = 1.0
is also used as a lower limit for planing; that is,
we cannot set a clear line of demarcation between
planing and nonplaning conditions just by refer-
ring to the Froude number. During planing, the
weight of the vessel is mainly supported by hydro-
dynamic pressure loads, with buoyancy having less
importance. The hydrodynamic pressure both lifts
the vessel and affects the trim angle.

Figure 9.1 shows a typical high-speed planing
hull. In order to avoid negative pressures rela-
tive to atmospheric pressure on the hull at high
speed, it is essential to have flow separation at
the transom and along the sides. Pressures less
than atmospheric pressure may result in dynamic
instabilities of the vessel (Müller-Graf 1997). Flow
separation along the sides is usually accomplished
by using a hard chine. Further, the longitudinal
shape (buttock lines) must not be convex aft of the
bow sections (Savitsky 1992). A buttock line is the

contour of a longitudinal section parallel to the
centerplane. A typical deadrise angle is 10◦ to 15◦

for a hard-chine monohull. Up to a 25◦ deadrise
angle is used for high-speed offshore hulls.

A double-chine hull is shown in Figure 9.2. The
flow will separate from the lower chine at high
speed, whereas the upper chine provides a large
local beam at low speed. This is beneficial from
a transverse hydrostatic stability point of view
at zero speed. The position of the upper chine
must be selected to avoid the separating flow from
the lower chine at high speed from reattaching
to the hull. Grigoropoulos and Loukakis (2002)
presented a systematic series of double-chine hull
forms with wide transom, warped planing surface
and fine bow, developed in the Laboratory for Ship
and Marine Hydrodynamics of the National Tech-
nical University of Athens (NTUA).

Stepped planing monohulls and catamarans
have been successful in offshore racing. Stepped
hulls were originally used on flying boats for sta-
bilization during takeoff. Figure 9.3 illustrates a
monohull with one step. The vessel is equipped
with a free-surface–piercing propeller and venti-
lating rudder. Trim tabs are placed at the tran-
som to optimize the trim angle. A stepped plan-
ing hull has hard chines. The step is placed aft
of where the main hydrodynamic lift occurs. This
means some distance aft of where the flow sep-
aration from the chines starts. In the main text,
we will be more clear about what we mean by
“some distance.” The flow will separate from the
step at high speed, and the afterbody will be par-
tially ventilated, reducing the wetted surface and
hence the resistance without significantly affect-
ing the hydrodynamic lift. The ventilated length
is shortest along the keel. It increases with speed
and is dependent on the height of the keel in the
flow attachment area above the keel before the
step. This is explained further in section 9.2.3. A
rough estimate is that the ventilated length may
be between 0.5B and B, where B is the beam of
the vessel. Sometimes more than one step is used.
Trim control can also be obtained by placing a
hydrofoil at the stern (Clement and Koelbel 1992).
This hydrofoil typically carries 10% of the weight.
Clement and Koelbel (1992) discuss how to design
stepped planing hulls for practical load-carrying
purposes. When the step is wet at lower speeds,
vortex separation occurs at the step. This increases
the resistance relative to no step. The viscous drag

342
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Figure 9.1. Typical high-speed planing hull. Series 62 (Savitsky 1992).

W.L.
Upper Chine

Upper Chine

Lower Chine

Lower Chine Lower Chine

Upper Chine

CL

Figure 9.2. Double-chine hull (Savitsky 1992).

associated with a wet step is, roughly speaking,
proportional to the step height. Our following dis-
cussion does not assume a stepped planing hull.
The only exception is in section 9.2.3 dealing with
the steady behavior of a stepped planing hull on a
straight course.

Transom tabs (flaps) that can be automatically
controlled (see section 7.1.3), are also used to opti-
mize the trim angle. This is beneficial for resis-
tance and dynamic stability in heave and pitch
(porpoising). Automatically controlled flaps may
also reduce the vertical ship motions.

Factors in selecting hull forms from a hydrody-
namic point of view are

� Heel stability at zero speed in calm water
� Resistance and propulsion in calm water

Figure 9.3. The Alpha-Z stepped planing hull designed by Michael Peters.

� Maneuvering in calm water
� Broaching in following sea
� Steady and dynamic stability at high speed in

calm water
� Wave-induced vertical accelerations and roll
� Deck wetness
� Slamming

An important consideration at high speed is
the possibility of cavitation and ventilation on, for
instance, the rudder and propulsion unit. This may
cause unexpected behavior. We cannot deal with
all these issues from a theoretical point of view
and must rely on experiments.

Steady and dynamic stability are of major con-
cern for planing vessels. The loss of steady heel
restoring moment with forward speed is discussed
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in section 7.7. Figure 7.40 shows three examples
of dynamic instabilities at planing speed. These
are “chine walking,” “cork-screw” pitch-yaw-roll
oscillations, and “porpoising.” Cork-screwing is
considered in section 10.9.3. Porpoising is a peri-
odic, bounded, vertical plane motion that a planing
hull may exhibit at certain speeds. Dynamic insta-
bilities occur in calm water in the absence of exci-
tation. Linear stability analysis shows when this
unstable behavior is possible. This behavior is a
function of speed, and there is a lower speed limit
for porpoising to occur. Common practice suggests
that forward movement of the longitudinal cen-
ter of gravity (lcg) reduces porpoising instabilities,
but this may not always be the case. However, one
can just lower the speed to avoid the problem. In
reality, one often sees porpoising of small pleasure
boats, not necessarily with disastrous results. Per-
haps some people enjoy the bumpy ride! However,
it may lead to structural damage when the motions
are so severe that the hull is thrown out of water
and subsequently impacts on the water. Porpoising
may also result in diving (tripping over the bow).

There are other dynamic stability problems to
be considered. Examples are directional stability
in calm water and broaching in calm water and fol-
lowing waves. Katayama (2002) has reported the
occurrence of bow-diving and transverse porpois-
ing during experiments in calm water. Bow-diving
was detected when the model was at high speed
and rapidly accelerated. “Aerodynamic pitch up”
occurs only for lightweight and very high–speed
planing boats. Serious accidents have occurred
during racing. An aerodynamic lift with its center
of pressure in the bow region may cause the craft
to be airborne. The vessel may either flip over or
slam back onto the water surface. It is a more seri-
ous problem for catamarans than for monohulls
because of the large wetdeck area of catamarans.

Milburn (1990) reports an unexpected and
unexplained anomaly in planing boat performance
that occurred during high-speed trials of the U.S.
Coast Guard’s 47-foot Motor Life Boat (MLB)
prototype. A sudden roll motion, almost like a
submarine “snap roll,” occurred at speeds greater
than 20 knots when the rudder was deflected
quickly to 20◦ or more. It is possible that cavitation
and ventilation may have influenced this behavior.

The following description starts with steady
flow, that is, how to predict the rise, trim, and
resistance of a planing vessel on a straight course

in calm water. Steady heel stability and some of
the many dynamic instability phenomena occur-
ring at high speed are then considered. A detailed
analysis of porpoising and wave-induced vertical
motions in head sea is given. The final section
deals with maneuvering which also is discussed in
Chapter 10.

9.2 Steady behavior of a planing vessel
on a straight course

The steady behavior of a planing vessel on a
straight course in calm water is a function of how
the trim moment, vertical force, and longitudinal
force on the hull depend on trim angle, draft (rise),
and speed. The pressure can be divided into hydro-
dynamic and hydrostatic pressures. The hydrody-
namic pressure can, to a large extent, be described
by potential flow and by neglecting gravity. Flow
separation from the chines and the transom stern
strongly influences the pressure load distribution
and is essential for the water flow to lift and trim
the vessel. The lift force is approximately propor-
tional to the trim angle. If the vessel has hard
chines, the separation lines along the hull are well
defined along the chines. Calculations can then
be made by neglecting the effect of the viscous
boundary layer on the pressure distribution. This
may not be true for a planing vessel with round
bilges. The separation lines may then be depen-
dent on laminar or turbulent flow conditions in
the boundary layer.

Water resistance components are discussed in
Chapter 2. There is a viscous and a residual resis-
tance component scaling with Reynolds num-
ber and Froude number, respectively. In addi-
tion comes the appendage resistance. The residual
resistance includes the wave (pattern) resistance
associated with the far-field waves. The residual
resistance accounts also for plunging waves and
spray generated along the hull. This must be con-
sidered in combination with the fact that the plan-
ing hull is a lifting surface and a lift-induced resis-
tance is present. However, we can clearly identify
only the wave pattern resistance component of the
residual resistance.

It is common to talk specifically about a spray
resistance for planing vessels. However, it is dif-
ficult to identify. It is caused by a pressure and
viscous friction component. The spray is affected
by surface tension and hence the Weber number.
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However, this does not mean that the spray resis-
tance is strongly affected by Weber number. The
reason is that the behavior of the spray has a small
influence on the flow along the hull causing the
spray. The pressure component of the resistance is
implicitly accounted for in the residual resistance.
In the case of hard chines, the viscous component
is associated with an increased wetted hull surface
due to the jet flow originating at the spray roots
forward of flow separation from the chines. Spray
rails are used to minimize this effect.

The wave pattern resistance cannot be neg-
lected at lower planing speeds. The results in
Figure 4.14 for a Wigley hull show, for instance,
that the wave resistance matters for Fn = 2.

The counterpart to resistance is propulsion.
This is discussed in Chapter 2. Figure 2.1 shows
examples of propulsion systems used for planing
vessels. The figure also illustrates appendages that
cause resistance. Examples are rudders, struts, and
inclined propeller shafts.

The air resistance and the added resistance in
wind and waves must also be accounted for. The
added resistance in waves can partly be explained
as in section 7.5; that is, it is the result of the ves-
sel’s ability to generate unsteady waves. However,
there is also an important effect due to interaction
between the steady and unsteady flows. This effect
increases with forward speed. A theoretical model
including this effect was presented by Faltinsen
et al. (1991a). Good agreement was shown with
experimental results up to Fn = 1.14 for a round-
bilge hull. However, no experimental results were
available for higher planing speeds.

The hydrodynamic behavior of a vessel at non-
planing speed is important. The results presented
for semi-displacement vessels in Chapters 2 and
4 are then relevant. For instance, the trim angle
starts to be influenced by the hydrodynamic flow
along the vessel when the Froude number is larger
than about 0.35. Further, the generation of trans-
verse waves may cause a maximum in the wave
resistance for Froude numbers around 0.5. An
example of a resistance hump (maximum) is illus-
trated in Figure 6.15 for a hydrofoil vessel that typ-
ically uses a planing hull. The vessel must have suf-
ficient horsepower to overcome a possible hump
and to reach planing condition. Because the resis-
tance is influenced by the trim, either trim tabs or
interceptors can be used to counteract the trim and
minimize the resistance. An optimum trim angle

Figure 9.4. Illustration of how a 2D water entry analysis
can be used in steady flow analysis of a planing vessel.
When the planing craft passes through an Earth-fixed
plane, the problem is similar to 2D water entry of a body
with changing form. U = ship speed, τ = trim angle (rad)
(Zhao et al. 1997).

at planing speed from a resistance point of view is
sometimes said to be about 4◦. However, this must
depend on the hull form. Ikeda et al. (1993) experi-
mentally studied the effect of small and large trim
tabs of a hard-chine hull in the Froude number
range from 0.7 to 1.2. The trim tab angle varied
from 0◦ to 20◦ for the small trim tab. The lowest
resistance for Fn < 0.8 was obtained with a trim
tab angle of 20◦, whereas no trim tab or no trim
tab angle gave the lowest resistance for Fn > 1.0.

Similar results were obtained with the larger trim
tab. Trim tabs are particularly effective in reducing
the hump trim angle of vessels with low length-to-
beam ratio (Savitsky 1992).

9.2.1 2.5D (2D + t ) theory

Figure 9.4 illustrates how a 2D water-entry
analysis can be used in a 2.5D (2D + t) analysis
of steady flow relative to a ship-fixed coordinate
system. An Earth-fixed cross-plane that is initially
ahead of the ship is considered. We will follow
the fluid particles in this cross-plane. These fluid
particles are assumed initially not to know that
the ship is coming. This is an approximation. At a
certain time t = t0, a cross section of the ship that
is not in the water is penetrating the Earth-fixed
cross-plane (see Figure 9.4). This ship cross section
is above the water and will not influence the fluid
particles in the Earth-fixed cross-plane. However,
as time evolves, other ship cross sections as illus-
trated at t = ti and t j in Figure 9.4 are penetrating
the Earth-fixed cross-plane and are submerged
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Figure 9.5. Drop test of a wedge with a
10◦ deadrise angle and a breadth B =
0.28 m. The wedge is free falling. The pic-
tures show snapshots of the water entry
at time instants t = 0, 0.01, 0.0219, 0.344,
and 0.0625 s. t = 0 is when the wedge first
hits the free surface. Downward velocity
V of the wedge is presented in Figure 9.6.
(Photo by Olav Rognebakke.)

in the water. When t = t j , the flow has separated
from the chines. The vertical velocity of the ship’s
cross section is for small τ equal to Uτ, where τ

is the local trim angle in radians. The analysis of
the flow in the studied Earth-fixed cross-plane is
therefore the same as the flow due to water entry
of a 2D body with changing form and downward
velocity V = Uτ.

Let us therefore first concentrate on water entry
of 2D bodies, particularly wedges with chines
(knuckles). Figure 9.5 shows how the free-surface
elevation looks in experimental drop tests of a
wedge at different time instants. The correspond-
ing water entry velocity V as a function of time is
presented in Figure 9.6. Our analysis of steady per-
formance of a planing vessel requires that V is con-
stant with time. However, this was not achieved in
the experiments. Figure 9.5 shows that the water
initially separates from the chines (knuckles) tan-
gentially to the wedge surface. The water rises
almost vertically close to the wedge, with result-
ing plunging breakers.

Figure 9.7 illustrates calculated free-surface ele-
vation during the water entry of a wedge with

deadrise angle 30◦ and knuckles (hard chines).
The calculations were done by a boundary element
method (BEM). Potential flow of an incompress-
ible fluid was assumed, and the exact free-surface
conditions without gravity were satisfied. How-
ever, the method numerically cuts off parts of

Figure 9.6. Water entry velocity V and nondimensional
velocity Vt/B as a function of time for the experiments
presented in Figure 9.5. B = beam.
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Figure 9.7. The pressure (p) distribution and free-surface elevation during the water entry of a wedge
with deadrise angle 30◦ and chines (knuckles), calculated by a fully nonlinear potential flow solution
without gravity. V is constant drop velocity, pa is atmospheric pressure, ρ is mass density of the water,
and B is breadth of the wedge. y is horizontal coordinate on the body surface. t0 is the time instance
when the spray roots of the jets reach the separation points (chines). (a) Pressure distribution at
selected time instants after flow separation from the chines. (b) Free-surface elevation at selected
time instants after flow separation from the chines. (c) Comparison of free-surface elevation between
theory and experiments. t = 2.90; ——————, theory; - - - - - - - -, experiments by Greenhow and
Lin 1983 (Zhao et al. 1996).

the spray, as we see in the figure. This does not
have a significant effect on the flow outside the
neglected spray domain. This is confirmed in Fig-
ure 9.7 by comparing with the experimental results
by Greenhow and Lin (1983). The flow at this
relatively large deadrise angle shows also almost
vertical jets, that is, similar to those in Figure 9.5.
Figure 9.7 also shows the resulting pressure distri-
bution on the wedge. What is of interest in the cor-
responding analysis of steady flow around the ship
is the resulting vertical force. The case of a deadrise
angle of 20◦ is presented in Figure 8.24. A major
contribution to the vertical force occurs ahead of
the flow separation from the chines. Because the
separation line has to be known in the 2.5D analy-
sis by Zhao et al. (1996), rounded bilges with flow
separation are difficult to handle. We will come
back later to how this vertical force following from
the water entry analysis can be used in calculating
rise, trim, and resistance of a planing vessel.

Let us now illustrate how a free-surface eleva-
tion, as in Figures 9.5 and 9.7, appears in a ship-
fixed coordinate system. The coordinate trans-
formation x = Ut is then introduced. Here x is
a body-fixed longitudinal coordinate of the ship.
The positive x-direction is from the bow toward
the stern. t = 0 corresponds to the initial time of
water entry of a ship cross section into the water in
the previously mentioned Earth-fixed cross-plane.
The x-coordinate of this ship cross section is then
zero according to x = Ut.

This is illustrated in Figure 9.8 by showing the
free-surface elevation for four sections: A, B, C,
and D. How this looks depends on

Vt
B

= (Uτ ) (x/U)
B

= τ x
B

. (9.1)

There is a hole in the water at the last section,
D. This will in reality disappear at some distance
behind the ship, and a rooster tail as in Figure 4.18
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Figure 9.8. Illustration of the flow around a planing hull. Transformation between Earth-fixed and
ship-fixed coordinate systems (see also Figures 9.5 and 9.7).

will appear. This is affected by gravity. Further,
gravity will pull down the spray appearing at
cross section C. The presence of gravity will
cause far-field waves and therefore wave pattern
resistance.

A simplified version of the 2.5D theory will first
be used to explain qualitatively why a transom
stern and hard chines are important in creating
hydrodynamic lift and trim moment. The basis is
eq. (8.44), which will be expressed in a coordinate
system following the forward velocity of the vessel.
Eq. (8.44) then gives the following vertical force
per unit length on a cross section:

f3 = U
d

dx
(a33Uτ ) (9.2)

It is here used that x = Ut. Further, a33 is the
two-dimensional infinite-frequency added mass in

heave of the cross section. If the keel line is
expressed as z(x) where z is positive upward, then
the local trim angle τ = −dz/dx. If the keel is a
straight line, as it is for the prismatic hull forms
studied by Savitsky (1964) (see section 9.2.2), the
local trim angle is the same as the global trim angle
of the vessel.

Eq. (9.2) gives a vertical force on a cross sec-
tion only as long as a33τ varies with x at the cross
section. When flow separation from the chines
has occurred, neither a33 nor τ change for a pris-
matic planing hull; that is, f3 is zero. By comparing
this with Figure 8.24 and exchanging the abscissa
from Vt/B to τ x/B, as in eq. (9.1), we see that
this zero force is only qualitatively true at some
distance downstream of where the chine wetting
starts.
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Integrating eq. (9.2) over the whole length of
the vessel gives the hydrodynamic lift force

L = U2τa33(xT), (9.3)

where xT means the x-coordinate of the tran-
som stern. If the vessel had a pointed aft end,
then a33(xT) is zero; that is, there is no hydro-
dynamic lift on the vessel. This demonstrates the
importance of the transom stern to create lift. Eq.
(9.3) shows, for finite τa33(xT), that the lift force
increases with the square of the speed. Because
a33(xT) is proportional to B2, the lift will also have
this proportionality factor according to the sim-
plified method. Further, a33(xT) will decrease with
increasing deadrise angle.

Eq. (9.3) illustrates that the vessel must have
a trim angle to experience a hydrodynamic lift.
This is caused by the trim moment on the hull. In
order to generate a trim moment causing the bow
to rise, it is essential that the center of pressure of
the lift is forward of the center of gravity during
the acceleration to a constant velocity U. This is
achieved when the flow separation from the chines
starts close to the bow and a33τ does not change
downstream from where chine wetting starts. If τ

does not vary, that is, the keel and buttock lines are
straight and parallel, constant a33τ means constant
wetted cross section. This is achieved by both the
geometry of the cross section and the fact that the
hard chines force the flow to separate.

Because the 2D vertical force expressed by
eq. (9.2) is a consequence of hydrodynamic pres-
sure loads, the equation predicts that negative
hydrodynamic pressures on a cross section occur
when d(a33τ )/dx is negative. The total pressure is
the sum of hydrostatic, hydrodynamic, and atmo-
spheric pressures. Negative pressures relative to
atmospheric pressure may result in dynamic insta-
bilities of the vessel (Müller-Graf 1997). Let us
assume that the speed is sufficiently high for the
hydrostatic pressure to be negligible. For instance,
if the cross sections are wedge-formed with con-
stant deadrise angles, eq. (9.2) shows that neg-
ative pressures relative to atmospheric pressure
occur when b2τ decreases with increasing x, that
is, toward the stern. Here b is the local beam. If
the keel line is convex, τ decreases with increasing
x. Our slender-body theory results are therefore
consistent with Savitsky’s (1992) warning against

using convex keel and buttock lines aft of the
bow sections. If the planing surface is warped,
the deadrise angle varies with x and influences
a33. If we use the results for a33 of wedges, then
a33/b2 will increase with decreasing β (see Fig-
ure 9.27). This qualitative analysis shows that neg-
ative hydrodynamic pressures can be avoided by
a proper design of the keel and buttock lines,
local beam, and deadrise angles. However, the fol-
lowing simplifications in the analysis should be
remembered.

� Eq. (9.2) is approximate.
� The considered pressure has been averaged

over a cross section by weighing the pressure
with the z-component of the normal surface
vector.

� The effect of propulsors have not been consid-
ered. A propeller may cause negative hydrody-
namic pressures on the hull.

If a trim tab is considered hydrodynamically as
an integrated part of the hull, eq. (9.2) can be used
to approximate the trim moment caused by a trim
tab. However, 3D flow effects matter in the close
vicinity of the stern.

The following text returns to the more exact
2.5D theory by Zhao et al. (1997) and demon-
strates that it matters that there is non-zero vertical
force aft of the cross section where flow separation
from the chines starts.

9.2.2 Savitsky’s formula

Zhao et al. (1997) compared their 2.5D method
with the empirical formula by Savitsky (1964) for
the lift, drag, and center of pressure coefficients
for a prismatic and chine wetted planing hull. The
formula is based on extensive experimental data.
The lift coefficient can be written as

CLβ
= CL0 − 0.0065βC0.60

L0 . (9.4)

Here

CLβ
= FLβ

0.5ρU2 B2

and

CL0 = FL0

0.5ρU2 B2
= τ 1.1

deg

(
0.012λ0.5

W

(9.5)
+ 0.0055λ2.5

W /Fn2
B

)
.
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Figure 9.9. Coordinate system (x, y, z) and symbols used in a prismatic planing boat analysis
(Savitsky 1964).

Further,

CL0 = lift coefficents for zero deadrise
angle (β = 0◦)

CLβ = lift coefficient
FL0 = lift force for zero deadrise angle

(β = 0◦)
FLβ = lift force
λW = mean wetted length-to-beam ratio
τdeg = trim angle of planing area in degrees
τ = trim angle of planing area in radians
β = angle of deadrise of planing surface

in degrees
B = beam of planing surface.
FnB = U/(gB)0.5

We note that the beam is used as a length param-
eter in the Froude number. A reason is that the
beam is fixed whereas a longitudinal length, such
as the wetted keel length, is not known before the
equations of equilibrium for vertical force and trim
moment for a given speed are solved.

Eq. (9.4) is valid for 2◦≤ τdeg ≤ 15◦ and λW ≤ 4.
Figure 9.9 defines the hull geometry and the angles
β and τ . The mean wetted length-to-beam ratio
λW is equal to 0.5(LK + LC)/B (see Figure 9.9).
LK and LC are, respectively, the keel and chine
wetted lengths. Savitsky’s formula assumes a pris-
matic hull form; for example, the deadrise angle is
constant along the craft.

Ikeda et al. (1993) experimentally studied a
series of hard-chine hulls (Figure 9.10). The
length-to-beam ratios varied between 3 and 6.
The deadrise angles of the aft part of the series
B vessels were kept constant while the dead-
rise angles of the series A ships became zero at
the transom stern. If the deadrise angle in Sav-
itsky’s formula were chosen at the forward sec-
tion midway between the first keel wetted sec-
tion and the first chine wetted section, Ikeda et al.
show that Savitsky’s formula can be applied to
their nonprismatic hulls for length Froude num-
bers larger than about 0.9. This is valuable infor-
mation, but we should be careful in generalizing
this finding. Resistance, rise, and trim from sys-
tematic series of model experiments have also
been presented by Clement and Blount (1963),
Keuning and Gerritsma (1982), and Keuning et al.
(1993).

We note from Savitsky’s formula that the lift
goes to zero when the trim angle goes to zero.
The trim angle plays a role similar to that of the
angle of attack in hydrofoil theory. Further, part of
the lift decreases linearly with increasing deadrise
angle β.

The resistance component RP due to the pres-
sure force in this case is simply

RP = FLβ
τ. (9.6)
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Figure 9.10. Body plans of planing vessels with hard chines studied by Ikeda et al. (1993).

Here τ is in radians. The longitudinal position of
center of pressure is expressed by

l p

λW B
= 0.75 − 1

5.21Fn2
B/λ2

W + 2.39
, (9.7)

where l p is the distance measured along the keel
from the transom stern to the center of pressure of
the hydrodynamic force. The parts of the force and
moment expression obtained by letting FnB → ∞

in eqs. (9.5) and (9.7) are the result of the hydrody-
namic lift. Hydrostatic loads and the effect of free-
surface wave generation are implicitly included in
the formula.

Figure 9.11 shows comparisons between the
empirical formula and the numerical results for
the lift coefficient and the center of pressure. Infi-
nite Froude number FnB is assumed in eqs. (9.5)
and (9.7). Because there is a simple relationship
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τdeg = 4°

λw = 4

τdeg = 4°

λw = 4

τdeg = 6°

λw = 4

τdeg = 6°

λw = 4

τdeg = 4°

β = 20°
τdeg = 4°

β = 20°

Figure 9.11. Comparison between the empirical formula by Savitsky (1964) (———) and the numer-
ical results (�) for the lift coefficient CLβ and the center of pressure at infinite Froude number. β is
the angle of deadrise of planing surface, l p is the distance along the keel from the transom stern to
the center of pressure, τdeg is the trim angle of the planing area in degrees, and λW is the mean wetted
length-to-beam ratio (Zhao et al. 1997).

(see eq. (9.6)) between RP and FLβ , results are not
presented for RP. There is a reasonable agreement
between the theory and the empirical formula. The
results are presented either as a function of dead-
rise angle β or as a function of λW. The detailed
theoretical force distribution along the ship when

β = 20o can be obtained approximately from Fig-
ure 8.24 by setting V = Uτ and x = Ut. This
means that the horizontal axis in Figure 8.24
becomes τ x/B. The maximum force value is at
x = LK − LC (see the definition in Figure 9.9), that
is, when the spray roots are at the chines and flow
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separation has started. The theoretical force dis-
tribution up to x = LK − LC is the same for all
λW. The difference in theoretical values for differ-
ent values of λW is simply a matter of how large
the maximum of τ x/B (or Vt/B in Figure 8.24)
is. Even if the local forces aft of the chine position
where flow separation starts are smaller than those
ahead of the separation point, they are not negli-
gible. The λW-dependence of the results demon-
strates that. This means that the effect of flow sep-
aration on the hydrodynamic loads is important.
The theory overpredicts CLβ and underpredicts l p

relative to the empirical formula. The difference
between theory and the empirical formula does
not vary much with λW. A possible reason for the
difference is that three-dimensional flow effects
are of some importance from x = 0 to x = LK −
LC. This is likely because (LK − LC)/B varies
from 0.63 to 2.66 in the numerical results pre-
sented in Figure 9.11. The values of (LK − LC)/B
imply a rapid change of the flow in the longitu-
dinal direction from x = 0 to x = LK − LC. The
general trend is that (LK − LC)/B decreases with
decreasing deadrise angle β for fixed value of trim
angle τ. If β is fixed, then (LK − LC)/B decreases
with increasing value of τ . If the three-dimensional
flow effects are mainly in the bow region, it can
explain why the differences between theory and
the empirical formula does not vary much with λW.

Lai’s (1994) three-dimensional numerical results
are also an indication of the presence of three-
dimensional effects.

Alternative flow description in the bow region
For sections in which flow separation from the
chines does not occur, we may use the similarity
solution or the Wagner’s solution for water entry
of wedges with constant velocity to estimate the
vertical force. We start with Wagner’s solution,
that is, eq. (8.52), to estimate where flow separa-
tion occurs. Eq. (8.52) expresses the wetted half
beam of the wedge as a function of time. This can
be expressed as a function of the longitudinal ves-
sel coordinate x by noting that Vt = xτ (see the
previous discussion and Figure 9.9). This implies
that low separation from the chines will start at
x = xS = LK − LC , where xS satisfies

B
2

= π

2 tan β
xSτ. (9.8)

Because λW = 0.5LK/B with LC = 0, flow separa-
tion from the chine does not occur when

λW < 0.5
tan β

πτ
. (9.9)

For instance, if β = 20◦ and τdeg = 4◦, eq. (9.9)
gives λW < 0.83. We could alternatively have used
the similarity solution to find xS. We introduce
then zmax defined in Figure 8.22. This means that
the vertical distance between the point of maxi-
mum pressure and the keel is Vt + zmax. The hori-
zontal coordinate of this point in the outer domain
solution, in which we do not see the details of the
spray roots, is then c. It follows by geometry that
c = (zmax + Vt)/ tan β. The flow separation at the
chine will then start at xS, which satisfies

B
2

=
(

1 + zmax

Vt

) Vt
tan β

=
(

1 + zmax

Vt

) xSτ

tan β
.

(9.10)

We can determine zmax/Vt by means of Table 8.3.
Eq. (9.10) implies that π/2 on the right-hand side
of eq. (9.8) is replaced by 1 + zmax/Vt. We see that
this factor is 1.5087 for β = 20◦ and this will cause
a larger xS-value than Wagner’s solution.

The vertical force distribution along the hull can
then be approximated as

F2D
3

ρV3t
= K, (9.11)

where K depends only on β (see Table 8.3). F2D
3

means the same as F3 in Table 8.3. We now intro-
duce x and U in eq. (9.11). This means

F2D
3 = ρKU2τ 3x. (9.12)

The total vertical force follows by integration and
is

F3 = ρKU2τ 30.5x2. (9.13)

For x = LK and no flow separation, that is, LC = 0,
this means that

CLβ = F3

0.5ρU2 B2
= Kτ 34λ2

W. (9.14)

If, for instance, τdeg = 4◦, β = 20◦, and λW =
0.83, this gives CLβ = 0.04, which agrees with the
numerical results in Figure 9.11e). We may note
that eqs. (9.4) and (9.14) have a very different para-
metric dependence for small λW. However, it may
be that Savitsky’s formula was not intended for
small λW. Actually, because none of the cross sec-
tions is then wetted over the breadth B, B is an
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Figure 9.12. Definition of variables used
in the calculation of the hydrostatic verti-
cal force on a prismatic planing vessel.

unphysical length dimension to use for nondimen-
sionalizing the force.

We can also use eq. (9.12) to find the center
of pressure of the force. The corresponding x-
coordinate is

xC = 1
F3

LK∫
0

xF2D
3 dx = 2

3
LK. (9.15)

We write this similar to eq. (9.7) and note that
λW = 0.5LK/B and l p = LK − xC. This gives

l p

λW B
= 2

3
, (9.16)

which agrees with the corresponding numerical
value in Figure 9.11f).

Gravity effects
Gravity has to be accounted for at a finite Froude
number for the planing hull. There are, in princi-
ple, two effects: hydrostatic pressure and genera-
tion of gravity waves. However, the latter effect is
considered small in the following discussion. The
hydrostatic pressure contribution is evaluated by
considering the hull volume ∇ below the intersec-
tion between the mean free surface and the hull in
its planing condition.

We use Figure 9.12 to illustrate the calcula-
tions. An x-axis along the keel is introduced where
x = 0 and x = x1 correspond to where the keel and
hard chines, respectively, intersect the mean free
surface. The cross-sectional area A(x) below the
mean free surface between x = 0 and x = x1 can
be expressed as

A(x) = x2 tan2 τ

tan β
.

The hull volume from x = 0 to x1 below the mean
free surface is then

Vol1 =
x1∫

0

A(x) dx = 1
3

x3
1

tan2 τ

tan β
.

The hull volume below the hard chines from x = x1

to the transom is simply

Vol2 = (LK − x1)0.25B2 tan β.

Then we have to add the hull volume between
the mean free surface and a plane between the
hard chines from x = x1 to the transom. The final
answer is

∇ = x3
1 tan2 τ/ (3 tan β) + (LK − x1) 0.25B2 tan β

+ 0.5(LK − x1)2 tan τ · B,

where x1 = 0.5B tan β/ tan τ. Writing the vertical
force as FHS = ρg∇ gives

CLHS = FHS

0.5ρU2 B2
= 2

Fn2
B

· ∇
B3

. (9.17)

This assumes the wetted hull surface is below the
mean waterplane, but because the dry hull sur-
face above the chines is vertical, it does not con-
tribute to vertical forces. Further, a correction for
a dry transom stern has a negligible effect on the
vertical force. We want to stress that what we
are doing is approximate and that the genera-
tion of free-surface waves should have been ana-
lyzed simultaneously with the lifting effect. The
effect of hydrostatic pressure would then have
been included. However, we continue with our
simplifications.

Another effect is a suction pressure at the tran-
som stern. This is caused by the flow separation
from the transom stern and the fact that the pres-
sure has to be atmospheric at the transom stern.
The consequence is a small loading in the vicinity
of the transom stern. This will be accounted for by
using a smaller LK in the expression for ∇. Reduc-
ing LK somewhat arbitrarily to 0.5B correlates
well with Savitsky’s formula. This is illustrated
in Figure 9.13, in which CLβ and CLHS are pre-
sented as functions of 1/Fn2

B for β = 10◦, τdeg =
4◦, and λW = 3. The value of CLβ for 1/Fn2

B = 0
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Figure 9.13. Comparison between Savitsky’s lift coef-
ficient CLβ and the lift coefficient CLHS due to suc-
tion pressure at the transom stern and the hydrostatic
pressure. Prismatic planing hull. β = 10◦, τdeg = 4◦, and
λW = 3 (Faltinsen 2001).

is the hydrodynamic lift. Because CLβ and CLHS

are nearly parallel to increasing 1/Fn2
B, it sug-

gests that the steady lift force on a planing hull
can be divided into hydrodynamic lift, buoyancy
force, and a suction pressure loading at the tran-
som stern. It means that gravity wave generation
has a minor relative importance on the lift. How-
ever, because we somewhat arbitrarily reduced LK

with 0.5B to reach our conclusion, we cannot be
sure about that. In order to be more precise in
this matter, we would need a numerical tool that
includes the effect of wave generation and at the
same time is able to predict the details of the flow
at the transom.

9.2.3 Stepped planing hull

The strategy behind the design of a stepped plan-
ing hull is to reduce the viscous resistance by
decreasing the wetted hull surface area while
maintaining a high hydrodynamic lift force. This
can be achieved if the flow separates from a step
(see Figure 9.3) and ventilates the aft part of the
hull in an area where the hydrodynamic pressures
are small for the same planing hull without a step.
Because the vertical hydrodynamic force per unit
length has a maximum at which flow separation
from the chines starts (see the previous discussion
of results by the 2.5D method in section 9.2.1), it
means the step must be placed some distance aft
of this location.

The flow separation from the step raises two
important questions:

� What is the condition for the flow to separate at
the step and cause ventilation aft of the step?

� What is the length of the ventilated area of the
hull?

These questions can be answered by first
neglecting the hull aft of the step. The answer to
the first question can then be found from exper-
imental investigations by Doctors (2003), who
studied the condition for the transom of a mono-
hull to be dry. The most important parameter is the
draft Froude number FnD = U/ (gD)1/2, where D
is the draft at the transom measured relative to the
calm water level. This means D accounts for the
rise and trim of the vessel at the considered speed.
An estimate of the condition for separation with
ventilation at the step is given as

U

(gDS)1/2 > 2.5 (9.18)

based on Doctors (2003). Here DS is the draft at
the step accounting for the trim and rise of the
vessel.

In order to answer the second question about
the length of the ventilated hull area aft of the
step, we can use the empirical formula by Savitsky
(1988) for the centerline free-surface profile aft of
the transom stern of a prismatic planing hull. If the
separated flow from the step reattaches to the aft
hull, it will do so first at the centerline. In the local
coordinate system (X, Z) defined in Figure 9.14,
the free-surface profile can be expressed as

Z
B

= C1

(
X
B

)2

− C2

(
X
B

)2.44

+ C3

(
X
B

)
,

(9.19)

where

C1 = 0.02064

[
τ 0.7

deg

Fn0.6
B

]2

(9.20)

C2 = 0.00448

[
τ 0.7

deg

Fn0.6
B

]2.44

(9.21)

C3 = 0.0108 λW τ 0.34
deg . (9.22)

Here B is the beam of the planing surface, τdeg

is the trim angle in degrees, FnB is the Froude
number with the beam as a length parame-
ter, and λW is the mean wetted length-to-beam
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Figure 9.14. Definition of the parameters and coordinate system used in the analysis of the centerline
free-surface profile aft of the transom stern of a planing vessel. U = forward speed, US = tangential
flow velocity at the transom stern, D = draft at the transom.

ratio. According to Savitsky (1988), eq. (9.19) is
valid for 6◦ ≤ τdeg ≤ 14◦, 3 ≤ FnB ≤ 6, 10◦ ≤ β ≤
30◦, 0.34 tan β/ tan τ ≤ λW ≤ 3, and 0 ≤ (X/B) ≤
6. Here β means the deadrise angle.

Examples of predictions based on eq. (9.19) are
shown in Figure 9.15, which illustrates that the
length of the hollow aft of the transom increases
with FnB for given values of λW and trim. This is
also consistent with the results in Figure 4.23 for
length Froude numbers between 0.5 and 0.8.

For a given step height, that is, a given value of
Z/B, we can use eq. (9.19) to find if and where the
flow reattaches to the aft hull. Let us say Z/B is
0.02. Figure 9.15 shows the the corresponding ven-
tilated length X along the keel for different beam
Froude numbers FnB. The trim angle τ and the
mean wetted length-to-beam ratio λW are assumed
constant in Figure 9.15. These values will in reality
be a function of FnB. The results also give guidance

Figure 9.15. Centerline free-surface profile aft of the transom stern of a prismatic planing hull
(Savitsky 1988). The right figure gives a detailed view of a part of the left figure. Coordinate sys-
tem (X, Z) is defined in Figure 9.14. τdeg = 6◦, λW = 2.

in the use of several steps. For instance, if the lon-
gitudinal distance between the first step and the
transom is much longer than the predicted venti-
lated length, one or more steps may be introduced.
A procedure such as this must also consider the
fact that the reattached flow will cause additional
pressure loads on the vessel that influence the trim
and rise. This is an area requiring further research.
A possibility is to consider the wetted hull sur-
face abaft the reattachment as a high-aspect–ratio
planing surface. However, the inflow from the sep-
arated flow from the step should be accounted for.
One suggestion is to introduce a relative trim angle
between the vessel’s trim and the incident free-
surface profile at the reattachment.

Local analytical solution near the transom
We will show how we can analytically derive the
free-surface profile at the centerline aft of the
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Figure 9.16. Detailed view of the flow separation area at the centerline of the transom stern (see
Figure 9.14). (r, θ) = polar coordinates. The Z-component of the water velocity at the free surface is
w. Us is a first approximation of the X-component of the water velocity.

transom. A local solution in the vicinity close
to the separation point at the transom is stud-
ied (see Figure 9.16). The flow is assumed two-
dimensional in the X-Z-plane. Polar coordinates
(r, θ) as defined in Figure 9.16 are introduced.
The local solution of the velocity potential � is
expressed as

� = US X + Arn cos nθ. (9.23)

Here r is assumed to be small and US, A, and n
are presently unknown constants. US represents
the tangential velocity at the transom (see Fig-
ure 9.14). We can check that the body bound-
ary condition is satisfied by evaluating the veloc-
ity component vθ = r−1∂�/∂θ at θ = 0. This gives
vθ = 0 for θ = 0, that is, no flow through the body
boundary. Then we must satisfy the dynamic free-
surface condition by using Bernoulli’s equation
for the pressure p and require that the pressure
is atmospheric on the free surface, that is, p = pa .

Using eq. (3.5) with ∂�/∂t = 0 gives

ρ

2
[(US + u)2 + w2] − ρg(D − Z) = ρ

2
U2.

(9.24)

Here D is the draft at the transom (see Figure 9.14)
and u and w are the X- and Z-components of the
flow velocity due to the velocity potential compo-
nent Arn cos nθ in eq. (9.23). Here u and w are
small relative to US. We will satisfy this dynamic
free-surface condition approximately at θ = π (or

Z = 0 for X > 0). Because u/US and w/US are
small, the lowest-order terms in eq. (9.24) are

ρ

2
U2

S = ρgD + ρ

2
U2,

that is,

US =
√

2gD + U2. (9.25)

The next order term in eq. (9.24) becomes ρUSu =
0 on Z = 0. We can write on Z = 0

u

∣∣∣∣
θ=π

= ∂

∂r
Arncos nθ

∣∣∣∣
θ=π

.

This means cos nπ = 0 or nπ = 0.5π,1.5π, . . ..
Because r is small, we must choose the lowest pos-
sible n. However, we must disregard n = 1/2, which
gives infinite velocity at r = 0. That cannot be per-
mitted because the flow must leave smoothly from
the transom. Hence n = 3/2. At Z = 0, that is,
θ = π , we then have

w = 1
r

Ar 3/2 d
dθ

cos
3
2

θ

∣∣∣∣
θ=π (9.26)

= 3
2

Ar 1/2.

A first approximation to the free-surface profile
can be obtained by noting that the free surface is
a streamline. This means (see Figure 9.16) that the
free-surface slope dZ/dX satisfies approximately

dZ

dX
= w

US
. (9.27)
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Figure 9.17. 2D flat planing surface with angle of attack τ . N is the normal hydrodynamic force, and
�p is the distance measured along the plate from the trailing edge to the center of pressure.

Substituting w given by eq. (9.26) into eq. (9.27)
and solving the differential equation gives

Z = A
US

X3/2. (9.28)

The constant A can be determined by matching
with the flow outside of the transom stern. This will
not be pursued. Eq. (9.28) appears at first glance to
be very different from eq. (9.19). However, it turns
out that eqs. (9.28) and (9.19) have a very simi-
lar behavior even for quite large values of X/B,
despite the fact that X was assumed to be small in
our local flow analysis. We can then determine A
by a least squares fit of eqs. (9.19) and (9.28), for,
let us say, X/B between 0 and 3. This means we
introduce

I =
3B∫

0

dX

(
C1

(
X
B

)2

− C2

(
X
B

)2.44

(9.29)

+ C3

(
X
B

)
− A

US
X3/2

)2

.

The least squares fit requires that I is a minimum;
that is, A is determined by requiring ∂ I/∂ A= 0.

This gives

A = 4US

81B4

3B∫
0

dX

(
C1

(
X
B

)2

− C2

(
X
B

)2.44

(9.30)

+ C3

(
X
B

))
X3/2.

A more qualitative and subjective estimate of A
was obtaining by directly comparing eq. (9.28)
with eq. (9.19). This was done by plotting eq. (9.28)
with different values of A obtained by eq. (9.30).
This gave

Z = 0.05B
τdeg

FnB

(
X
B

)3/2

. (9.31)

This expression does not fit equally well for all trim
angles, Froude numbers, and λ. However, it illus-
trates in a more simple way how the free-surface
profile depends on τ and FnB.

9.2.4 High-aspect–ratio planing surfaces

Because the ratio between the beam and wetted
keel length is typically small, planing vessels can
in most situations be considered as low-aspect–
ratio planing surfaces. If we look upon a trim tab
as an appendage, this can be considered a high-
aspect–ratio planing surface. Further, in extreme
cases, the planing vessel can be supported by the
water flow only in a small area at the stern. We
also then have a high-aspect–ratio planing surface.
Another scenario could be the reattached flow due
to separation from a step on a planing vessel.

When the aspect ratio is high, we can approxi-
mate the flow close to the planing surface as two-
dimensional in a vertical plane parallel to the for-
ward motion of the planing surface. The flow is
illustrated in Figure 9.17. There is a forward jet
flow resulting in spray at the front wetted part of
the planing surface. The flow leaves tangentially at
the trailing edge and the presence of the planing
surface causes a local uprise of the water. Gravity
waves will be generated for a finite Froude num-
ber. When the Froude number is very high and the
effect of gravity can be neglected, this problem has
been studied for small trim angles τ by Wagner
(1932). If we neglect the details of the jet flow and
assume a small angle of attack τ , the body bound-
ary condition can be transferred to a horizontal
line of length l, as defined in Figure 9.17. This is
similar to what we did in the outer domain solu-
tion of Wagner’s slamming model in section 8.3.1.
We can impose the same free-surface condition
ϕ = 0, where ϕ is the velocity potential due to
the planing surface. The flow is assumed to leave
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Figure 9.18. Effect of Froude number on
theoretical hydrodynamic steady linear
normal force N and pitch moment M about
the center of a 2D planing flat plate of
length � (see Figure 9.17). N∞ and M∞
are values of N and M at infinite Froude
number.

tangentially and smoothly from the trailing edge
of the flat plate, that is, like a Kutta condition in
foil theory is imposed on the trailing edge. Then
we create an image body above the free surface,
and we have the flow around a 2D foil in infinite
fluid. Because in our problem we integrate pres-
sure forces on only one side of the plate, we get
half the lift of a flat foil in infinite fluid. This gives
a lift coefficient of πτ for a flat planing surface.
The lift force will act three quarters of the chord
length from the trailing edge.

We argue in Chapter 6 that there is no drag due
to steady 2D potential flow past a foil in infinite
fluid. We explain that this is true even for a flat
plate. This is associated with a finite suction force
acting at the leading edge. However, because there
is no flow around the leading edge in the plan-
ing problem, there is a drag force equal to the lift
force times the angle of attack. When the Froude
number is infinite, the drag is physically caused
by the jet (spray) flow in front of the planing
surface.

If the free-surface condition ϕ = 0 is assumed,
we can also handle a finite-aspect–ratio planing
surface by making the analogy to foil theory and
using the methods described in Chapter 6. This
analogy is not dependent on a flat foil; for exam-
ple, we can use camber to create lift on the planing
surface. Sedov (1965) presented a comprehensive
presentation on two-dimensional steady planing.
The linear wave generation problem for a flat plate
in deep water was analyzed in detail. High Froude–
number asymptotic formulas for the linear nor-

mal hydrodynamic force N (see Figure 9.17)
and hydrodynamic pitch moment M about
the center of the plate were presented. When the
Froude number Fn = U/

√
�g is larger than 2.8,

the expressions

N
0.5ρU2�τ

= π

[
1 −

(
π + 4

π

)
0.5
Fn2

]
(9.32)

8M
ρπU2�2τ

= 1 − 8 + 3π2

3π

0.5
Fn2 (9.33)

agree well with Sedov’s exact solutions. Figure 9.18
shows how N/N∞ and M/M∞ vary with Fn. The
subscript ∞ refers to infinite Froude number, that
is, the case analyzed by Wagner (1932). When Fn
is larger than 4.25, N and M differ less than 10%
from the results at infinite Froude number.

The results for N can be used to calculate the
sum of wave and spray resistance. This resistance
is simply Nτ , that is, the normal force compo-
nent opposite the forward motion direction of the
plate.

Sedov (1965) also considered 2D nonlinear
steady planing of a flat plate at infinite Froude
number (see also Green 1936). The normal hydro-
dynamic force N and longitudinal distance �p of
the center of pressure from the trailing edge can
be expressed as

N
0.5ρU2�

= 2π

cot(0.5τ )+π+tan(0.5τ ) ln
[
cot2(0.5τ )−1

]
(9.34)

�p

�
= 1 + 0.5 cos τ + 2(1 − cos τ ) ln 2 + 0.5π sin τ

(1−cos τ ) ln [2 cos τ/(1−cos τ )]+1+cos τ +π sin τ
.

(9.35)
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Figure 9.19. Theoretical hydrodynamic
normal force N, distance �p of center
of pressure from trailing edge, and jet
thickness δ as a function of the trim angle
τ for steady flow past a 2D planing flat
plate of length � at infinite Froude number
(see Figure 9.17). Nlinear is the value of N
based on linear theory.

The linear values of N and �p are, respectively,
Nlinear = 0.5ρU2�πτ and �p/� = 0.75. Kochin et al.
(1964) presented the following formula for the jet
thickness δ:

�

δ
= 1

π

[
1 + cos τ

1 − cos τ
+π

sin τ

1 − cos τ
+ln

2 cos τ

1 − cos τ

]
.

(9.36)

The results for N, �p, and δ are presented in
Figure 9.19 as a function of τ. Nonlinearities start
to matter for quite small trim angles (angles of
attack). This is contrary to what happens for a 2D
foil in infinite fluid. The lift is then linearly depen-
dent on the angle of attack for much larger angles
(Figure 2.17). Figure 9.19 shows that the jet thick-
ness is very small relative to � for small τ. However,
this is not true for τ larger than 10◦.

Because a 2D infinite Froude number theory
predicts infinite free-surface elevation at infinity,
there is no reference height for the planing sur-
face. This can be circumvented by assuming a high-
aspect–ratio planing surface and letting the 2D
flow analysis be valid in the near field. The far
field requires a 3D flow analysis (Shen and Ogilvie
1972).

9.3 Prediction of running attitude and resistance
in calm water

By running attitude, we mean the trim and rise
(steady heave or negative sinkage) of the vessel.

We will exemplify how this can be predicted
by Savitsky’s formula for prismatic hull forms.
This includes prediction of resistance and needed
horsepower.

9.3.1 Example: Forces act through COG

A case similar to the one presented by Savitsky
(1964) is considered. The following data are given:

Mass, M 27,000 kg
lcg 29 ft 8.84 m
Beam, B 14 ft 4.27 m
Deadrise angle, β 10◦

Ship speed 40 knots 20.58 ms−1

FnB 3.18

The frictional force RV and propeller thrust T act
through COG. This is illustrated in Figure 9.20,
where N means the potential flow force discussed
in section 9.2. The wetted length and running
trim follow by satisfying vertical force and pitch
moment equilibrium. The power requirement can
then be investigated. Savitsky (1964) did this by
extensive use of graphs. However, a computer pro-
gram can easily be made to determine the effective
horsepower. In the following, we will go through
the necessary steps.

Step 1. Average wetted length-to-beam ratio λW

Because the forces act through COG, �p (see
eq. (9.7)) has to be equal to lcg. Eq. (9.7) deter-
mines then the average wetted length-to-beam
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Figure 9.20. Prismatic planing hull in
which all forces pass through COG. N is the
force due to hydrodynamic pressures act-
ing on the wetted hull. This has a vertical
component FLβ and a longitudinal com-
ponent RP.� = vessel weight, T = thrust
from propulsion unit, RV = viscous fric-
tional force on the hull (Savitsky 1964).

ratio λW. The unknown λW is therefore the solu-
tion of the nonlinear equation

lcg
λW B

− 0.75 + 1[
5.21Fn2

B/λ2
W + 2.39

] = 0.

This requires a numerical solution. The answer is
λW = 3.43.

Step 2. Trim angle τ

We now use the fact that the lift force calculated
by eq. (9.4) balances the weight of the vessel, that
is,

CLβ = Mg/(0.5ρU2B2). (9.37)

Using the mass density of salt water at 15◦C, that is,
ρ = 1026 kg/m3 gives CLβ = 0.067. Eqs. (9.4) and
(9.5) determine then the trim angle τ by solving
the equation

0.067 − (CL0 − 0.0065βC0.6
L0 ) = 0.

The solution is τdeg = 2.21◦.

Step 3. Wetted length
The length xs = LK − LC along the keel from the
intersection between the keel and the mean free
surface until chine wetting starts is first defined.
This can be obtained by eq. (9.8), in which τ is
given in radians. The chine wetted length LC and
keel wetted length LK follow from

λW = 0.5(LK + LC)/B = 0.5(xs + 2LC)/B.

(9.38)

This means LC = λW B − 0.5xs = 11.5 m and LK =
2λW B − LC = 17.7 m. The consequence is that the
draft of the keel at transom is

D = LK sin τ = 0.68 m. (9.39)

Step 4. Effective horsepower (EHP)
The resistance of the vessel will now be calculated.
The frictional resistance on the hull is obtained

by eqs. (2.3), (2.4), and (2.86). Using that the
kinematic viscosity coefficient ν = 1.19 · 10−6 m2/s
for saltwater at 15◦C gives a Reynolds number
Rn = ULK/ν = 3.1 · 108. The average hull rough-
ness (AHR) will be set equal to 150 · 10−6 m. This
gives CF = 1.78 · 10−3 and �CF = 3.7 · 10−4.

The wetted area is divided into two parts. The
wetted area S1 from the bow (x = 0) up to where
chine wetting starts (x = xs) is chosen as the hull
area below the spray root. Actually, this wetted
area part may be larger. It follows by introducing
d(x) as the vertical distance from the spray root to
the keel at x and the discussion before eq. (9.10),
so that

S1 = 2

xs∫
0

d(x)
sin β

dx = 2
sin β

xs∫
0

(
1 + zmax

Vt

)
xτ dx

= τ

sin β

(
1 + zmax

Vt

)
x2

s .

Using eq. (9.10) to express xS gives

S1 = tan2 β

sin β

(
B2

4(1 + zmax/Vt)τ

)
. (9.40)

The wetted area from x = xs to the transom is
simply

S2 = B
cos β

LC. (9.41)

The total wetted area is by setting 1 + zmax/Vt =
0.5π equal to S = S1 + S2 = 63.3 m2. It follows
that the longitudinal frictional force is RV =
29603 N. We have to add the lift-induced resis-
tance given by eq. (9.6). However, other resistance
components will be neglected in this example. The
total longitudinal drag force is then RT = 39825 N.

This gives a drag-lift ratio of 0.15. The needed
power is RT · U = 820 kW. By dividing this by
0.7457 or multiplying by 1.36, we obtain the effec-
tive horsepower EHP = 1115Hp.



P1: IBE
0521845688c09 CB921-Faltinsen 0 521 84568 7 November 5, 2005 16:47

362 • Planing Vessels

Figure 9.21. Prismatic planing hull in
which forces do not pass through COG
(Savitsky 1964).

9.3.2 General case

Figure 9.21 illustrates a general case in which the
frictional force RV and propeller thrust T do not
act through COG. The viscous component of drag
RV is assumed to act parallel to keel line, half-
height between the keel and chine lines. Why the
viscous drag force acts like this is difficult to jus-
tify. The distance between RV and COG measured
normal to RV is called a. The thrust line has an
inclination angle ε relative to the keel. The angle
ε on small vessels with outboards and stern drives
is adjustable and may often be negative, lifting
the bow up. The negative ε may cause a large
thrust spray seen behind the vessel. The distance
between thrust line and COG measured normal
to shaft line is f. N is the result of pressure forces
due to potential flow. The distance between N
and COG measured normal to N is c. We can set
up the following equations for force and moment
equilibrium.

Vertical equilibrium of forces:

Mg = N cos τ + T sin(τ + ε) − RV sin τ. (9.42)

Horizontal equilibrium of forces:

T cos(τ + ε) = RV cos τ + N sin τ. (9.43)

Pitch moment equilibrium:

Nc + RVa − T f = 0. (9.44)

These equations can be rearranged as follows. Bal-
ance of forces along the keel line is first considered.
N will then not have a component in this direction
and we can write

T cos ε = Mg sin τ + RV . (9.45)

Assuming cos ε ≈ 1 in eq. (9.45) and substituting
eq. (9.45) into eq. (9.42) gives

Mg = N cos τ + Mg sin τ sin(τ + ε)

+ RV sin(τ + ε) − RV sin τ

≈ N cos τ + Mg sin τ sin(τ + ε).

This means

N = Mg(1 − sin τ sin(τ + ε))
cos τ

. (9.46)

We now substitute eqs. (9.45) and (9.46) into
eq. (9.44). This results in

Mg
{

(1 − sin τ sin(τ + ε))c
cos τ

− f sin τ

}
(9.47)

+RV(a − f ) = 0.

A computational procedure to find trim angle,
wetted length, and so forth can now be set up. This
is different and more involved than the procedure
presented in section 9.3.1.

The first step is to assume a trim angle τ.Because
the weight, ship speed, and beam are given, CLβ is
known. This is similar to step 2 in section 9.3.1. The
difference now is that we have assumed τ and used
eq. (9.4) to determine the average wetted length-
to-beam ratio. We note that FnB then is given. We
now proceed with calculations similar to those in
steps 3 and 4 in section 9.3.1. This determines RV .

We determine c by noting that lcg is given and
�p is found by eq. (9.7). Because f, a, and ε are
known, the left-hand side of eq. (9.47) can now be
evaluated.

By repeating this procedure for different
assumed values of the trim angle, we will find
which trim angle will satisfy eq. (9.47). By using
a computer program, we can easily do this for
many assumed τ -values and accurately determine
trim moment equilibrium. We have then solved the
problem, that is, found the equilibrium position for
the vessel. Effective horsepower can be evaluated
in a way similar to the one used in section 9.3.1.

Savitsky (1964) presented an example with val-
ues of M, lcg, B, β, and U similar to those in section
9.3.1. In addition, a = 1.39ft(0.42m), f = 0.50ft
(0.15 m), and ε = 4◦. This caused small differ-
ences relative to a = f = ε = 0, that is, the case in
section 9.3.1.
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Figure 9.22. GZ-curve and experimental time histories of roll motion of ship TB45 at a trim angle of
2◦, center of gravity of 0.074 m, and ship weight of 5.31 kgf for several advance speeds: (a) Fn = 1.4,
(b) Fn = 1.6, (c) Fn = 1.8 (Ikeda and Katayama 2000a).

9.4 Steady and dynamic stability

Steady heeling stability of a vessel depends on the
steady heel (roll) restoring moment W · GZ about
the center of gravity of the vessel as a function
of the steady heel angle φ. Here W is the weight
of the vessel and GZ is the moment arm. GZ at
zero speed is a result of the hydrostatic pressure.
However, as the ship speed increases, the influence
of the hydrodynamic pressure on GZ increases.
This has been discussed in section 7.7 for round-
bilge monohulls.

A 2.5D theory can be applied to a heeled hard-
chine planing vessel and used to study steady
transverse stability. This can be done similarly to
the way steady vertical forces and trim moments
were analyzed in section 9.2.1. This means that
results from water entry of a heeled 2D sec-
tion with constant entry velocity are used. Xu
et al. (1998) used a vortex distribution method
to analyze water entry of a heeled 2D section

with flow separation from hard chines. The dead-
rise angle is assumed small and boundary con-
ditions are transferred to a horizontal line. The
possibility of transverse flow separation from
the keel is incorporated. A method as this does
not include the hydrostatic pressure, rudders,
propulsion, and possible effect of cavitation and
ventilation.

Ikeda and Katayama (2000 a) presented mea-
sured GZ of a planing vessel on a straight course
in calm water as a function of the heel angle φ. The
TB45 model (see Figure 9.10) with a length of 1 m
was used. Figure 9.22 shows their results for Fn =
0, 1.4, 1.6, and 1.8 at a trim angle τdeg = 2◦. The GZ-
curve at zero speed is close to a straight line in the
presented φ-range between 0◦ and 30◦. However,
GZ may at high speed be negative in this φ-range,
depending on the length Froude number, Fn, and
the distance KG between the keel and the center
of gravity. Figure 9.22 shows, for KG= 0.074 m and
Fn =1.8, that GZ is negative for a large range of φ.
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Values of φ corresponding to GZ = 0 represent
equilibrium positions. This gives φ = 0◦ and 15◦ as
the two equilibrium positions for KG = 0.074 m
and Fn = 1.8. An equilibrium position is statically
stable if small deviations in φ from the equilib-
rium position cause a heel moment that restores
the vessel to equilibrium. Analyzing the GZ-curve
in the vicinity of φ = 0◦ and 15◦ gives that φ = 0◦

and 15◦ correspond to, respectively, unstable and
stable equilibrium positions. This is also evident
from the roll (heel) time history presented in
Figure 9.22 for Fn = 1.8. The vessel is initially
in an upright position (φ = 0◦). It then quickly
heels to an angle φ = 15◦, and the vessel contin-
ues to move forward with this statically stable heel
angle.

The behavior at Fn = 1.6 and KG = 0.074 m is
clearly different from Fn = 1.8 (see Figure 9.22).
The GZ-curve then only becomes negative in a
small vicinity of the heel angle 10◦. There are two
static equilibrium positions for non-zero heel. The
vessel will in this condition heel over to a mean
heel angle of about 10◦ at the beginning of the
run. However, an oscillatory heel starts to develop
(“chine-walking”). Because the oscillation ampli-
tude increases with time, the system is dynam-
ically unstable. If the craft has a GZ-curve, as
shown for Fn = 1.6, and there are waves and wind
present or the vessel makes a maneuver, a sce-
nario may be that the vessel rapidly heels over
to the opposite side. This may cause a dangerous
situation.

The GZ-curve depends strongly on the trim
angle at high speed. If we generalize this to
unsteady motions, it means that the roll-restoring
moment is a function of pitch. This can lead to
Mathieu instabilities (see section 7.7.1). Ikeda and
Katayama (2000a) demonstrated that this was pos-
sible with a forced pitching period equal to half the
natural roll period.

Lewandowski (1997) presents semi-empirical
formulas for how the metracentric height GM
of prismatic (hard-chine) vessels varies with
beam, deadrise angle, trim angle, transom draft,
and speed at planing conditions. Here GM =
dGZ/dφ at zero heel angle φ. A minimum GM
occurring between volumetric Froude number
FV = U/

√
g∇1/3 of 2 and 3 is characteristic for

the studied Series 62 hulls. Dynamic instabil-
ity of coupled sway-roll-yaw motions of pris-
matic planing vessels is studied by Lewandowski
(1997) by means of linear stability analysis

and semi-empirical formulas for the hydrody-
namic coefficients. Systematic calculations are
reported, and maximum KG for stable behav-
ior is presented. A simple method to check
the transverse dynamic stability of a pro-
posed design is also presented by Lewandowski
(1997). Dynamic stability analysis of coupled
sway-roll-yaw motions is discussed further in
section 10.9.3.

Blount and Codega (1992) presented design
guidelines on how to avoid dynamic transverse
instabilities of hard-chine craft operating at speeds
greater than 25 knots. The criteria were based
on full-scale trials and expressed in terms of the
hull loading factor Ap/∇2/3 and the dimension-
less lcg-parameter (CAp − lcg)/Lp. Here Ap is
the project area of the planing bottom bounded
by the chine and transom, CAp is the centroid
of Ap, lcg is the longitudinal position of center
of gravity measured from the transom, and Lp is
the projected chine length. Boats with observed
dynamic transverse instability had Ap/∇2/3 ≤ 5.8
and (CAp − lcg)/Lp ≤ 0.03.

Figure 7.41 also illustrates how the static stabil-
ity in roll is influenced by the forward speed. For
instance, the heel (roll) angle of craft A is 13.4◦ at
Froude number 1.6 and 3◦ at zero speed. Weren-
skiold (1993) showed that 3◦ of the 13.4◦ could
be explained by the hydrodynamic pressure on
the hull without the effect of the propeller and
rudder. The effect of using the rudder for yaw
compensation is 3.4◦. The remaining 4◦ is caused
by the dynamic pressure generated by the pro-
peller. It is possible that cavitation and ventila-
tion are contributing factors, for instance, by influ-
encing the pressure distribution in the propeller
tunnels.

Werenskiold (1993) says the following about the
four vessels presented in Figure 7.41, which have
a relatively large influence of forward speed on
static roll stability:

Craft A: “being unstable at speeds above 25 to
30 knots and having broaching
problems.”

Craft B: “having no problems with broaches,
however, has to slow down in
following seas in order to maintain
steering control.”

Craft C: “broaching can be provoked, in
forward trim conditions, in
particular.”



P1: IBE
0521845688c09 CB921-Faltinsen 0 521 84568 7 November 5, 2005 16:47

9.4 Steady and dynamic stability • 365

12

10

8

6

4

2

0.10 0.15 0.20

2

CLβ

0.25 0.30 0.35

REGIME OF
STABLE PLANING

T
R

IM
 A

N
G

LE
, D

E
G

R
E

E
S

β=20°

β=10°

β=0°

PORPOISING LIMIT
LINE

REGIME OF
PORPOISING

Figure 9.23. Porpoising limits for prismatic planing hulls
(Savitsky 1964). CLβ = Mg/

(
0.5ρU2 B2

)
, where M is the

vessel mass; U = vessel speed; B = beam.

Craft D: “before modification of rudder design
and trim condition the craft had
severe roll stability and broaching
problems. Ventilation of aft body was
experienced in hard turns and in
waves, with measured change of
negative bottom pressure to zero,
giving a violent upward kick.”

This suggests that a vessel with unsatisfactory
steady heel stability on a straight course is an
indication of dynamic stability problems. If this is
true, it will facilitate how guidelines can be formu-
lated for the stability of high-speed vessels. One
could, for instance, require model tests such as
those in the example in Figure 7.41 and start with
a heel angle of 3◦ at zero speed. Then one could
require that the vessel have less than, for instance,
8◦ heel at maximum operating speed. This would
ideally require a depressurized towing tank to
scale cavitation properly. However, there is not
sufficient documentation showing that the out-
lined procedure is a reflection of all possible stabil-
ity problems. In the following text, we describe in
more detail porpoising, which is one of the many
dynamic instability problems that may occur.

9.4.1 Porpoising

Porpoising is unstable coupled heave and pitch
motions. Design guidelines are available for pre-

dicting and avoiding porpoising (Blount and
Codega 1992). Figure 9.23 can be used to evalu-
ate the risk of porpoising. It is based on compre-
hensive experimental studies by Day and Haag
(1952) and was presented by Savitsky (1964). Fig-
ure 9.23 presents limit curves for stability for dif-
ferent deadrise angles β. If the combination of
the trim angle and the lift coefficient corresponds
to a point above the limit curve for a given β,

porpoising will occur. The horizontal coordinate
(CLβ/2)1/2 in Figure 9.23 is 0.18 for the example in
section 9.3.1. Because the trim angle τdeg = 2.21◦

and β = 10◦, no porpoising occurs. Because CLβ is
proportional to the weight and is a constant, Fig-
ure 9.23 shows that it is beneficial to lower the trim
angle if porpoising occurs. This can, for instance,
be achieved by moving the longitudinal center of
gravity forward or by using trim tabs. The effect
of trim tabs on porpoising has been experimen-
tally studied by Celano (1998). Later, we will see
that there is a lower speed limit for porpoising to
exist, so we can also lower the speed to avoid the
problem.

Inception of porpoising can be found by a lin-
ear stability analysis. Small perturbations from the
steady equilibrium position are then dynamically
examined. There are no excitations, for instance,
due to wave loads. If a small initial perturbation
is given to the system and the motions grow with
time, the system is unstable. A nonlinear stabil-
ity analysis is needed to get a measure of how
large the unstable motions may be. Nonlinearities
occur, for instance, because of the hydrodynamic
loads on the craft. Further, the vessel’s speed and
thrust may vary as a consequence of porpoising.
Our analysis assumes linearity.

Let us first define a coordinate system (x, y, z)
that does not oscillate with the ship (see Fig-
ure 9.24). It is steady relative to the steady
forward motion of the ship. When the ship is in
the steady equilibrium position, the origin coin-
cides with COG. z is vertical and positive upward.
x is horizontal and positive in the aft direction of
the ship. The time-dependent motions are denoted
ηk, where η3 means the vertical motions (heave) of
COG and η5 is the pitch rotation in radians. Both
the trim angle τ and pitch angle are positive when
the bow goes up. The vertical distance between
COG and the keel is called vcg, and lcg is the
longitudinal center of gravity measured from the
transom stern. The vertical position zwl of COG
above the mean water surface when the ship is not
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Figure 9.24. Coordinate system (x, y, z) moving with
forward speed of a ship and fixed relative to mean oscilla-
tory position of the ship. Definitions of heave (η3), pitch
(η5), and positions lcg and vcg of the center of gravity
(COG) relative to the ship. zwl is the height of COG
above mean water surface with no heave.

oscillating will be needed later in the analysis. It
follows from Figure 9.24 that

zwl = vcg · cos τ − (LK − lcg) sin τ. (9.48)

Here LK is the wetted keel length.
The linear coupled equations of motion in heave

and pitch have the same structure as eq. (7.35) for
semi-displacement vessels. By setting the excita-
tion force in heave and pitch equal to zero it fol-
lows that

(M + A33)
d2η3

dt2
+ B33

dη3

dt
+ C33η3 + A35

d2η5

dt2

+ B35
dη5

dt
+ C35η5 = 0

(9.49)

A53
d2η3

dt2
+ B53

dη3

dt
+ C53η3 + (I55 + A55)

× d2η5

dt2
+ B55

dη5

dt
+ C55η5 = 0,

where M is the vessel mass and I55 is the vessel
moment of inertia in pitch with respect to the coor-
dinate system defined in Figure 9.24. The added
mass (Ajk), damping (Bjk), and restoring coef-
ficient (Cjk) are separately discussed below. An
important difference from the analysis of a semi-
displacement vessel is that the added mass and
damping coefficients for the planing vessel are
assumed to be frequency independent by using the
high-frequency free-surface condition. The damp-
ing is then the result of hull-lift effects. Further,
the restoring coefficients in the case of a semi-
displacement vessel were a consequence of the
change of buoyancy forces on the hull. An impor-
tant contribution for a planing vessel is the result
of changes in steady hydrodynamic lift force and

trim moment due to heave and pitch motions.
This means that the restoring coefficients increase
strongly with forward speed. The added mass coef-
ficients will have a smaller dependence on for-
ward speed. A consequence is that natural peri-
ods in heave and pitch will decrease with forward
speed. This was documented experimentally by
Katayama et al. (2000).

Our theoretical presentation of added mass
and damping will be highly simplified. Because
the final porpoising analysis shows that porpois-
ing is sensitive to the hydrodynamic coefficients,
a more accurate method should be developed.
One possibility is to include dynamic effects in
the 2.5D analysis described for steady flow in
section 9.2.1. A more engineering-type approach
would be to adopt the frequency-domain strip the-
ory by Salvesen et al. (1970). However, a strip
theory should be questioned for Froude numbers
larger than 0.4 to 0.5.

Restoring force and moment
We consider now a constant displacement in heave
and angular pitch rotation and evaluate the corre-
sponding steady vertical force and pitch moment.
Eqs. (9.4), (9.5), and (9.7) will be used even if
τ and the mean wetted length-to-beam ratio λW

may be larger than the prescribed domain of valid-
ity. This means τdeg is replaced by τdeg + η5180/π

in eq. (9.5). A requirement is that the instanta-
neous trim angle must be positive for eq. (9.5)
to be mathematically valid. Further, it is nec-
essary to know how λW changes with η3 and
η5. Troesch’s (1992) procedure (Figure 9.25) will
then be partly followed. We write first AB in
Figure 9.25 as

AB = vcg − zw� + η3

cos(τ + η5)
.

Figure 9.25. Instantaneous position of the center of
gravity (COG) and keel.
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Figure 9.26. Steady vertical force FC
3 and

steady pitch moment FC
5 about COG

as a function of given vertical displace-
ment η3 and pitch angle η5. λW = 3 for
η3 = 0 and η5 = 0. FnB = 4.35, τdeg =
6◦, β = 20◦, lcg/B = 2.13, vcg/B = 0.25,

M/ρB3 = 1.28.

This means BO in Figure 9.25 is

BO = AB
tan(τ + η5)

= vcg
tan(τ + η5)

− (zw� + η3)
sin(τ + η5)

.

This gives

LK = lcg + vcg
tan(τ + η5)

− (zwl + η3)
sin(τ + η5)

. (9.50)

Negative LK means simply that the boat is out of
the water, that is, LK = 0. By using eq. (9.10) with
τ replaced by τ + η5, we have

LC = LK − xs = LK − 0.5B tan β

(1 + zmax/Vt)(τ + η5)
.

(9.51)

If eq. (9.51) gives negative LC, LC is zero. The
instantaneous value of λW = 0.5 (LK + LC)/B
follows now from eqs. (9.50) and (9.51). The use of
the formula will be illustrated with an example in
which λW = 3 with no oscillatory motions, τdeg =
6◦, vcg/B = 0.25, lcg/B = 2.13, M/

(
ρB3

) = 1.28,
and FnB = 4.35. The resulting vertical force Fc

3

and pitch moment Fc
5 about COG are presented

in Figure 9.26 as a function of heave for differ-
ent values of pitch. We should note that the ver-
tical force is in balance with the weight when η3

and η5 are zero. However, there is a non-zero
pitch moment when η3 = η5 = 0. This means vis-
cous and propeller forces must contribute to pitch
moment equilibrium. However, we will neglect
time-varying viscous and propeller loads in the
analysis.

The linearized restoring coefficients in heave
and pitch are obtained by

Cjk = − ∂ Fc
j

∂ηk

∣∣∣∣
0

, j = 3, 5 and k = 3, 5, (9.52)

where 0 means the static equilibrium position,
that is, corresponding to η3 = η5 = 0. Cjk can be
obtained either analytically or by numerical dif-
ferentiation. The analytical derivation is shown
below.
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Using λW = 0.5 (LK + LC) /B and eqs. (9.50)
and (9.51) gives

∂λW

∂η5

∣∣∣∣
0

= −vcg/B

sin2
τ

+ zwl/B

sin2
τ

cos τ

(9.53)

+ 0.25 tan β

(1 + zmax/Vt)τ 2

∂λW

∂η3

∣∣∣∣
0

= − 1
sin τ

1
B

. (9.54)

Here τ must be evaluated in radians. An impor-
tant part of the static forces is CL0 (see eq. (9.5)).
Differentiating CL0 results in

∂CL0

∂η5

∣∣∣∣
0

= 1.1
(

180
π

)1.1

τ 0.1 [
0.012λ0.5

0

+ 0.0055λ2.5
0 /Fn2

B

]
(9.55)

+ τ 1.1
deg

[
0.006λ−0.5

0

+ 0.01375λ1.5
0 /Fn2

B

] ∂λW

∂η5

∣∣∣∣
0

∂CL0

∂η3

∣∣∣∣
0

= τ 1.1
deg

[
0.006λ−0.5

0

(9.56)
+ 0.01375λ1.5

0 /Fn2
B

] ∂λW

∂η3

∣∣∣∣
0

.

Here λ0 is the value of λW at the static equilibrium
position. Using the expression for vertical static
force given by eqs. (9.4) and (9.5) leads to

C33

0.5ρU2 B
= −B

∂CLβ

∂η3

∣∣∣∣
0

(9.57)

= −B
∂CL0

∂η3

∣∣∣∣
0

[
1 − 0.0039βC−0.4

L0

]

C35

0.5ρU2 B2
= −∂CLβ

∂η5

∣∣∣∣
0

(9.58)

= −∂CL0

∂η5

∣∣∣∣
0

[
1 − 0.0039βC−0.4

L0

]
.

The pitch moment about COG can be expressed
as

Fc
5

0.5ρU2 B3
=

(
�p

B
− �cg

B

)
CLβ, (9.59)

where �p is given by eq. (9.7). We can write

1
B

∂�p

∂λW

∣∣∣∣
0

=
[

0.75 − 15.63Fn2
B/λ2

0 + 2.39
(5.21Fn2

B/λ2
0 + 2.39)2

]
.

(9.60)

It follows that

C53

0.5ρU2 B2
= −

[
1
B

∂�p

∂λW
B

∂λW

∂η3
CLβ

(9.61)

+
(

�p

B
− �cg

B

)
B

∂CLβ

∂η3

]
0

C55

0.5ρU2 B3
= −

[
1
B

∂�p

∂λW

∂λW

∂η5
CLβ

(9.62)

+
(

�p

B
− �cg

B

)
∂CLβ

∂η5

]
0

.

The restoring coefficients for the case presented
in Figure 9.26 are then

C33

ρgB2
= 3.978

C35

ρgB3
= −11.734

C53

ρgB3
= 6.327

C55

ρgB4
= 7.227.

These restoring coefficients show strong coupling
between heave and pitch. This coupling effect is
important for the occurrence of porpoising. Ikeda
and Katayama (2000b) showed that porpoising did
not occur if the coupled restoring coefficients were
set equal to zero in their analysis of a personal
watercraft.

Added mass in heave and pitch
The added mass calculations will be based on a
high-frequency free-surface condition and strip
theory. The two-dimensional added mass coeffi-
cient in heave a33 for a wedge is then an essen-
tial part for a prismatic planing hull. An analyt-
ical solution of a33 has been presented by many
researchers. One version is (Faltinsen 2000)

a33 ≡ ρd2 K

= ρd2

tan β

[
π

sin β

�(1.5 − β/π)
�2(1 − β/π)�(0.5 + β/π)

− 1
]
.

(9.63)

Here d is the draft, which is equal to 0.5b tan β.

Here b is the beam of the wedge. Further, � is the
gamma function and K is by definition a33/ρd2.

Eq. (9.63) is graphically presented in Figure 9.27.
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Figure 9.27. Two-dimensional infinite-fre-
quency added mass in heave a33 for a
wedge with deadrise angle β. ρ = mass
density of fluid, b = beam.

An x ′-axis is introduced along the keel with
x ′ = 0 corresponding to the intersection between
the keel and the free surface. Positive x ′ is aft-
ward. The hull is divided into two parts. The first
part is from x ′ = 0 until the chine wetting starts
at x ′ = xs . The second part is where the chine is
wetted. The superscripts 1 and 2 will be used to
indicate the added mass contributions from the
two hull parts. From now on, the apostrophe in x ′

is neglected; that is, we write it as x. This must not
be confused with the x-axis shown in Figure 9.24.

A. Hull part until chine wetting starts at xs

We can argue as in the discussion before eq.
(9.10) and write the draft d from the spray root as

d =
(

1 + zmax

Vt

)
xτ, (9.64)

where zmax is defined in Figure 8.22. We should
recall the definition of added mass (see section
7.2.1) and start out with the contribution to heave-
added mass, that is,

A(1)
33 = ρK

(
1 + zmax

Vt

)2
τ 2

xs∫
0

x2 dx.

K is defined by eq. (9.63), and xS can be expressed
by eq. (9.10) as

xs = B
2

tan β

(1 + zmax/Vt)τ
. (9.65)

(1 + zmax/Vt) can be obtained from Table 8.3 for
any deadrise angle β. When β → 0, the value is
asymptotically equal to π/2, that is, the same as
Wagner’s theory. It follows now by integration that

A(1)
33

ρB3
= K

24
tan3 β

(1 + zmax/Vt)τ
. (9.66)

The contribution to coupled added mass in heave
and pitch is

A(1)
35 = A(1)

53 = −ρK

xs∫
0

d2(x − xG) dx,

where

xG = LK − lcg. (9.67)

LK is the keel wetted length, and lcg is the longi-
tudinal position of the center of gravity from the
transom stern measured along the keel. This gives

A(1)
35

ρB4
= A(1)

53

ρB4
= A(1)

33

ρB3

xG

B
− K

64
tan4 β

(1 + zmax/Vt)2τ 2
.

(9.68)
The contribution to added mass in pitch is

A(1)
55 = ρK

xs∫
0

d2(x − xG)2 dx.

This means

A(1)
55

ρB5
= K

160
tan5 β

(1 + zmax/Vt)3τ 3

(9.69)

− K
32

xG

B
tan4 β

(1 + zmax/Vt)2τ 2
+

( xG

B

)2 A(1)
33

ρB3
.

B. Hull part with chine wetting
The integration limits in the added mass expres-

sions are now from xs to LK. We find that

A(2)
33

ρB3
= C1

π

8
LC

B
, (9.70)

where

C1 = 2 tan2 β

π
K (9.71)
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and LC is the chine wetted length. Further,

A(2)
35

ρB4
= A(2)

53

ρB4
= −C1

π

16

[(
LK

B

)2

−
( xs

B

)2
]

(9.72)
+ xG

B
A(2)

33

ρB3

and

A(2)
55

ρB5
= C1π

24

((
LK

B

)3

−
( xs

B

)3
)

−C1π

8

( xG

B

) ((
LK

B

)2

−
( xs

B

)2
)

(9.73)

+
( xG

B

)2 A(2)
33

ρB3
.

Damping in heave and pitch
First, forced heave velocity is considered. We
could apply the analysis in section 7.2.7 that led
to hull-lift damping in heave. However, this was
based on a linearized high-frequency free-surface
condition. The nonlinear dynamic and kinematic
free-surface conditions matter for a planing ves-
sel, as was discussed in section 9.2. A quasi-steady
approach will instead be followed. Quasi-steady
means that the heave velocity causes a change
in the angle of attack and changes the steady lift
force. The steady analysis will be based on Savit-
sky’s (1964) empirical formula. However, parts of
the formula account for hydrostatic effects. We are
only interested in the lifting part of the force and
moment. This follows by letting FnB → ∞ in the
expressions for CL0 and l p given by eqs. (9.5) and
(9.7). The hydrodynamic lifting force coefficient is
therefore

CLβ = CL0 − 0.0065βdegC0.60
L0 ,

where

CL0 = τ 1.1
deg0.012λ0.5

W =
(

180
π

)1.1

τ 1.10.012λ0.5
W .

The index deg indicates if the angle should be
given in degrees. Otherwise, it is given in radians.
The argument is now like the one in section 7.2.8.
Because of the heave velocity, there is a change in
the angle of attack (trim)

α = −dη3

dt
/U.

This causes a vertical force

F3 = −ρ

2
U2 B2 ∂CLβ

∂τ

η̇3

U
, (9.74)

where

∂CLβ

∂τ
= ∂CL0

∂τ

[
1 − 0.0039βdegC−0.4

L0

]
(9.75)

and

∂CL0

∂τ
=

(
180
π

)1.1

0.0132τ 0.1λ0.5
W . (9.76)

When this force is moved to the left-hand side of
the equations of motions, we can identify a damp-
ing coefficient B33. This can be expressed as

B33

ρB3(g/B)1/2
= 0.5FnB

∂CLβ

∂τ
. (9.77)

The forced heave velocity also causes a pitch
moment F5 about COG, which can be found by
using eq. (9.7) with FnB → ∞. (Note that eq. (9.7)
gives the moment arm �p about the transom). The
result is

F5 = F3(0.75λW B − lcg), (9.78)

where F3 is the vertical force for FnB → ∞. When
this moment is moved to the left-hand side of the
equations of motion, we can identify a damping
coefficient B53. The result is

B53

B33 B
= 0.75λW − lcg/B. (9.79)

The damping coefficients and B35 and B55 are
found by studying forced pitch velocity dη5/dt
about COG and calculating corresponding verti-
cal force and pitch moment about COG that is
180◦ out of phase with dη5/dt. However, there is
no simple expression like Savitsky’s to rely on.
The analysis will instead be simplified as in sec-
tion 8.5.1. This means that B55 = Ux2

Ta33(xT) and
B35 = −UA33 − UxTa33(xT) (see eqs. (8.100) and
(8.98)).

Porpoising stability analysis
The stability analysis implies that nontrivial solu-
tions of eq. (9.49) are studied. Possible solutions
can be expressed as

ηj = ηjaest , j = 3 and 5. (9.80)

Here ηj is a complex function. This is convenient
in the solution of linear differential equations.
It is the real part of eq. (9.80) that has physical
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meaning. s in eq. (9.80) can be written as

s = α + iω, (9.81)

where α and ω are real and i is the complex unit.
It means that

η j = η jaeαt eiωt , j = 3 and 5, (9.82)

where η ja is a complex constant. In the stabil-
ity analysis, we are interested in whether the
solutions decay or increase with time. Because
exp(iωt) oscillates with time, stability or instability
is expressed by the term exp(αt). If the real part α

of s is negative, then the solution decays with time
and the solution is stable. If α is positive, then the
solution is unstable. There exists more than one
solution of s, so it must be ensured that the real
part of all possible s-values is negative for the sys-
tem to be stable. To find s, we introduce first eq.
(9.80) into eq. (9.49). This gives

[s2(M + A33) + sB33 + C33]η3a

+ [s2 A35 + sB35 + C35]η5a = 0
(9.83)

[s2 A53 + sB53 + C53]η3a + [s2(I55 + A55)

+ sB55 + C55]η5a = 0.

Because the right-hand side of this equation sys-
tem is zero and we are interested in nontrivial
solutions, the only possibility is that the coefficient
determinant is equal to zero. This means

[s2(M + A33) + sB33 + C33][s2(I55 + A55)

+sB55 + C55] (9.84)

−[s2 A53 + sB53 + C53][s2 A35 + sB35 + C35] = 0.

Eq. (9.84) can be rewritten as

A′s4 + B ′s3 + C ′s2 + D′s + E ′ = 0, (9.85)

where

A′ = (M + A33)(I55 + A55) − A53 A35

B ′ = (M + A33)B55 + B33(I55 + A55)

− A53 B35 − A35 B53

C ′ = (M + A33)C55 + B33 B55 (9.86)

+ C33(I55 + A55) − A53C35

− B53 B35 − C53 A35

D′ = B33C55 + C33 B55 − B53C35 − C53 B35

E ′ = C33C55 − C53C35

Analytical solutions of eq. (9.85) can be found
and the real parts of the solutions studied. There

exist four solutions of s. Because the coefficients
A′, B ′, C ′, D′, and E ′ are real, two of the solu-
tions are complex conjugates.

An alternative way to study the stability is to
use Routh-Hurwitz stability criterion (Dorf and
Bishop 1998). The requirement for a stable system
is

B ′

A′ > 0,
D′

A′ > 0,
E ′

A′ > 0,

(9.87)

B ′C ′ D′ − A′ D′2 − B′2 E ′

A′3 > 0.

A third way of studying the eigenvalue s requires
that the second-order differential equations (9.49)
are rewritten into a system of first-order differ-
ential equations. The heave velocity u3 = dη3/dt
and the angular pitch velocity u5 = dη5/dt are then
introduced as new variables. This gives the follow-
ing equation system:




dη3

dt
dη5

dt
du3

dt
du5

dt




= {K}




η3

η5

u3

u5




. (9.88)

It is left as an exercise (see section 9.7.5) to derive
the K-matrix. We now substitute in eq. (9.88), η3 =
η3aest , η5 = η5aest , u3 = u3aest , and u5 = u5aest and
get

(K − s I)




η3a

η5a

u3a

u5a




= 0. (9.89)

Here I is the identity matrix with non-zero ele-
ments equal to 1 only on the diagonal. Eq. (9.89)
shows that the problem of determining s is the
same as determining the eigenvalues s of the
matrix K. The advantage of following this proce-
dure is that standard computer subroutines may
be used. If the number of degrees of freedom is
increased – for instance, if coupled surge, heave,
and pitch are considered – this procedure is more
convenient than following the approach that led
to the characteristic equation (9.85).
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Figure 9.28. Porpoising stability of pris-
matic planing hull studied by the stability
parameter (B ′C ′ D′ − A′ D′2 − B ′2 E ′)/
A′3 (see eq. (9.87)) as a function of
beam Froude number and influence of
lcg. Negative stability parameter means
instability. Theoretical estimates.

Example: Porpoising stability
The theoretical framework will be illustrated by
examples. The base case is a prismatic hull form
with average wetted length-to-beam ratio λW =
4, deadrise angle βdeg = 20o, trim angle τdeg = 4o,

lcg/B = 2.13, vcg/B = 0.25, M/(ρB3) = 1.28,

pitch radius of gyration = 1.3 B. Hydrodynamic
coefficients are theoretically calculated as previ-
ously described. The following parameter study is
meant only to illustrate trends, and one must be
careful in making quantitative conclusions.

The stability analysis is based on eq. (9.87).
B′/A′, D′/A′, and E′/A′ are always positive in
the studied case. So it is the last condition in
eq. (9.87) that decides if the planing vessel is stable
or not in heave and pitch. Therefore, the following
figures present graphs of the stability parameter
(B ′C ′ D′ − A′ D′2 − B′2 E ′)/A′3.

Table 9.1. Added mass (Ajk) and damping (Bjk) in heave and pitch for a
prismatic planing hull with β = 20◦, λw = 4, lcg/B = 2.13, τdeg = 4◦, and
FnB = 5.0.

Simplified Empirical formula
theory (Troesch, unpublished)

A33/(ρB3) 1.28 1.28
A35/(ρB4) −0.31 −0.04
A53/(ρB4) −0.31 −1.63
A55/(ρB5) 1.66 1.48
B33/[ρB3(g/B)0.5] 3.53 4.15
B35/[ρB4(g/B)0.5] −10.09 −8.90
B53/[ρB4(g/B)0.5] 3.07 4.21
B55/[ρB5(g/B)0.5] 7.84 10.70

Figure 9.28 shows the stability parameter as a
function of the beam Froude number for three
different lcg/B ratios. It has not been accounted
for that the parameters depend on each other.
For instance, changing lcg influences τ and λW

(see section 9.2). It confirms the common expe-
rience that porpoising can be avoided by reducing
the speed and/or moving the COG forward in the
ship.

In order to demonstrate how sensitive the stabil-
ity parameter is to the hydrodynamic coefficients,
extrapolated added mass and damping coefficients
from Troesch’s (1992) experiments will be used.
Our base case, in which β = 20o, λW= 4, lcg/B =
2.13, and τdeg = 4o, is studied. Table 9.1 shows the
predicted values of added mass and damping for
our base case with FnB = 5.0. The big differences
are for A35 and A53, but A35 is small.
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Figure 9.29. Porpoising stability of a pris-
matic planing hull studied by the stabil-
ity parameter (B ′C ′ D′ − A′ D′2 − B ′2 E ′)/
A′3 (see eq. (9.87)) as a function of
beam Froude number. Influence of chang-
ing added mass and damping coefficients
according to the empirical formula by
Troesch (unpublished). Negative stability
parameter means instability.

Figure 9.29 presents the stability results by using
our theory for added mass and damping as well
as an unpublished empirical formula for added
mass and damping by Troesch. The same restor-
ing coefficients are used in both cases. The fig-
ure shows that using only theory gives porpois-
ing when U/(gB)0.5 > 5.9. When Troesch’s empir-
ical formulas are used, porpoising occurs when
U/(gB)0.5 > 4.8. Actually, Troesch and Falzarano
(1993) used a B55-value that was less than 5%
higher than that of the empirical formula by
Troesch. The other hydrodynamic coefficients
were the same. That gave the U/(gB)1/2 = 5.0 to
be a marginally stable case. This illustrates the sen-
sitivity to the hydrodynamic coefficients. One rea-
son is that the different components of the stability
parameter counteract each other and have abso-
lute values that are an order of ten times larger
than the stability parameter. The first component,
B ′C ′ D′/A′3, has a sign opposite to the two other
components, −A′ D′2/A′3 and −B′2 E′/A′3. A con-
sequence is that relatively small differences in each
component will have a large influence on the sta-
bility parameter.

9.5 Wave-induced motions and loads

Seakeeping operability criteria for fast small craft
are listed in Tables 1.1 and 1.2. These criteria are
related to accelerations, roll, slamming, and deck
wetness. Our focus is on vertical vessel motions,
which also include vertical accelerations as a part
of the analysis.

Fridsma (1969, 1971) presented systematic
experimental studies of motions and accelera-
tions of planing monohulls in head waves. The

dependence on parameters such as forward speed,
deadrise angle, longitudinal position of the cen-
ter of gravity, and trim angles was investigated.
The results were analyzed and presented as design
“charts” for designers.

A planing craft in waves may show strong non-
linear behavior. Reasons are the strong variations
in the wetted area and a nonvertical hull surface
at the intersection between the body surface and
the water surface, which result in an increase of
the trim and the rise of the vessel due to the wave-
induced motions of the vessel. This was also exper-
imentally confirmed by Katayama et al. (2000).
The length Froude number was varied between 2
and 5 in their study. The nonlinear effects have,
generally speaking, a larger influence on acceler-
ations than on motions.

Both regular and irregular jumping of a plan-
ing vessel may occur in a seaway. Katayama et al.
(2000) investigated this systematically by means
of model tests in incident regular waves. As the
Froude number increases, the limiting wave height
for jumping to occur decreases.

A scenario as in Figure 9.30 may lead to jumping
in which the speed is high enough for the vessel to
jump into the air and subsequently fall down and
impact on the water. The resulting slamming loads
may cause important structural effects and leads
to large vertical accelerations of the vessel, which
may affect equipment onboard.

Figure 9.31 shows computer simulations by Lin
et al. (1995) of vertical accelerations at the cen-
ter of gravity of a 57-foot (17.4-m) high-speed
patrol boat in head sea and sea state 5 (see
Table 3.5). The ship speed is 40 knots; that is, the
length Froude number is 1.58. The vessel position
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Figure 9.30. Model testing of planing vessel in waves at
MARINTEK.

relative to waves is also illustrated for selected
time instants.

The boat is out of the water at time 13.13 s. The
ship therefore has a downward acceleration equal
to the acceleration of gravity, g.

The ship reenters the water at time 13.33 s. A
large wave then approaches, and the acceleration
rises from –g to +1.3g in 0.2 s. This is followed by
a very large upward acceleration close to 6g.

At the time step t = 14.86 s, the vessel is once
more in the air and has a downward acceleration
equal to g.

9.5.1 Wave excitation loads in heave and
pitch in head sea

The following analysis assumes no jumping.
Including jumping would imply that global slam-
ming loads as discussed in Chapter 8 must be incor-
porated. We start with studying the wave exci-
tation loads in heave and pitch in head sea. An
important aspect is the strong interaction between
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Figure 9.31. Computer simulations of ver-
tical accelerations in sea state 5 for a 57-foot
patrol boat measured in terms of accelera-
tion of gravity, g. The length Froude num-
ber is 1.58 (Lin et al. 1995).

the steady and unsteady flows. This is of a sim-
ilar nature to that discussed in section 9.4.1 for
restoring forces and moments due to heave and
pitch.

Generalized Froude-Kriloff loads
When studying wave-induced motions, we have to
introduce wave excitation loads on the right-hand
side of eq. (9.49). The left-hand side is unchanged.
We will limit ourselves to head sea regular waves
and assume that the wave steepness is small so
that linear wave theory can describe the inci-
dent waves. Further, the incident wavelength λ

is assumed long relative to the ship length. This
simplifies the analysis. The incident instantaneous
wave elevation is written as

ζ = ζa sin(ωet − kx). (9.90)

Here ωe = ω0 + kU is the frequency of encounter,
ω0 is the frequency of the wave in an Earth-fixed
coordinate system, and k = 2π/λ = ω2

0/g is the
wave number. Because k is assumed small (or λ

long), we can write along the ship

ζ = ζa sin ωet cos kx − ζa cos ωet sin kx.

(9.91)≈ ζa sin ωet − xkζa cos ωet

We have expanded cos kx and sin kx in a series in
kx and neglected terms of order k2. The first term,
ζa sin ωet , represents a spatial uniform vertical
motion along the ship, that is, similar to the heave
motion. The difference is that the water moves and
not the ship. So if the water goes up, it corresponds
to negative heave. The last term, −xkζa cos ωet ,
can be compared with the vertical motion due
to pitch; that is, kζa cos ωet is like a pitch angle.
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Actually, −kζa cos ωet is the incident wave slope
at x = 0. This similarity with heave and pitch will
be used when the wave excitation loads are for-
mulated. However, let us first recall Figure 3.5.
This figure expresses the fact that the total pres-
sure in the vicinity of the free surface has hydro-
static depth dependence relative to the instanta-
neous free surface with atmospheric pressure at
the free surface. Normally when we talk about the
hydrostatic pressure −ρgz, z = 0 corresponds to
the mean free surface. How far down in the fluid
this hydrostatic depth dependence has relevance
depends on the wavelength. This can be seen by
noting that the pressure below the mean free sur-
face is composed of one part that is exponentially
decaying like ρgζa exp(kz) for deep-water waves
and another part that is −ρgz (the normal hydro-
static pressure). Here z = 0 means mean free sur-
face; see Figure 3.5. The larger the wavelength λ =
2π/k is, the slower exp(kz) decays with depth and
the more appropriate it is to approximate exp(kz)
with 1. This implies that the pressure in incident
long waves at the ship hull has a hydrostatic depth
dependence relative to the instantaneous wave
elevation.

We have now a sufficient basis to formu-
late what we call the generalized Froude-Kriloff
wave excitation loads on the ship. Froude-Kriloff
loads originally meant that the presence of the
ship does not influence the pressure distribu-
tion. Generalized Froude-Kriloff loads will now
mean that we consider quasi-steady hydrodynamic
loads on the ship; that is, we consider all pres-
sure terms in the steady Bernoulli equation for
different instantaneous positions of the incident
waves. We apply, then, Savitsky’s formulas for the
steady vertical force and pitch moment by mak-
ing the similarity between the vertical incident
wave motion along the ship and the steady heave
and pitch motions. The word steady for motions
is stressed because the velocities and accelera-
tions due to the incident waves are not accounted
for. We will come back to that later, when the
diffraction potential is introduced. This implies
that the generalized Froude-Kriloff wave exci-
tation loads can be formulated like the restor-
ing force and moment (see section 9.4.1). We
can write the vertical generalized Froude-Kriloff
force as

F F K
3 = C33ζa sin ωet + C35kζa cos ωet. (9.92)

The generalized Froude-Kriloff pitch moment
becomes

F FK
5 = C53ζa sin ωet + C55kζa cos ωet. (9.93)

Similar terms are used by Troesch and Falzarano
(1993) in their study of wave-induced motions of
planing boats in long incident deep-water waves.
We should once more note that Cjk accounts
not only for the hydrostatic pressure term, but
all pressure terms given by the steady Bernoulli
equation.

We should recall that we have assumed long
wavelengths relative to the ship length. Let us try
to quantify what this means. This is done by a strip
theory approach by assuming that the phasing of
the vertical loads F2D

3 per unit length along the
ship can be expressed as eq. (9.90). This means
that F2D

3

F2D
3 = A(sin ωet cos kx − cos ωet sin kx), (9.94)

where A is a constant depending on the cross-
sectional form. Let us assume constant cross-
sectional form along the ship and that x = 0 corre-
sponds to the midship. L is the length of the ship.
By integrating the following vertical force F3 and
pitch moment F5 on the ship, this gives

F3 = 2A
k

sin
(

kL
2

)
sin ωet (9.95)

F5 = A
[
− L

k
cos

(
kL
2

)
+ 2

k2
sin

(
kL
2

)]
cos ωet.

(9.96)

If the load phasing is approximated as in eq. (9.91),
we get the following approximation:

F LW
3 = ALsin ωet (9.97)

F LW
5 = A

kL3

12
cos ωet. (9.98)

The superscript LW means long-wavelength
approximation. We have plotted both F3/FWL

3 and
F5/FWL

5 as a function of λ/L in Figure 9.32. For
instance, if we want to make less than a 10%
error in using the phase approximation given by
eq. (9.91), then λ/L must be larger than 4. For
this wavelength to be sufficiently small to eval-
uate resonant heave and pitch motions depends
on the natural frequencies ωn and the Froude
number. This can be examined by eq. (7.46) by
replacing ωn3 with ωn. We should recall that there
are two natural frequencies for coupled heave
and pitch motions. Their values follow from the
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Figure 9.32. Ratio between “exact” heave
force and pitch moment and long-wave-
length approximation of heave force and
pitch moment as a function of wavelength
(λ)-to–ship length (L) ratio. Head sea, con-
stant cross section, and strip theory are
assumed.

analysis in section 9.4 (see eqs. (9.80) and (9.81))
and depend on ship length as well as beam, trim
angle, deadrise angle, lcg, and Froude number.
Troesch and Falzarano (1993) presented predicted
highest natural frequency for different conditions
of a prismatic planing hull. The values varied from
ωn(L/g)0.5 = 2.96 to 6.24.

We have chosen three cases of nondimensional
frequencies and present in Figure 9.33 the rela-
tionship between λ/L and length Froude number
Fn = U/(Lg)0.5 that gives resonance. We note that
the higher ωn(L/g)0.5 is, the lower λ/Lis for a given
Fn. In the first case, ωn(L/g)0.5 = 3.53, which cor-
responds to Fn = 2.51 in Troesch and Falzarano’s
calculations. By comparing Figure 9.33 with Fig-
ure 9.32, we note that the phase approximation
given by eq. (9.91) can be used to describe the
wave excitation loads at the natural frequency.
The second case is ωn (L/g)0.5 = 4.48, which

Figure 9.33. Relationship between wave-
length-to–ship length ratio, λ/L, and
length Froude number, U/(Lg)0.5, for dif-
ferent nondimensionalized natural fre-
quencies, ωn(L/g)0.5, of heave and pitch in
head sea.

corresponds with Fn = 1.72. This gives, according
to Figure 9.33, λ/L = 3.45, which by Figure 9.32
means that the phase approximation causes a rel-
ative error of 13% in the heave approximation
force and 8% in the pitch excitation load. The
third case is ωn(L/g)0.5 = 6.24, which corresponds
with Fn = 2.5. According to Figure 9.33, this gives
λ/L = 3.24, which by Figure 9.32 means that the
phase approximation causes a relative error of
14% in the heave excitation force and 9% in the
pitch excitation moment.

Diffraction loads
Using what we called the generalized Froude-
Kriloff approximation implies that the effects of
the incident wave velocities and accelerations
on the ship have not been considered. The first
step in accounting for this is to find a velocity
potential ϕ7 that, together with the incident wave
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velocity potential, causes zero flow through the
body boundary. The ship is restrained from oscil-
lating. This will be done by strip theory using
a long-wavelength approximation and letting ϕ7

satisfy the high-frequency free-surface condition
ϕ7 = 0, similar to what we did for the added mass
and damping problem. Strip theory implies that ϕ7

satisfies a 2D Laplace equation in a cross-sectional
plane of the ship. We can formally write the body
boundary condition as

∂ϕ7

∂n
= −wn3, (9.99)

where ∂/∂n means the normal derivative in a cross-
sectional plane of the ship. The positive normal
direction is into the fluid. Further, n3 is the z-
component of the normal vector and w is the ver-
tical fluid velocity of the incident waves. By a long-
wavelength approximation, this can be written
as

w = ω0ζaekz cos(ωet − kx)

= ω0ζaekz [cos ωet cos kx + sin ωet sin kx]

(9.100)≈ ω0ζa cos ωet + ω0ζakx sin ωet

= V3 − xV5

where

V3 = ω0ζa cos ωet (9.101)

V5 = −ω0kζa sin ωet. (9.102)

Here V3 corresponds to the vertical velocity of the
incident free surface at x = 0 and V5 is the angu-
lar velocity of the incident wave slope at x = 0.

We can make analogies between V3 and heave
velocity and between V5 and pitch velocity. The
boundary-value problem resembles, therefore, the
forced heave and pitch problem, but there is no
angle of attack term Uη5. The solution at a ship
cross section can then formally be written as

ϕ7 = −(V3 − xV5)ϕ3, (9.103)

where ϕ3 is the strip theory velocity potential
due to forced heave with unit heave velocity. It
is the same ϕ3 as the one used in section 7.2.7.
The pressure is now similar to that in eq. (7.67),
that is,

p = −ρ
∂ϕ7

∂t
− ρU

∂ϕ7

∂x
(9.104)

= ρϕ3
∂

∂t
(V3 − xV5) + ρU

∂

∂x
[(V3 − xV5)ϕ3] .

We leave it as an exercise to show that the result-
ing vertical force F D

3 and pitch moment F D
5 can be

expressed as

F D
3 = A33

∂V3

∂t
+ A35

∂V5

∂t
+ Ua33(xT)V3

(9.105)
−UxTa33(xT)V5

F D
5 = A53

∂V3

∂t
+ A55

∂V5

∂t
+ [−UxTa33(xT)

+ UA33] V3 + [
Ux2

Ta33(xT) + UA35
]

V5.

(9.106)

Let us compare the phasing of these force and
moment terms with corresponding generalized
Froude-Kriloff terms in eqs. (9.92) and (9.93).
Because ∂V3/∂t is 180o out of phase with the inci-
dent wave elevation at x = 0 and ∂V5/∂t is 180o

out of phase with kζa cos ωet, it means that each
Ajk∂Vk/∂t-term in eqs. (9.105) and (9.106) is 180o

out of phase with corresponding Cjk-terms in eqs.
(9.92) and (9.93) and causes a reduction in the
wave excitation.

The terms associated with the Vk-terms in F D
3

and F D
5 can formally be denoted BD

jk. Each BD
jkVk-

term in eqs. (9.105) and (9.106) is 90◦ out of phase
with corresponding Ajk∂Vk/∂t terms in eqs. (9.105)
and (9.106). It means they cause an increase in the
wave excitation and change the phasing.

Summary
We have shown that the linear vertical wave exci-
tation force F3 and wave excitation pitch moment
F5 about COG (x = 0) in regular head sea waves
described with free-surface elevation

ζ = ζa sin(ωet − kx) (9.107)

can, by a long-wavelength approximation, be
expressed as

F3 = F3sζa sin ωet + F3cζa cos ωet (9.108)

F5 = F5sζa sin ωet + F5cζa cos ωet. (9.109)

Here Fjc and Fjs are expressed by the added mass
(Ajk), damping (Bjk), and restoring coefficients
(Cjk) as

F3s = C33 − A33ω0ωe − BD
35ω0k (9.110)

F3c = C35k − A35ω0ωek + BD
33ω0 (9.111)

F5s = C53 − A53ω0ωe − BD
55ω0k (9.112)

F5c = C55k − A55ω0ωek + BD
53ω0, (9.113)
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where BD
33 = B33 and BD

53 = B53 according to linear
theory. Further,

BD
35 = B35 + UA33 (9.114)

BD
55 = B55 + UA35. (9.115)

Further,

ωe = ω0 + kU, k = ω2
0/g. (9.116)

9.5.2 Frequency-domain solution of heave
and pitch in head sea

We will first assume linear theory and a steady-
state solution (frequency-domain solution) and
consider a prismatic planing hull in regular head
sea waves. Because the cross-sectional shape is
wedge-formed and the local draft is small in
the bow region, small wave-induced motions can
make large changes in the instantaneous water-
plane area and submerged volume. This implies
that linear theory may have limited value in prac-
tice. Assuming a steady-state solution implies that
all transient effects have died out. This means that
the real parts α of the eigenvalues s (see eqs. (9.81)
and (9.82)) are negative. Another way of saying
this is that a linear steady-state solution does not
exist when porpoising instability occurs.

The left-hand sides of the equations of coupled
heave and pitch motions are the same as those in
eq. (9.49). The right-hand sides of the first and sec-
ond equation are, respectively, F3 and F5 given by
eqs. (9.108) and (9.109). When solving the equa-
tions, it is convenient to use complex notation,
which means we write

Fj = ζa(Fjc − iF js)eiωe t, j = 3, 5, (9.117)

where Fjc and Fjs are given by eqs. (9.110) through
(9.113). When operating with a complex quantity
as eq. (9.117), it is always understood that it is the
real part that has physical meaning. We see that
the real part of eq. (9.117) is

Re
[
ζa(Fjc − iFjs)eiωe t

]
= Re [ζa(Fjc − iFjs) (cos ωet + i sin ωet)]

= Fjcζa cos ωet + Fjsζa sin ωet

We write the motions as

ηj = (ηRj + iηI j )eiωe t, j = 3, 5. (9.118)

Inserting this into the equations of motions and
dividing by the common factor exp(iωet) on the

left- and right-hand sides of the equations, give
the following two complex equations:[−ω2

e (M + A33) + iωe B33 + C33
]

[ηR3 + iηI3]

+ [−ω2
e A35 + iωe B35 + C35

]
× [ηR5 + iηI5] = ζa(F3c − iF3s)

(9.119)[−ω2
e A53 + iωe B53 + C53

]
[ηR3 + iηI3]

+ [−ω2
e (I55 + A55) + iωe B55 + C55

]
× [ηR5 + iηI5] = ζa(F5c − iF5s)

We can solve these linear algebraic equations for
the unknowns, directly with complex unknowns
or by dividing each equation into a real and imag-
inary part. The latter eq. (9.119) gives four equa-
tions with four unkowns, ηR3, ηI3, ηR5, and ηI5,

which can be solved by standard computer sub-
routines. The transfer functions in heave and pitch
are given as, respectively,

|η j |
ζa

= (η2
Rj + η2

I j )
1/2

ζa
, j = 3, 5. (9.120)

The phases ε j for heave and pitch relative to
the wave elevation at x = 0, that is, COG, can
be obtained as described in section 7.2. Results
based on a frequency-domain solution are pre-
sented later in the chapter.

9.5.3 Time-domain solution of heave and
pitch in head sea

We remarked in the beginning of this chapter
that nonlinearities may matter because of large
wave-induced motions. Also, if porpoising insta-
bilities occur, nonlinearities will cause bounded
solutions. A linear stability analysis will give an
unbounded unstable solution as time goes on.
The latter is a result of the exponential growth
in the exp(αt)-term of eq. (9.82) when the real
part α of the eigenvalue s is positive. Accounting
for nonlinearities implies that we must solve the
equations of motions in the time domain. There
also exist nonlinear frequency-domain solutions,
for example, the common procedures in analyzing
second-order wave-induced motions of offshore
structures (Faltinsen 1990). However, a frequency-
domain solution assumes a steady-state solution
and cannot handle unstable solutions. Further,
nonlinear frequency-domain solutions are conve-
nient when we can use a perturbation analysis
with the wave amplitude as a small parameter to
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find higher-order hydrodynamic loads. This will,
in practice, require that the hull surface is ver-
tical at the free surface. The latter is not true
for planing hulls. So we proceed with a nonlinear
time-domain solution. Dealing with all nonlinear
hydrodynamic forces and moments is beyond the
present state of the art. So we must simplify and
try to include what are the most important non-
linearities. According to Troesch and Falzarano
(1993), the most important nonlinearities are the
result of the restoring forces and moments and
not added mass and damping. However, because
we explained the generalized Froude-Kriloff exci-
tation forces and moments as restoring forces and
moments (see eqs. (9.92) and (9.93)), we will also
include that load part in the nonlinear analysis.
The approximate nonlinear equations for the cou-
pled heave and pitch motions in the time domain
are expressed as

(M + A33)
d2η3

dt2
+ A35

d2η5

dt2
= F3 (9.121)

A53
d2η3

dt2
+ (I55 + A55)

d2η5

dt2
= F5, (9.122)

where

F3 = Fc
3 − Fc

03 + (F3s − C33)ζa sin ωet

+ (F3c − C35k)ζa cos ωet (9.123)

− B33
dη3

dt
− B35

dη5

dt

F5 = Fc
5 − Fc

05 + (F5s − C53)ζa sin ωet

+ (F5c − C55k)ζa cos ωet. (9.124)

− B53
dη3

dt
− B55

dη5

dt

Here Fc
03 and Fc

05 mean the values of Fc
3 and Fc

5

for zero η3, η5, and ζa . Fc
3 is the vertical steady

force as calculated by eq. (9.4) and accounting for
the change in trim due to pitch and wave slope
and submergence due to heave, pitch, and wave
elevation. The latter is found by calculating keel
wetted length LK and chine wetted length LC as in
eqs. (9.50) and (9.51). We must, of course, require
positive LK. Negative predicted LK means the ship
is out of the water. In reality, this occurs at high
speed. If this should be included in our analysis,
it requires that slamming loads also be considered
when the vessel subsequently impacts on the water
surface.

We now replace η3 by η3 − ζa sin ωet and η5 by
η5 − kζa cos ωet (see eq. (9.91) and follow the dis-
cussion in which the analogy between the incident
wave elevation at x = 0 and heave and between the
incident wave slope at x = 0 and pitch was made).
Savitsky’s formula sets the requirement that the
trim angle be positive. This means in the quasi-
steady analysis, that

τ + η5 − kζa cos ωet ≥ 0

where τ is the steady trim angle in radians. This
represents a practical limitation for steepnesses
or wave heights for the present nonlinear theory.
This limitation is dependent on the wavelength.
For instance, when the wavelength is larger than
the wavelength with large and resonant motions,
η5 tends to be in phase with the incident wave
slope at x = 0. This means that it is easier to meet
the requirement for long wavelengths for a given
wave amplitude than for smaller wavelengths rel-
ative to the resonant condition. In the latter
case, one should also note that kζa increases with
decreasing wavelength, λ. Fc

5 is the steady pitch
moment about x = 0 found by Fc

3 and the moment
arm given by eq. (9.7). (Note that �p is the moment
arm about the transom, so we have to subtract
lcg from �p to get the moment arm about x = 0).
Heave, pitch, and wave elevation are accounted
for in a similar way as for Fc

3 . Linear analysis then
gives

Fc
3 − Fc

03 = −C33η3 − C35η5 + C33ζa sin ωet

+ C35kζa cos ωet

Fc
5 − Fc

05 = −C53η3 − C55η5 + C53ζa sin ωet

+ C55kζa cos ωet.

Further, Fjs and Fjc in eqs. (9.123) and (9.124)
define the wave excitation loads as given by eqs.
(9.110) through (9.113). We have subtracted the
Cjk (linear generalized Froude-Kriloff) part of Fjs

and Fjc because that is accounted for in a nonlinear
way in Fc

j . Why we have moved the linear damp-
ing terms to the right-hand sides of eqs. (9.121)
and (9.122) becomes evident when we solve the
equations.

When numerically time integrating eqs. (9.121)
and (9.122), it is convenient to rewrite the equa-
tions into a set of first-order differential equa-
tions. We then define, as in section 9.4, dη3/dt = u3

and dη5/dt = u5 and introduce u3 and u5 in eqs.
(9.121) and (9.122). We then reformulate these two
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Table 9.2. Calculated real (α) and imaginary (ω)
terms of eigenvalues s for coupled linear heave
and pitch of prismatic planing hull with β = 20◦,
λW = 4, lcg/B = 2.13, τdeg = 4◦, and
U/

√
gB = 3.0

Eigenvalue no. α
√

B
g ω

√
B
g

1 −0.12 +1.91
2 −0.12 −1.91
3 −0.86 +0.67
4 −0.86 −0.67

equations into explicit expressions for du3/dt and
du5/dt. This gives, then, the following four first-
order differential equations:

dη3

dt
= u3

dη5

dt
= u5

(9.125)
du3

dt
= [F3(I55 + A55) − F5 A35]/D

du5

dt
= [(M + A33)F5 − A53 F3]/D,

where

D = (M + A33)(I55 + A55) − A53 A35.

Eq. (9.125) is now in a convenient form for stan-
dard procedures for numerical time integration,
but initial conditions have to be given. In our anal-
ysis, we have used a Runge-Kutta method of fourth
order.

9.5.4 Example: Heave and pitch in regular head sea

A prismatic planing hull in regular head sea waves
is considered, and the linear transfer functions

Figure 9.34. Transfer function for wave
excited heave (η3) in regular head sea
waves with incident wave amplitude ζa .

λ = wavelength, L = average wetted
ship length, B = beam, prismatic planing
hull with L/B = 4.0, τdeg = 4◦, β = 20◦,
lcg/B = 2.13, and U/

√
gB = 3.0.

of heave and pitch are calculated. The average
wetted length-to-beam ratio λW = 4.0, the trim
angle τdeg = 4◦, the deadrise angle βdeg = 20◦, the
beam Froude number U/(gB)0.5 = 3.0, lcg/B =
2.13, vcg/B = 0.25, the ship mass M = 1.28ρB3,
and the pitch radius of gyration r55 with respect to
COG is 1.3B. The theoretical procedure to find
transfer functions is described in section 9.5.2.
Three different methods are used to predict added
mass, damping, and wave excitation loads.

Transfer functions (or steady-state solutions)
have no physical meaning if the system is dynami-
cally unstable, that is, porpoising occurs. However,
Figure 9.29 shows that the coupled heave and pitch
motions will be stable when U/(gB)0.5 = 3.0. This
is true both for our theoretical method and for
Troesch’s empirical method. The stability is deter-
mined by the eigenvalues s (see eq. (9.81)). The
four eigenvalues s calculated by our theory gives
nondimensionalized real (α) and imaginary (ω)
parts, as presented in Table 9.2. We can combine
the eigenvalues into two sets, in which the eigen-
values are complex conjugates for each set. When
studying the system response, it is sufficient to
consider positive imaginary parts. Because all real
parts are negative, Table 9.2 confirms that porpois-
ing instability does not occur. If the ratio between
the real and imaginary parts is small, strong ampli-
fication of the transfer function occurs when the
system is excited with a frequency ωe equal to ω.
The ratio between the absolute values of α and
ω can then be approximated as the ratio between
damping and critical damping of the eigenmode.

The transfer functions in heave and pitch are
presented in Figures 9.34 and 9.35. The peak in
the transfer functions predicted by our theory



P1: IBE
0521845688c09 CB921-Faltinsen 0 521 84568 7 November 5, 2005 16:47

9.5 Wave-induced motions and loads • 381

Figure 9.35. Transfer function for wave
excited pitch (η5) in regular head sea waves
with incident wave amplitude ζa . λ =wave-
length, k = wave number, L = average
wetted ship length, B = beam. Prismatic
planing hull withL/B = 4.0, τdeg = 4◦, β =
20◦, lcg/B = 2.13, and U/

√
gB = 3.0.

corresponds to ωe(B/g)0.5 = 1.91, that is, the
absolute value of the imaginary part of the first
two eigenvalues presented in Table 9.2. Because
|α| /ω is only 0.06 in this case, it supports the strong
amplification of the response at this natural fre-
quency. The two other eigenvalues in Table 9.2
have nondimensionalized absolute values of the
imaginary part ω(B/g)0.5 equal to 0.67. An inci-
dent wavelength λ = 1.4L will give a frequency
of encounter corresponding to this ω. The corre-
sponding response is not presented in Figures 9.34
and 9.35. However, because these eigenmodes are
highly damped, that is, α/ω is large, we will not
observe the response as a peak in the transfer
function.

As expected, Figure 9.34 shows that heave
amplitude approaches incident wave amplitude
for large λ/L-values, but the pitch amplitude pre-
sented in Figure 9.35 is not close to the incident
wave slope for the largest presented λ/L value.

Figures 9.34 and 9.35 show a clear influence
of using the complete expressions of the wave
excitation loads relative to a generalized Froude-
Kriloff approximation. However, we should recall
that the wave excitation loads are based on a
long-wavelength approximation and that we ear-
lier used Figure 9.32 to assess the error in doing so.
For instance, when λ/L = 4, this error is less than
10%. Using Troesch’s empirical added mass and
damping coefficients shows a clear influence on
the results around the peaks of the transfer func-
tions. Anyway, the results around the peaks of the
transfer functions will have limited practical appli-
cability. For realistic incident wave amplitudes, the
wave-induced motions will be so large that nonlin-
earities matter. We can, for instance, easily see that

if we examine the restoring forces and moments as
a function of heave and pitch, that is, similar to Fig-
ure 9.26. Troesch and Falzarano (1993) included
the nonlinearities due to the restoring forces
and moments but kept linear added mass, damp-
ing, and wave excitation loads. Using linearized
added mass and damping terms was partly exper-
imentally justified. Because the exact nonlinear
restoring forces and moments were used, a time-
domain formulation had to be used. Troesch and
Falzarano (1993) demonstrated in their test cases
that increasing wave amplitude caused a reduction
in |η3| /ζa and |η5| /ζa when strong amplification
of the response occured for small incident wave
amplitudes.

We will demonstrate this by using the nonlinear
time-domain method described in section 9.5.3.
This differs from the nonlinear method by Troesch
and Falzarano (1993) in that nonlinear general-
ized Froude-Kriloff forces are also included. Fur-
ther, we will use the hydrodynamic coefficients and
wave excitation formulations consistent with our
theory. We use the same planing hull conditions
as those used in Figures 9.34 and 9.35. The time-
domain solutions will contain transient effects ini-
tially. These are disregarded and the steady-state
solution is studied. We concentrate on the mean
values and the part oscillating with frequency ωe.

In addition, there will be higher harmonics. This
means we study

η3 ≈ η0
3 + η1

3 sin(ωet + ε3) (9.126)

and

η5 ≈ η0
5 + η1

5 sin(ωet + ε5). (9.127)
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Figure 9.36. Influence of nonlinearities
on wave excited heave of a prismatic
planing hull in regular head sea waves
with wavelength λ and wave amplitude
ζa . Steady-state conditions. η0

3 is the mean
heave and η1

3 is the amplitude of the
heave component oscillating with the fre-
quency of encounter. L = average wetted
ship length, B = beam, L/B = 4.0, τdeg =
4◦, β = 20◦, lcg/B = 2.13, and U/

√
gB =

3.0.

Here η0
j and η1

j , j = 3, 5 are, respectively, the con-
stant offsets and amplitudes of harmonically vary-
ing motions with frequency ωe. The results for
η0

j and η1
j are presented in Figures 9.36 and 9.37

for two incident wave amplitudes: ζa/B = 0.025
and 0.05.

The transfer functions predicted by the linear
theory are also presented. These were evaluated
from both the frequency- and time-domain solu-
tions. We note a clear influence of the nonlineari-
ties around resonance. It is worth noting the large
steady offset values caused by the dynamic effect,
so the ship is, on average, lifted up at COG and
has, on average, an increase in the trim angle. The
amplitudes of both the heave and pitch motions
oscillating with ωe decrease with increasing wave
amplitudes. Figures 9.36 and 9.37 clearly illustrate
the importance of nonlinearities in describing the
wave-induced motions of planing hulls. The effect

Figure 9.37. Influence of nonlinearities on
wave excited pitch of a prismatic plan-
ing hull in regular head sea waves with
wavelength λ and wave amplitude ζa .

Steady-state conditions. η0
5 is the mean

pitch and η1
5 is the amplitude of the

pitch component oscillating with the fre-
quency of encounter. L = average wetted
ship length, B = beam, L/B = 4.0, τdeg =
4◦, β = 20◦, lcg/B = 2.13, and U/

√
gB =

3.0.

of nonlinearities would have been even stronger if
vertical accelerations had been considered.

The objective of the previous analysis is to
demonstrate important physical effects in an anal-
ysis of wave-induced heave and pitch motions.
Because the method has not been validated, that
is, compared with model tests, we cannot claim that
all physical effects are properly accounted for. Fur-
ther, we must not forget that simplifications were
made in evaluating the added mass and damp-
ing and that a long-wavelength approximation was
assumed in calculating the wave excitation loads.

Irregular seas must be considered in order for
an analytical method to be of value in the design.
Further, the method must be able to predict that a
planing vessel can jump out of the water and cause
important impact loads. This has increased signif-
icance with increasing forward speed and wave
height.
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Table 9.3. Main parameters of a personal
watercraft

Length (m) L 0.630
Breadth (m) B 0.223
Depth (m) D 0.100
Draft (m) d 0.055
Ship weight (kgf) W 5.796
KG (m) 0.107
LCG from transom (m) 0.255
Deadrise angle (degrees) 22

Reprinted from Contemporary Ideas on Ship Stabil-
ity (ISBN 0080436528), 2000, Ikeda et al., pp. 449–495,
“Stability of a planning craft in turning motion,” with
permission from Elsevier.

9.6 Maneuvering

Ikeda et al. (2000a,b) have presented exten-
sive experimental results of steady hydrodynamic
forces and moments acting on a one-fourth–scale
model of a personal watercraft that is obliquely
towed at high speed in calm water. The hull

Figure 9.38. Schematic views of experimental setup and coordinate system. (Reprinted from Con-
temporary Ideas on Ship Stability (ISBN 0080436528), 2000, Ikeda et al., pp. 449–495, “Stability of a
planning craft in turning motion,” with permission from Elsevier.)

has hard chines and a duct for waterjet, but no
impeller. These results can be used to analyze the
steady-state turning of the vessel. However, this
also requires information on the longitudinal and
transverse thrust provided by the waterjet propul-
sion of the full-scale craft.

The main parameters of the model are pre-
sented in Table 9.3. Longitudinal, transverse, and
vertical hydrodynamic forces as well as hydrody-
namic moments in heel, trim, and yaw were mea-
sured as a function of the rise H, the heel angle
φ, and the yaw angle ψ. The length Froude num-
ber was varied between 2 and 4.4. The coordinate
system used in the experiments is presented in
Figure 9.38. The x- and y-axes are parallel to the
mean free surface and rotate with the yaw angle
of the vessel.

Figure 9.39 illustrates the transverse forces
that act on the vessel during steady-state turn-
ing. The centrifugal force on the vessel must bal-
ance the transverse hydrodynamic force on the
hull and the transverse thrust due to the water-
jet propulsion system. Further, the figure defines
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Figure 9.39. Forces acting on a plan-
ing hull during steady turning motion.
(Reprinted from Contemporary Ideas on
Ship Stability (ISBN 0080436528), 2000,
Ikeda et al., pp. 449–495, “Stability of a
planning craft in turning motion,” with per-
mission from Elsevier.)

an uprighting moment W · GZ about the center of
gravity, including the effect of both the hydrody-
namic and hydrostatic pressures acting on the hull.
The uprighting/heel moment due to the waterjet
thrust must also be considered. Here W means
the weight of the vessel. Values of GZ for a rise
of 20 mm are presented in Figure 9.40 as a func-
tion of the heel angle φ for different trim angles
at a side slip (yaw) angle of ψ = 20◦. The length
Froude number is 2.0. The large negative values of
GZ are a consequence of the hydrodynamic pres-
sure. The results indicate that the vessel will have a
large inboard heel angle during steady-state turn-
ing with a side slip angle ψ = 20◦ and a rise of 20
mm in model scale. This is true for all the trim
angles τ indicated in the figure. For instance, if we
consider zero trim angle and neglect the effect of
the transverse waterjet thrust, which we do not
know, then Figure 9.40 gives a heel angle of 20◦.
We see that this equilibrium heel angle is stati-
cally stable by first considering a small increment
to the equilibrium angle. W · GZ is then positive,
which means the vessel experiences a static restor-
ing heel moment forcing the vessel back to the

Figure 9.40. GZ-curve when the vessel rise is H =
20 mm. The length Froude number is 2.0. (Reprinted
from Contemporary Ideas on Ship Stability (ISBN
0080436528), 2000, Ikeda et al., pp. 449–495, “Stability
of a planning craft in turning motion,” with permission
from Elsevier.)

equilibrium angle. Similarly, we may consider a
small decrement to the equilibrium heel angle and
the static restoring heel moment. The highest heel
angle for τdeg = 0◦, 2◦, 4◦, and 6◦ is obtained for
τdeg = 4◦ and is φ = 27◦. How these results depend
on the forward speed is not presented. A vessel will
not always heel inboard during turning, as we have
indicated in the previous cases.

The experimental results show that steady
hydrodynamic forces and moments on a planing
hull can be significantly influenced by rise, trim,
and yaw. However, in order to predict, for instance,
what trim angle causes minimum resistance during
a steady turn, we need to solve the six equations
given by the balance in forces and moments for
given longitudinal and transverse thrusts from the
waterjet propulsion system. This has not been pur-
sued. The experimental results also show that a
strong restoring moment in yaw is acting on the
hull. This suggests good directional stability.

The possible effect of cavitation and ventilation
at high speed was not investigated. This would
require a depressurized towing tank. It is well
known for some high-speed vessels that cavitation
and ventilation can cause undesirable behavior.

The previously found statically stable inboard
heel angle does not need to be dynamically sta-
ble. Dynamic instabilities during maneuvering of
a vessel on a straight course are discussed in Chap-
ter 10. Further, the analysis assumes a constant
ship speed. The results in Figure 5.5 show that an
SES in a turning maneuver may suffer from a large
speed loss. The physical reasons may be different,
for instance, because of air coming into the water-
jet system and affecting the thrust. In any case, it
should be expected that the smaller the turning
radius, the larger the speed loss.

Ikeda et al. (2000a,b) used their experimental
data based on PMM tests and oblique towing tests
to study maneuvering of a planing vessel. They
demonstrated that maneuvering can cause violent
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Figure 9.41. Water entry of 2D cross section with deadrise angle β and constant water entry velocity
V. Flow separation from the chines.

roll, heave, and pitch motions when the natural
frequencies of heave and pitch motions are twice
the roll natural frequency and the maneuvering
motions have the same frequency as the roll natu-
ral frequency.

The maneuvering characteristics at nonplaning
speeds must also be considered. For instance, if the
Froude number is low so that a hollow in the water
aft of the transom does not occur, the maneu-
vering characteristics may be quite different from
those at high speed. Maneuvering at low speed
with a wetted transom will cause vortex shedding
at the transom. This implies a transverse force and
yaw moment component that oscillates with the
vortex shedding frequency. The result can be an
oscillatory vessel behavior during turning and on
a straight course.

9.7 Exercises

9.7.1 2.5D theory for planing hulls

A 2.5D theory can, to a large extent, explain the
lift and the trim moment that a planing vessel
experiences on a straight course in calm water.
It is then essential that flow separation from the
chines be incorporated. In this exercise, we exam-
ine whether a simplified theory can explain the
nature of the vertical force after flow separation
from the bilges has occurred.

The basis of a 2.5D theory is water entry of a 2D
section with constant entry velocity V. We consider
the scenario in Figure 9.41 after the flow separa-
tion has occurred (see also Figure 9.5), showing
a picture of the free surface. The pressure on the
free surface has to be atmospheric. If we consider
the free surface from S to T in Figure 9.41, we
could have considered this surface as a rigid sur-
face with the special property that the pressure is
atmospheric there. Let us use this description to
construct a simplified model. We consider, then,

water entry of a wedge. This imaginary wedge has
an instantenous beam 2c(t), as shown in the figure.
However, the physical wedge part of the impact-
ing body has a breadth b < 2c(t). We then pretend
that the part of this imaginary wedge from S to F is
an approximation of a part of the free surface. For
|y| > c, we use the free-surface condition ϕ = 0
typically used in impact problems (see the Wag-
ner slamming model in section 8.3.1). We then use
Wagner’s model to represent the solution of the
velocity potential ϕ on the impacting wedge with
breadth 2c(t), that is,

ϕ = −V(c2 − y2)1/2, |y| < c(t) (9.128)

(see eq. 8.41). We will now represent the water
entry force F3 on the physical wedge as in eq.
(8.44), that is,

F3 = V
da33

dt
, (9.129)

where

a33 = ρ

0.5b∫
−0.5b

(c2 − y2)1/2dy. (9.130)

a) Choose β = 20◦ and calculate this water entry
force from the time when flow separation from the
bilges occurs. Use Wagner’s method to find c(t).
Compare F3 with the results in Figure 8.24. Initially
after flow separation, there is a resemblance in
the results. However, the disagreement increases
as times goes on. There are two reasons for that.
The free-surface part SF becomes more and more
different from the true free-surface shape (see Fig-
ure 9.5). Further, the pressure is not atmospheric
at SF.

b) Discuss qualitatively why F3 in reality must be
smaller than predicted by this simplified approach.
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Figure 9.42. Coordinate systems used in
the analysis of the steady hydrodynamic
heel moment acting on a prismatic planing
vessel.

9.7.2 Minimalization of resistance by trim tabs

Consider as a basis a prismatic planing hull with
mass M = 27000 kg, lcg = 8.84 m, beam 4.27 m,
and a deadrise angle β = 10◦. The propeller thrust
and the frictional force on the vessel attack
through the center of gravity is illustrated in
Figure 9.20.

Assume that the vessel is equipped with a hori-
zontal trim tab attached to the stern and with a
breadth equal to the beam. The deadrise angle
of the planing hull at the stern is modified and
set equal to zero. We assume this change of the
hull does not influence the following analysis. The
trim tab is hinged to the bottom of the stern (see
Figure 7.4 for an illustration of a possible arrange-
ment). In the analysis, one should consider the trim
tab as an appendage that does not influence the
flow at the hull of the vessel.

a) Combine Savitsky’s formula for loads on the
bare hull with the force acting on the trim tab to
find which trim angle causes the lowest resistance
on the hull for a vessel speed of 40 knots. What
trim moment must the trim tab generate to obtain
this minimum resistance?

(Hint: Follow the procedure in section 9.3.1,
except that step 1 has to be modified and be
the last step.)

b) Assume that the vertical force on the trim tab
can be obtained by strip theory and linear lifting
theory for a flat plate. You must, of course, account
for the fact that there is air on the top of the trim
tab. What combination of trim tab angle and trim
tab length is needed to generate the trim moment
found as part of question a)?

c) Decide on a length of the trim tab that is con-
sistent with strip theory; that is, the length should
be much smaller than the breadth. Estimate the
drag force on the trim tab due to both viscous and
potential flow forces. Use the same procedure as
the one in section 9.3.1 to calculate viscous drag
forces. Discuss what length should be used in defin-
ing the Reynolds number and note that there is no
unique answer when one is following this approx-
imate procedure.

d) Repeat the calculations under question a) for
other vessel speeds. The lowest ship speed should
correspond to approximately length Froude num-
ber 0.9. Discuss the relative importance of viscous
resistance.

9.7.3 Steady heel restoring moment

We will discuss the contribution of hydrodynamic
pressure to GZ for a prismatic planing vessel with
deadrise angle β. The vessel has a steady heel angle
η4. Figure 9.42 shows a cross section of the ves-
sel and defines the body-fixed coordinate axis Y′

and Z′. When η4 = 0, the Y ′- and Z′-axes coincide
with the Y- and Z-axes, respectively. The angles
between the wedge surfaces and the Y-axis are
β1 = β − η4 and β2 = β + η4 on the two sides of
the centerplane.

A 2.5D theory can be applied similarly to the
way steady vertical forces and trim moments were
analyzed in section 9.2.1. This means that results
from water entry of a heeled 2D section with con-
stant entry velocity are used. Our approach will
be simplified. The wetted surface and pressure
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Figure 9.43. Water entry of symmetric
wedges with constant entry velocity V and
deadrise angles β1 and β2. Resulting pres-
sure distribution p is shown for a given time
instant.

distribution will be obtained by analyzing sym-
metric water entry of wedges with deadrise angles
β1 and β2. This is illustrated for constant entry
velocity V in Figure 9.43. Because β1 is smaller
than β2, the wetted surface and pressure loads are
for a given time instant t, largest for the wedge
with deadrise angle β1. The symmetric wedge
results for β1 and β2 will be applied to the left-
and right-hand sides of the heeled planing sur-
face, respectively. This asymmetry in the pres-
sure distribution about the centerplane creates
a hydrodynamic heel moment about the center
of gravity (COG). The sign of the heel moment
depends on the distance KG between the keel
and COG.

Let us elaborate more by combining the 2.5D
theory with Wagner’s theory until chine wetting
occurs. Use eqs. (8.42) and (8.52), where β is either
β1 or β2. Positive Y is first considered. This means
that β = β2. We introduce the coordinate system
(s, n) with the s-axis along the wedge surface (see
Figure 9.42).

The heel moment about COG due to the pres-
sure distribution for positive Y will be expressed in
terms of the heel moment about the keel. Explain
that we can write

F4G = F4K + KG · FY ′ , (9.131)

where F4G and F4K are heel moments about the
COG and keel, respectively. Further, FY ′ is the
force component along the body-fixed Y ′-axis.

We will first express the time-dependent heel
moment during water entry of the heeled section.
Show that the heel moment about the keel due

to the pressure distribution for positive Y can be
expressed as

f β2
4K = ρVc2 dc

dt

cos2 β2
. (9.132)

(Hint: Introduce s as an integration variable.)
We consider, then, the force component f β2

Y ′

along the Y ′-axis. Show that

f β2
Y ′ = − f β2

n sin β, (9.133)

where f β2
n is the hydrodynamic force due to the

pressure distribution for positive Y-values acting
in the normal direction n (see Figure 9.42).

Show that

f β2
n = ρVc dc

dt

cos β2

π

2
. (9.134)

We now introduce the 2.5D theory. This means
Vt = τ x and V = Uτ (see eq. 9.1). Integrate eq.
(9.132) from x = 0 to x = xs = B tan β2/ (πτ ) (see
eq. (9.8)), that is, where chine wetting starts. Show
that the resulting contribution to the heel moment
about the keel can be expressed as

Fβ2
4K = ρU2 B3τ

24 cos2 β2
. (9.135)

Is it correct to stop the integration when the chine
wetting starts?

Do the same for the normal force, and start with
eq. (9.134). Show that the integration from x = 0
to x = xs gives

Fβ2
n = ρU2 B2πτ

16 cos β2
. (9.136)
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Follow a similar procedure for the pressure dis-
tribution for negative Y. Show that the total heel
moment about COG due to the hydrodynamic
pressure can then be expressed as

F4G = ρU2 B3τ

[
1

24

(
1

cos2 β2
− 1

cos2 β1

)
(9.137)

− KG
B

( π

16

) (
sin β

cos β2
− sin β

cos β1

)]
.

We must also consider the effect of the hydro-
static pressure on the heel moment. Discuss how
you would do that by modifying the results for zero
speed.

9.7.4 Porpoising

Consider a prismatic planing hull with deadrise
angle β = 20◦, trim angle τdeg = 4◦, average wet-
ted length-to-beam ratio λW = 4, lcg/B = 2.13,

vcg/B = 0.25, M/
(
ρB3

) = 1.28, and pitch radius
of gyration = 1.3B. The added mass and damping
coefficients will be approximated as

A33

ρB3
= 1.3;

B33

ρB3 (g/B)1/2 = 0.7FnB + 0.5

A53

ρB4
= −0.3FnB − 0.1;

B53

ρB4 (g/B)1/2

= 1.1FnB − 0.5
(9.138)

A55

ρB5
= 1.3;

B55

ρB5 (g/B)1/2 = 2.1FnB − 0.3

A35

ρB4
= 0.1FnB − 0.5;

B35

ρB4 (g/B)1/2

= −1.8FnB + 0.6

Use the procedure based on Savitsky’s formula
and described in the main text to calculate the
restoring coefficients C33, C35, C53, and C55.

a) By using Routh-Hurwitz stability criterion,
study for which beam Froude numbers FnB por-
poising occurs.

b) Repeat the stability analysis by systematically
varying the hydrodynamic coefficients as follows:

Case 1: C35 and C53 are zero.
Case 2: use either twice the heave or pitch damp-
ing B33 and B55 given by eq. (9.138).

c) Assume that lcg differs from 2.13B, which is
the basis of the coefficients given in eq. (9.138).
This changes the steady position of the vessel.
However, neglect this fact in the following deriva-
tion. Express added mass and damping coefficients

in heave and pitch about this different center of
gravity in terms of the expressions in eq. (9.138).

(Hint: Remember that added mass and damping
coefficients are a consequence of either vertical
hydrodynamic forces or pitch moments due to
either forced heave or pitch motions.)

9.7.5 Equation system of porpoising

In the analysis of porpoising, we reformulated the
equations of motions into a system of first-order
differential equations (see eq. 9.88). Show that the
K-matrix has the following elements:

K11 = 0 K12 = 0, K13 = 1, K14 = 0

K21 = 0 K22 = 0, K23 = 0, K24 = 1

K31 = − 1
DC33(I55 + A55) + 1

DC53 A35

K32 = − 1
DC35(I55 + A55) + 1

DC55 A35

K33 = − 1
D B33(I55 + A55) + 1

D B53 A35

K34 = − 1
D B35(I55 + A55) + 1

D B55 A35

K41 = − 1
DC53(M + A33) + 1

DC33 A53

K42 = − 1
DC55(M + A33) + 1

DC35 A53

K43 = − 1
D B53(M + A33) + 1

D B33 A53

K44 = − 1
D B55(M + A33) + 1

D B35 A53

(9.139)

where

D = (M + A33)(I55 + A55) − A53 A35.

9.7.6 Wave-induced vertical accelerations
in head sea

Use the planing vessel described in exercise 9.7.4
and a linear frequency-domain solution for head
sea as described in section 9.5. The added mass and
damping coefficients are described by eq. (9.138),
and the restoring coefficients should be based on
the same procedure as the one in section 9.4.1.

a) Decide on a high Froude number when the ves-
sel is not porpoising.

b) Calculate the transfer function of the heave
accelerations of the center of gravity (COG) of
the vessel.

c) Assume long-crested head sea waves in a
short-term sea state that can be described
by the Pierson-Moskowitz wave spectrum (see
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eq. (3.55)). Calculate nondimensional standard
deviations σ3a B/ (H1/3g) as a function of nondi-
mensional wave period T1

√
g/B. Here σ3a is the

standard deviation of vertical accelerations at
COG. This can be calculated as described in
section 7.4.1.

d) Select a beam B of the vessel. Set the
operability-limiting criterion for standard devi-
ation (RMS) of vertical accelerations equal to
0.275 g (see Table 1.1). Find the limiting value of
the significant wave height H1/3 as a function of
mean wave period T1 for the vessel to operate
according to this criterion.

e) The previous analysis was based on linear the-
ory. We saw in section 9.5.4 that nonlinear effects
were important in resonant conditions. Discuss for
which values of T1 nonlinear effects have a large
influence.

f) The helmsman will reduce the speed if the ver-
tical accelerations become too large (voluntary
speed reduction). Use the operability-limiting cri-
terion for σa3 as previously described as a basis for
the helmsman to make this decision. Select a T1

and H1/3 where this criterion is not satisfied.
How much must the ship speed be reduced in

order to satisfy the operability-limiting criterion?
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10 Maneuvering

10.1 Introduction

High standards for maneuverability are required
for high-speed vessels to operate, particularly
in congested areas, where emergency maneuvers
may be necessary to avoid collisions. An impor-
tant aspect is training of personnel who operate
the vessels. A maneuvering simulator is then a
useful tool. This requires mathematical models
that reflect the very different physical features of
the various categories of high-speed vessels. The
maneuvering characteristics of a vessel are docu-
mented in terms of turning circle maneuver, zigzag
(Z) maneuver and crash astern test. The IMO
(International Maritime Organization) maneuver-
ing criteria from 2002 for ships longer than 100 m
are described in Table 10.1.

Figures 10.1 and 10.2 define a turning circle
maneuver and a zigzag maneuver, respectively.
The course changing ability of the ship is expressed
by the turning circle maneuver. The ability to bring
the ship to a straight course is determined by the
zigzag maneuver. The crash astern test is illus-
trated in Figure 10.20. Later, in section 10.5, we
give examples of a turning circle maneuver, zigzag
maneuver, and crash astern test.

The hydrodynamics clearly differ between high-
speed maneuvering on one hand and low-speed
maneuvering and dynamic positioning on the
other hand. Let us assume calm water conditions
and divide the hydrodynamic loads on the hull into
potential and viscous flow effects, as we did for
ship resistance (see Chapter 2). However, an inter-
action exists in reality between these two effects.
The potential flow causes added mass and damp-
ing effects, as we have shown for wave-induced
motions of semi-displacement vessels in Chap-
ter 7. Maneuvering and steering control action
typically occur with a much lower frequency
than important linear wave encounter frequencies.
One exception may be for small planing vessels.

However, by disregarding this scenario, we may
assume the added mass and damping coefficients
are not frequency dependent, as they are in the
seakeeping problem. This means no wave radia-
tion damping. The potential flow damping is there-
fore zero at zero speed. However, there is potential
flow damping at forward speed. This is influenced
by steady wave generation when the Froude num-
ber of a monohull or multihull vessel is larger than
approximately 0.2. Part of the damping at forward
speed may be categorized as hull-lift damping.

The viscous flow effect must be handled differ-
ently if we go from low- to high-speed maneuver-
ing. At low forward speed, we can use the cross-
flow principle. This means the effect of forward
speed on the cross-flow at sections along the ship
is neglected. Increasing forward speed will have
the effect that the cross-flow separates more eas-
ily at a cross section in the stern than it does in
the bow.

The effectiveness of the propulsion and steer-
ing devices also depends on the forward speed.
Thrusters are effective only for speeds lower than
approximately 2 to 3 ms−1. The waterjet, azimuth
thrusters, and podded propulsion may be used in
the whole speed range, whereas rudders require
a certain threshold speed, let us say, larger than
2 ms−1, to be efficient. However, the slip stream
from the propeller can be used to decrease this
threshold speed.

Notations and coordinate systems differ in sea-
keeping and maneuvering. To some extent, we
will follow conventions adopted in seakeeping and
used in the previous chapters. It is convenient
in ship maneuvering to use a body-fixed coordi-
nate system, whereas in the case of seakeeping
problems, a nonoscillatory coordinate system is
used following the ship in its forward motion on a
straight course. This is referred to as the reference-
parallel frame in the literature on maneuvering
(Fossen 2002). In order to minimize confusion due
to different coordinate systems and notations, in
section 10.2 we show the link between the maneu-
vering and seakeeping conventions.

Ship maneuvering is traditionally handled in
calm water conditions. When the Froude number
is moderate, that is, less than approximately 0.2, it
is normally sufficient to study coupled surge, sway,
and yaw of the vessel. However, turning (change of
heading operation) of a vessel may lead to impor-
tant roll (heel). This is certainly an effect of high

390
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Table 10.1. IMO maneuvering criteria from 2002 for ships longer than 100 m at service speed

From the turning circle maneuver:
• Turning ability at 35◦ rudder angle or maximum permissible rudder angle at test speed

– Advance <4.5LPP

– Tactical diameter <5LPP

• Course initiating ability at 10◦ rudder angle
– Traveled distance <2.5LPP at 10◦ change of heading

From the zigzag maneuver:
• Course checking ability

– 10◦/10◦ Z-maneuver
First overshoot ≤10◦ if LPP/U < 10 s
First overshoot ≤20◦ if LPP/U ≥ 30 s
First overshoot <(5 + 0.5LPP/U)◦ for 10 s ≤ LPP/U < 30 s
Second overshoot ≤25◦ if LPP/U < 10 s
Second overshoot ≤40◦ if LPP/U ≥ 30 s
Second overshoot ≤(17.5 + 0.75LPP/U)◦ if 10 s ≤ LPP/U ≤ 30 s

– 20◦/20◦ maneuver
First overshoot <25◦

• Stopping ability
– Track reach <15LPP

May be modified for large displacement ships

LPP is the length between perpendiculars. Turning circle and zigzag (Z) maneuvers are defined in Figures 10.1
and 10.2.

forward speed. The steady restoring heel moment
−Mg GZ is one of several effects to account for.
Here M means the vessel mass, and the moment
arm GZ is influenced by both the hydrodynamic
and hydrostatic pressure. Further, ship maneuver-
ing leads to increased resistance and speed loss, as
is illustrated in Figure 5.5 for an SES.

Practical situations exist in which there is a
need to combine maneuvering and seakeeping.

T

A
dv

an
ce Drift angle β

Transfer
Tactical diameter

Track of centre of
reference O

Position of O
at rudder execute

Steady turning diameter

O

Figure 10.1. Description of the turning circle maneu-
ver (Hooft and Nienhuis 1994).

Broaching of a ship in following sea is an exam-
ple. This is initiated by directional instability and
may lead, in extreme cases, to the ship turning
into a beam sea condition relative to the waves.
This may then cause capsizing of the vessel. Figure
10.3 shows an example of the full-scale measure-
ments of broaching of a 30 m–long catamaran in
quartering sea. We notice the large yaw angle and
the attempt to use a large rudder angle to steer

First overshoot angle

First overshoot time

Course angle ψ

Time

Rudder angle δ

rudder execute4th3rd2nd1st

Second overshoot time
Period

Second
overshoot
angle

δ
ψ

Figure 10.2. Description of the zigzag (Z) maneuver
(Hooft and Nienhuis 1994).
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Figure 10.3. Illustration of broaching of a 30 m–long catamaran in quartering sea with 120◦ heading.
The ship speed is 18 knots. Wave condition: H1/3 = 1.5 m, T0 = 10 s. Note the large yaw angles and
the attempt to steer the vessel by using a large rudder angle. The results are from full-scale tests by
MARINTEK.

the vessel. Analysis of broaching is discussed by
Vassalos et al. (2000) and in section 10.10.3.

When the dominant frequency of encounter
between the waves and the ship is low, as it is
for broaching, we must analyze seakeeping and
maneuvering simultaneously. The wave-induced
flow will change the flow along the hull, as well as
the inflow to the propulsion and steering devices.
This affects the ability to control the vessel.
The greater difficulties involved can be partially
reduced in the analysis because the wave-induced
flow problem can be highly simplified for low
frequencies.

The frequency domain associated with maneu-
vering is generally much lower than dominating
wave encounter frequencies. As a first approxi-
mation, we can then consider combined seakeep-
ing and maneuvering as a two-scale problem. This
means the seakeeping is analyzed for a given wave
heading assuming the ship is on a straight course.
The nonlinear interaction between the incident
waves and the flow due to the ship, for instance,
caused by wave-induced ship motions, will result
in mean and slowly varying horizontal forces and
yaw moments on the ship (Salvesen 1974, Faltinsen
et al. 1980). Both linear and nonlinear wave loads
must be included in the ship maneuvering anal-
ysis. The mean wave force in surge is what we

earlier called added resistance in waves. Slowly
varying wave loads have been extensively stud-
ied in the context of stationkeeping (Faltinsen
1990). Because the wave-induced ship motions
are strongly speed dependent, the forward speed
has an important effect on the mean and slowly
varying wave loads. In addition to wave loads,
we must consider mean and slowly varying wind
loads. Ship maneuvering performance in waves is,
for instance, analyzed by Kijima and Furukawa
(2000).

Studies of ship maneuvering require an inte-
grated analysis of maneuvering, steering devices,
propulsion, and resistance. Cavitation and ventila-
tion on the hull, rudders, and propulsion units may
lead to directional instability. This was a contribut-
ing factor to the large yaw angles of the catamaran
shown in Figure 10.3.

The limited size of indoor basins makes it diffi-
cult to do maneuvering tests of high-speed vessels
at maximum operating speed. An alternative is to
use sheltered outdoor lakes and basins. Another
possibility is to use a planar motion mechanism
(PMM, see Crane et al. 1989) in a towing tank to
determine hydrodynamic coefficients in a mathe-
matical model for the ship motions. Use of purely
theoretical methods to predict ship maneuvering is
still under development. A difficulty is to account
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properly for turbulent flow; for example see
section 10.6.

There are also important aspects, such as inter-
actions between ships and the effect of laterally
restricted water. These issues will not be consid-
ered in detail. Tuck and Newman (1974) theoret-
ically studied the interaction between two ships
of different lengths and speeds when they are on
a parallel course in deep water. Norrbin (1971),
Fujino (1976), Brix (1993), and Crane et al. (1989)
discussed the maneuvering of a ship in restricted
water.

We start by studying maneuvering in deep water
at moderate speed and in water of infinite lateral
extent by using linear theory. This means that it is
sufficient to analyze coupled sway and yaw. The
next steps are to consider the effect of finite water
depth and high Froude number by linear theory
in yaw and sway. However, nonlinearities due to
viscous flow will matter. This is handled by using
empirical drag formulas. Two main categories are
considered. The forward speed is much lower than
the transverse speed in the first case, and the
cross-flow principle is used. It is demonstrated that
the viscous forces depend on many flow parame-
ters. In the second case, the forward speed dom-
inates over the transverse speed. Coupled surge,
sway and yaw, and control means are also stud-
ied. We then discuss models for analyzing maneu-
vering in six degrees of freedom, which is needed
at high-speed conditions and is exemplified for
hydrofoil vessels. Coupled sway-roll-yaw motions
of a monohull are studied in detail for moderate
speed by introducing a slender body theory. High-
speed cases are also discussed, including unsta-
ble oscillatory sway-roll-yaw motions (“cork-
screwing”).

10.2 Traditional coordinate systems and notations
in ship maneuvering

The traditional body-fixed coordinate system
(x, y, z) used in analyzing ship maneuvering is
shown in Figure 10.4. The origin is in the cen-
ter of gravity with the z-axis downward and the
x-axis forward. The hydrodynamic force compo-
nents along the x- and y-axes are called X and Y. N
is the hydrodynamic turning (yaw) moment about
the z-axis. u and v are the longitudinal and lateral
components of the ship velocity, respectively. r is
the yaw angular velocity and ψ is the yaw angle.

Figure 10.4. Traditional body-fixed coordinate system
(x, y, z) used in ship maneuvering. The z-axis is down-
ward. X and Y are hydrodynamic force components
along the x- and y-axes. N is the hydrodynamic yaw (turn-
ing) moment about the z-axis. u and v are the longitu-
dinal and lateral components of ship velocity. r is yaw
angular velocity (Fujino 1976).

Further, δ is the rudder angle. Positive directions
are indicated by arrows.

The linearized equations of motions in sway
and yaw of a ship advancing with mean forward
speed U in water of infinite horizontal extent are
expressed as

M
(

dv

dt
+ Ur

)
= Yv̇

dv

dt
+ Yvv + Yṙ

dr
dt

+ Yrr

(10.1)+ Xu̇Ur + Yδδ

I66
dr
dt

= Nv̇

dv

dt
+ Nvv + Nṙ

dr
dt

+ Nrr + Nδδ.

(10.2)

Here M is the ship mass, I66 is the mass moment of
inertia in yaw with respect to COG, and U means
a constant forward speed. We note the ship mass
term MUr appearing in eq. (10.1). This is a con-
sequence of using a body-fixed coordinate system,
which will be explained in section 10.3. The time
derivatives are indicated by a dot – for example,
v̇. The subscripts on Y mean that we should take
partial derivative of Y with respect to the vari-
able in the subscript – for example, Ẏṙ

dr
dt = ∂Y

∂ ṙ
dr
dt .

The subscripts on N and X have a similar mean-
ing. However, this has no practical consequence
for our presentation. We can just look upon Yv̇

and other derivatives as constants. The term Xu̇Ur
in eq. (10.1) is also a consequence of using a
body-fixed coordinate system. Xu̇ is in eq. (10.159)
derived as minus the added mass in surge. Søding
(1982) approximated this as

Xu̇ = −A11 ≈ −2.7ρ∇5/3/L2, (10.3)

where ∇ is the displaced volume of water. The
added mass in surge A11 is small relative to the
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body mass. For instance, if the average beam-
to-draft and length-to-beam ratios in Table 7.1
are combined with a block coefficient of 0.35,
eq. (10.3) gives that the added mass in surge is
only 4% of the ship mass M = ρ∇.

It is common to operate with nondimensional
coefficients and variables. We will follow Soci-
ety of Naval Architects and Marine Engineers
(SNAME) standards (Crane et al. 1989) and first
divide eq. (10.1) by 0.5ρL2U2, where L is the ship
length. The equation can then be re-expressed
as

M ′(v̇′ + r ′) = Y ′
v̇ v̇

′ + Y ′
vv

′ + Y ′
ṙ ṙ ′ + Y ′

r r ′

+ X ′
u̇r ′ + Y ′

δδ,

where the symbol ′ (prime) has been introduced
to indicate non-dimensional values. These can be
expressed as

v′ = v

U
; v̇′ = dv

dt
L

U2
; r ′ = r L

U
; ṙ ′ = dr

dt
L2

U2

M ′ = M
0.5ρL3

; Y ′
v = Yv

0.5ρL2U
; Y ′

r = Yr

0.5ρL3U

Y ′
v̇ = Yv̇

0.5ρL3
; X ′

u̇ = Xu̇

0.5ρL3
: Y ′

ṙ = Yṙ

0.5ρL4
;

Y ′
δ = Yδ

0.5ρL2U2
(10.4)

Dividing eq. (10.2) with 0.5ρL3U2 gives

I ′
66ṙ ′ = N ′

vv̇
′ + N ′

vv
′ + N ′

ṙ ṙ ′ + N ′
r r ′ + N ′

δδ,

where

I ′
66 = I66

0.5ρL5
; N ′

v = Nv

0.5ρL3U
; N ′

r = Nr

0.5ρL4U

N ′
v̇ = Nv̇

0.5ρL4
; N ′

ṙ = Nṙ

0.5ρL5
; N ′

δ = Nδ

0.5ρL3U2

(10.5)

There are other ways to introduce nondimensional
coefficients and variables. Fossen (2002) presented
a different system, which has become common to
use in automatic control.

In order to describe the position of the vessel
in the Earth-fixed coordinate system (XE, YE), we
need two additional kinematic equations describ-
ing the coordinates XE(t) and YE(t) of the center
of gravity (COG) (see notations in Figure 10.4).
One of them is

dYE(t)
dt

= v cos ψ + u sin ψ = U sin(ψ − β),

(10.6)

where U is the velocity of COG. The drift angle β

is defined by

v = −U sin β. (10.7)

The other kinematic equation is

dXE(t)
dt

= u cos ψ − v sin ψ. (10.8)

When v/U and ψ are small, we can approximate
dYE/dt ≈ U(ψ − β), v ≈ −Uβ, and dXE/dt ≈ U.

Further, the heading angle ψ is related to the yaw
angular velocity r by

dψ

dt
= r. (10.9)

We can then integrate eqs. (10.1), (10.2), (10.6),
(10.8) and (10.9) in time with given initial condi-
tions to find the time-dependent position of the
vessel. This obviously requires knowledge of the
steering force and moment, which may be influ-
enced by the use of an autopilot system.

We are going to use another body-fixed coordi-
nate system with x- and z-axes pointing in oppo-
site directions to the coordinate system described
above. The equations for sway and yaw velocities
and accelerations will be expressed in this coordi-
nate system as

M
(

d 2η2

dt2
− U

dη6

dt

)
= −A22

d 2η2

dt2

−B22
dη2

dt
− A26

d 2η6

dt2
(10.10)

−B26
dη6

dt
+ A11U

dη6

dt
+ F S

2

I66
d 2η6

dt2
= −A62

d2η2

dt2
− B62

dη2

dt
− A66

d2η6

dt2

− B66
dη6

dt
+ F S

6 . (10.11)

Here η̇2, η̈2, η̇6, and η̈6 are consistent with the sym-
bols in Figure 7.11, except that we refer to trans-
verse velocity η̇2 of the center of gravity of the
ship in a body-fixed coordinate system. Further,
F S

2 and F S
6 are sway force and yaw moment due to

a steering device such as a rudder, interceptor, or
waterjet system. The coordinate system with defi-
nitions of positive η̇2, η̇6, force F2, and moment F6

is shown in Figure 10.5. Ajk and Bjk are what we
defined as added mass and damping coefficients
in eq. (7.39). When determining the relationship
between Ajk and Bjk and the derivative terms
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Figure 10.5. Body-fixed coordinate system (x, y, z)
based on seakeeping terminology. The z-axis is positive
upward.

Yv̇ , Yv, Yṙ , Yr , Nv̇ , Nv, Nṙ , and Nr in eqs. (10.1) and
(10.2), we must be careful with the different coor-
dinate systems and with what is positive sway
force, yaw moment, sway, and yaw. We start with
transverse hydrodynamic hull force due to sway
velocity. In the two different systems, this can be
written as

F2 = −A22η̈2 − B22η̇2; Y = Yv̇ v̇ + Yvv. (10.12)

From Figures 10.4 and 10.5, we see that the posi-
tive direction for η̇2 is the same as for v. The same
is true for F2 and Y. This gives

Yv̇ = −A22; Yv = −B22. (10.13)

Then we consider hydrodynamic yaw moment on
the hull due to sway velocity. In the two different
systems, this can be written as

F6 = −A62η̈2 − B62η̇2; N = Nv̇ v̇ + Nvv. (10.14)

Because F6 has positive direction opposite that of
N whereas the sway velocity has the same direc-
tion, it follows that

Nv̇ = A62; Nv = B62. (10.15)

Then we consider the transverse force and yaw
moment due to yaw velocity η̇6. Because η̇6 has
the opposite positive direction to r, and recall-
ing what are positive force and moment, it follows
that

Yṙ = A26; Yr = B26 (10.16)

Nṙ = −A66; Nr = −B66. (10.17)

10.3 Linear ship maneuvering in deep water at
moderate Froude number

The slender body theory, leading to eq. (8.87)
and describing infinite-frequency added mass and
damping in heave and pitch, can be generalized
to ship maneuvering at moderate speed. By infi-
nite frequency is meant a very high frequency so
that added mass is frequency independent. Linear
sway (η2) and yaw (η6) motions are assumed. An
essential difference from analysis of wave-induced
motions is that now ship velocities are relative to
a body-fixed coordinate system. This means that
the body boundary condition is

∂ϕ

∂n
= n2(η̇2 + xη̇6) on C(x). (10.18)

Here C(x) is the mean submerged cross-sectional
surface per unit length and ϕ is the velocity
potential caused by the ship. In contrast to the
corresponding seakeeping case, see eq. (8.84), no
forward speed term is present in the body bound-
ary condition in the maneuvering case. The free-
surface condition is approximated as a rigid wall
condition; that is, ∂ϕ

∂z = 0 on z = 0. This implies the
assumption of a moderate Froude number. It fol-
lows that eq. (8.87) is replaced by

f HD
2 = −

(
∂

∂t
+ U

∂

∂x

)
[a 22(η̇2 + xη̇6)] , (10.19)

where f HD
2 is the 2D horizontal force on the hull

and a 22 is the low-frequency 2D added mass in
sway. By low frequency is meant that the rigid free-
surface condition is satisfied.

For a broad class of cross sections, the 2D added
mass in sway for a ship cross section of a monohull
in deep water can be approximated as

a 22 = ρ 0.5π [(a + aa1)2 + 3(aa3)2]. (10.20)

We note this is the same as the expression for
infinite-frequency added mass in heave a33 given
by eq. (8.89). However, coefficients a, a1, and a3

differ in the two cases. When using eq. (10.20),
we must set b equal to twice the draft of the ship
and d equal to half the beam of the ship in the
formula presented in eq. (8.89). We show this by
means of Figure 10.6 and by assuming a 2D body
oscillating in heave at infinite frequency. The free-
surface condition is then ϕ = 0 on the mean free
surface, z = 0. Here, ϕ is the velocity potential.
The coordinate system in Figure 10.6 is consistent
with the seakeeping coordinate system defined in
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Figure 10.6. Illustration of how an infinite-frequency heave problem ©1 can be transformed into a
low-frequency sway problem ©4 by first considering a double-body problem ©2 and then cutting this
double-body problem into two ©3 . The connection between ©3 and ©4 is just the result of a 90◦

rotation and of the introduction of a new coordinate system (y, z) in picture ©4 .

Figure 7.11. Because the body is symmetric about
the centerplane and we consider forced heave
motion, the flow is symmetric about the center-
plane. We then generate a double body, in which
there is an image body above the mean free sur-
face. The flow due to this double body will be anti-
symmetric about the mean free surface. This is
consistent with the free-surface condition ϕ = 0.
This means that the double body creates the same
flow as the original body. Then we consider a new
body by dividing the double body into two sin-
gle bodies by making a cut along the centerplane.
Because there is no flow through the centerplane,
it behaves similarly to a rigid wall. Then we rotate

the new single body by 90◦ in the clockwise direc-
tion and rename forced heave motion as forced
sway motion. The rigid free-surface condition is
implicitly taken care of. The new body, then, has
a beam that is twice the draft of the original body
and a draft that is half the beam of the original
body. In this way, we have obtained the problem
that we want to study, that is, a low-frequency sway
problem.

We now use eq. (10.19) to derive the global
added mass and damping coefficients Ajk and Bjk

in sway and yaw ( j, k = 2,6). We assume that the
flow separates from the transom stern. A conse-
quence is that the velocity potential is continuous
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at the transom stern. The first step is to integrate
the equation over the length of the ship. This gives
the following hydrodynamic sway force

F HD
2 = −


∫

L

a22 dxη̈2 +
∫
L

a22x dxη̈6

(10.21)

+ Ua22(xT)η̇2 + UxTa22(xT)η̇6


 .

Here xT is the x-coordinate of the transom stern.
Then we take the yaw moment F HD

6 based on
eq. (10.19). This means the equation is multiplied
by x and then integrated over the ship length. This
involves the integral∫

L

x
∂

∂x
[a22(η̇2 + xη̇6)dx]

= xTa22(xT)(η̇2 + xT η̇6) −
∫
L

a22(η̇2 + xη̇6)dx.

The result is

F HD
6 = −




∫
L

xa22 dxη̈2 +
∫
L

a22x2 dxη̈6

+ U





xTa22(xT) −

∫
L

a22 dx


 η̇2

+

x2

Ta22(xT) −
∫
L

xa22 dx


 η̇6


 .

(10.22)

Let us study steady flow with η̇6 = 0 as a special
case. Because the flow is steady, η̈2 and η̈6 are zero.
The transverse force and yaw moment are then
equal to

F HD
2 = −U a22(xT)η̇2 (10.23)

F HD
6 = −U


xTa22(xT) −

∫
L

a22 dx


 η̇2 (10.24)

according to eqs. (10.21) and (10.22), respec-
tively. Looking at eq. (10.23), we may believe
that the force acts at the transom stern. However,
eq. (10.19) shows that the transverse load distri-
bution f HD

2 is non-zero when ∂a22/∂x is non-zero.
Let us consider an extreme case, such as the one in
Figure 10.7, to illustrate this. A ship with a long
nearly parallel middle and aft part extending until
the transom stern is considered. The ship has

Figure 10.7. Prediction of steady transverse force distri-
bution ∂ f HD

2 /∂η̇2 according to slender body theory for a
ship maneuvering with moderate forward speed U and
small transverse ship speed η̇2 relative to U. The ship has
a long parallel middle and aft body extended until the
transom stern with circular cross sections and cylinder
axis in mean free surface. D = draft, L = ship length.

circular cross sections with axes in the mean free
surface. The cross-sectional area is given as

S(x) = 0.5π D2 tanh[k(0.5 + x/L)], (10.25)

where D is the draft and L is the ship length. The
parameter k in eq. (10.25) is chosen as 10. The two-
dimensional added mass is a22 = ρS (x). By using
eq. (10.19), we get

(
∂ f HD

2 /∂η̇2
)
L

0.5ρπD2U
= −L

∂

∂x
tanh[10(0.5 + x/L)].

(10.26)

This force distribution is presented in Figure 10.7.
It shows that the resulting transverse force per unit
sway velocity ∂ f HD

2 /∂η̇2 is negative and acts in the
bow part. The center of pressure of F HD

2 can be
found from

�η̇2 =
∫ L/2

−L/2 dx x ∂ f HD
2 /∂η̇2∫ L/2

−L/2 dx ∂ f HD
2 /∂η̇2

. (10.27)
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This gives �η̇2 = −0.43L, which means the force
acts 0.07L from FP. The steady transverse force
and yaw moment due to a positive sway velocity
are negative and positive, respectively, in this par-
ticular case. However, the sign of the steady yaw
moment for positive sway velocity depends on the
relative magnitude of the two terms xTa22(xT) and∫

La22 dx in eq. (10.24). Eq. (10.23) shows that the
steady transverse force can never be positive for
positive sway velocity.

Let us say that the flow did not separate at the
transom stern or the ship had a pointed end.
We would then have a force contribution from
the stern canceling the force contribution from
the bow. This would result in a zero force in
the potential flow case (D’Alembert’s paradox).
However, the corresponding potential flow yaw
moment is non-zero. This is equal to U

∫
La22 dx η̇2

according to eq. (10.24) and is a slender-body
approximation of what is called the Munk mo-
ment. The exact Munk moment, see eq. (10.159),
with the traditional coordinate system and nota-
tion used in ship maneuvering (see Figure 10.4) is
(A11 − A22)vu. The difference in sign is a conse-
quence of different coordinate systems and defi-
nitions of positive velocities. The Munk moment
causes a destabilizing (broaching) moment on a
ship with steady oblique translatory motion. The
Munk moment will be significant for high forward
speed. However, lifting and viscous effects will, to
some extent, counteract this.

Let us perform a similar analysis by study-
ing constant forced yaw velocity η̇6. By using
eq. (10.19), we get

∂ f HD
2 /∂η̇6

0.5ρπ D2U
= − ∂

∂x

{
x tanh [10 (0.5 + x/L)]

}
.

(10.28)

This force distribution is presented in Figure 10.8.
It shows that ∂ f HD

2 /∂η̇6 is not concentrated in the
bow part as ∂ f HD

2 /∂η̇2 was. The center of pressure
of resulting transverse force F HD

2 can be found
from

�η̇6 =
∫ L/2

−L/2 dx x ∂ f HD
2 /∂η̇6∫ L/2

−L/2 dx ∂ f HD
2 /∂η̇6

. (10.29)

This gives �η̇6 = 0.44L, which means the trans-
verse force acts 0.06L from AP. If η̇6 is positive,

Figure 10.8. Prediction of steady transverse force distri-
bution ∂ f HD

2 /∂η̇6 according to slender body theory for a
ship maneuvering with moderate forward speed U and
yaw velocity η̇6. The ship has a long parallel middle and
aft body extended until the transom stern with circular
cross sections and cylinder axis in mean free surface. D =
draft, L = ship length.

the resulting transverse force and yaw moment are
negative.

10.3.1 Low-aspect–ratio lifting surface theory

Eqs. (10.23) and (10.24) can be applied to give the
lift force L and moment M on a low-aspect–ratio
lifting surface in infinite fluid. This can be done by
introducing an image body about the mean free
surface and considering the double body as the
lifting surface in infinite fluid. If we consider a rect-
angular plane planform in infinite fluid with span
s and chord length �, we get

L = ρU20.25πs2α. (10.30)

Here α is the angle of attack or −η̇2/U using the
notation in this chapter. Eq. (10.30) gives, then, a
lift coefficient

CL = 0.5πα. (10.31)
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The aspect ratio  is defined as s2/A (see eq.
(2.87)), where the planform area A is s� in this
case. The trailing vortex sheet enters this analysis
indirectly through the condition that the velocity
potential is continuous at the trailing edge. This
condition means the downwash due to the trail-
ing vortex sheet is negligible. Eq. (10.24) gives a
moment about x = 0 for the rectangular lifting sur-
face that can be expressed as

M = −ρU20.125πs2�α. (10.32)

10.3.2 Equations of sway and yaw velocities
and accelerations

Let us go back to eqs. (10.21) and (10.22). Intro-
ducing the definition of added mass and damping
coefficients given by eq. (7.39), we have

A22 =
∫
L

a22 dx; B22 = Ua22 (xT) (10.33)

A62 =
∫
L

xa22 dx;

(10.34)
B62 = −UA22 + UxTa22 (xT)

A26 =
∫
L

xa22 dx; B26 = UxTa22 (xT) (10.35)

A66 =
∫
L

x2a22 dx;

(10.36)
B66 = −UA62 + Ux2

Ta22 (xT) .

The expressions of coupling coefficients between
sway and yaw show that A26 = A62, whereas B26 �=
B62. If we want to express the hydrodynamic forces
and moments in terms of the derivative term Yv

and similar terms, as in eqs. (10.1) and (10.2), we
can use eq. (10.16) in combination with eqs. (10.33)
to (10.36). However, we must recall that the x-axis
in Figure 10.4 is pointing in the opposite direction
with respect to the one we have used above.

Let us compare eqs. (10.33) to (10.36) with the
results in eq. (10.159). The latter case does not
consider lifting effects, which is the same as saying
that the end terms in eqs. (10.33) to (10.36) are
not present. We must also linearize eq. (10.159).
This means that u is replaced with U in the expres-
sions. There is a term −A11u ψ̇ in the expression
for the transverse force Y given by eq. (10.159).
However, noting that A11 is negligible in a slender
body theory gives consistent results.

Figure 10.9. Ship velocity components in the body-fixed
coordinate system (see Figure 10.5) decomposed in an
inertial system in order to derive ship accelerations in an
inertial system. The time difference �t is assumed to be
small; however, this is exaggerated in the figure.

Because we are using a body-fixed coordinate
system and not an inertial system, it will be evident
below that the ship mass terms will be different.
We use Figure 10.9, in which the sway velocity
at the COG of the ship at time t and t + �t is
shown. If we refer to the ship coordinate system
at time t, the sway velocity at time t + �t will be
approximately

η̇2(t + �t) − Uη̇6�t

for small �t. This means the sway acceleration in
the inertial system is η̈2 − Uη̇6 or, in other words,
that the ship inertia term is

M(η̈2 − Uη̇6).

This gives the linearized equations of sway and
yaw accelerations of a maneuvering ship as fol-
lows:

(M + A22)
d2η2

dt2
+ Ua22(xT)

dη2

dt
+ A26

d2η6

dt2

+ U[−M + xTa22(xT)]
dη6

dt
= F S

2

A62
d2η2

dt2
+ U[xTa22(xT) − A22]

dη2

dt
(10.37)

+ (I66 + A66)
d2η6

dt2

+ U[−A62 + x2
Ta22(xT)]

dη6

dt
= F S

6 .

Here F S
2 and F S

6 are control forces in sway and yaw
moments due to, for instance, a rudder or a water-
jet propulsion system. We should note that there
are also hydrodynamic forces on the rudder due
to sway and yaw. These have not been explicitly
included in the formulation of the equations.
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10.3.3 Directional stability

By setting F S
2 and F S

6 equal to zero in eq. (10.37)
and assuming a solution of the form exp(st), we
can study the directional stability of the ship.
This means we write η̇2 = η̇2a exp(st) and η̇6 =
η̇6a exp(st), where the dot means time derivative.
This gives

[s(M + A22) + Ua22(xT)]η̇2a

+{s A26 + U[−M + xTa22(xT)]}η̇6a = 0
(10.38)

{s A62 + U[xTa22(xT) − A22]}η̇2a

+{s(I66 + A66) + U[−A62 + x2
Ta22(xT)]}η̇6a = 0.

We may write eq. (10.38) in matrix form as

[
s(M + A22) + Ua22(xT) s A26 + U[−M + xTa22(xT)]

s A62 + U [xTa22 (xT) − A22] s (I66 + A66) + U
[−A62 + x2

Ta22 (xT)
]
] [

η̇2a

η̇6a

]
=

[
0
0

]
.

Because the right-hand side of this equation
system is zero and we are interested in the nontriv-
ial solutions, these can be obtained by enforcing
the coefficient determinant to be zero. This means

As2 + Bs + C = 0, (10.39)

where

C = U2[−MA22 + xTa22(xT)(M + A22)

− a22(xT)A26]

B = U[a22(xT)(I66 + A66 + x2
T(M + A22))

− 2A26xTa22(xT)] (10.40)

A = (M + A22)(I66 + A66) − A2
26

Here we have used the symmetry property
A26 = A62. The solutions of eq. (10.39) are two,
s j ( j = 1, 2), and generally complex. This means
s j = Re(s j ) + i Im(s j ). The requirement for a sta-
ble system is that both Re(s1) and Re(s2) must be
less than zero.

Formally, the solutions s j can be written as

s j = −B ± (B2 − 4AC)1/2

2A
. (10.41)

We will assume in the following that A and B are
positive. We see this is true if A26 is negligible. In
fact, A26 = 0 for a ship with fore and aft symme-
try and with the longitudinal position of center of
gravity (COG) at midships.

We note that

Re(s2) = Re
{

1
2A

[
−B − (B2 − 4AC)1/2

]}
< 0

while

Re(s1) = Re
{

1
2A

[
−B + (B2 − 4AC)1/2

]}

is

{
<0 for C > 0
>0 for C < 0

.

This means that directional stability of the ship
requires C > 0 or

|xT| a22(xT) >
MA22

M + A22
(10.42)

by using eq. (10.40) with A26 = 0. The same con-
dition was derived by Newman (1977). Eq. (10.42)
shows the advantage of moving COG forward,
resulting in large |xT|-values. Further, a22(xT) is,
roughly speaking, proportional to the square of

the draft at the transom stern. Having a skeg that
causes an increase in the local draft at the aft part
of the ship will obviously improve the directional
stability. The same is true with aft trim that lowers
the stern. Contrarily, if the ship has a pointed aft
end, the ship is directionally unstable. We should
note that this stability condition is speed indepen-
dent, but it has been derived by assuming mod-
erate speed, let us say, a Froude number less
than about 0.2. From this discussion, condition
eq. (10.42) has to be used for qualitative guide-
lines. In order to quantify the directional stability
of the ship, we must examine the eigenvalues.

In order to express the stability condition in a
way that is more general and independent of slen-
der body theory, we should start by setting δ equal
to zero in eqs. (10.1) and (10.2) and assuming that
v and r have the time dependence exp(st). This
leads to A, B, and C in eq. (10.40) being replaced
by

A = (M − Yv̇) (I66 − Nṙ ) − Nv̇Yṙ

B = −(M − Yv̇)Nr − Yv (I66 − Nṙ )
(10.43)− Nv̇ [Yr − (M − Xu̇) U] − NvYṙ

C = Yv Nr − Nv [Yr − (M − Xu̇) U]

Because A and B in practice are positive, the sta-
bility condition is C > 0 or that

Nr

Yr − (M − Xu̇)U
− Nv

Yv

> 0. (10.44)
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Figure 10.10. Time decay of eigensolutions for sway and yaw of the ship described by eq. (10.25) in
deep water. Ship length L = 100 m. Ship speed U = 10 ms−1.

It is not an advantage with a too-stable ship. It
is then difficult to change the course. One should
notice that unstable ships can be stabilized by feed-
back control using the autopilot.

10.3.4 Example: Directional stability of a monohull

We consider the ship described by eq. (10.25) with
k = 10 and center of gravity at x = 0. The vessel
mass M is simply ρ∇, where ∇ is the displaced
volume of water. The vessel moment of inertia in
yaw I66 is expressed as Mr 2

66 with r66 = 0.25L. Here
L is the length of the waterline. The x-coordinate
of the transom stern is L/2. Calculations of the
eigenvalues s1 and s2 give

s1 L
U

= −0.06;
s2 L
U

= −2.31. (10.45)

This means the ship is directionally stable.
We choose as an example L = 100 m and U =

10 ms−1. The time-dependent parts exp(s j t) of the
eigensolutions, j = 1, 2 are plotted in Figure 10.10.

From the graph, it takes more than ten minutes for
the eigensolution associated with s1 to die out.

10.3.5 Steady-state turning

We will apply the linear maneuvering equations,
that is, eqs. (10.1) and (10.2), to steady-state turn-
ing. This means the center of gravity (COG) of
the vessel follows a circular path with radius R.
The velocity of the COG is tangential to the
circular path and has a constant magnitude U
(Figure 10.11). The yaw angular velocity r and the
velocity component v along the body-fixed y-axis
also remain constant in time. Eqs. (10.1) and (10.2)
can then be expressed as

−Yvv + [(M − Xu̇)U − Yr ]r = Yδδ (10.46)

−Nvv − Nrr = Nδδ. (10.47)

Positive rudder angle δ is defined in Figure 10.4.
This means the rudder angle needed for the turn-
ing maneuver shown in Figure 10.11 is negative.
Further, we consider the rudder as an appendage
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Figure 10.11. Steady-state turning of a ship with con-
stant speed U along a circular track with radius R. The
centrifugal force MU2/R is indicated.

and approximate Nδ as − |xT| Yδ , where xT is the
x-coordinate of the transom stern of the vessel. By
using that Rr = U and neglecting the surge added
mass −Xu̇, we can express eq. (10.46) as

M
U2

R
= Yvv + Yrr + Yδδ. (10.48)

This expresses that the centrifugal force MU2/R
on the vessel is balanced by the hydrodynamic
transverse hull force Yvv + Yrr and the rudder
force Yδδ.

Solving eqs. (10.46) and (10.47) gives

v = −Nr + |xT| [(M − Xu̇) U − Yr ]
Yv Nr + Nv [(M − Xu̇) U − Yr ]

Yδδ (10.49)

r = Yv |xT| + Nv

Yv Nr + Nv [(M − Xu̇) U − Yr ]
Yδδ. (10.50)

Here the denominator Yv Nr + Nv[(M − Xu̇)U −
Yr ] is the same as C given by eq. (10.43). Because
C > 0 is a requirement for a directionally stable
ship, we must also require this in the analysis here.
It follows from eqs. (10.13), (10.15), (10.16), and
(10.17) and slender body theory expressed by eqs.
(10.33) through (10.36) that

Yv = −Ua22(xT) (10.51)

Nv = −U A22 + U|xT|a22(xT) (10.52)

Yr = U|xT|a22(xT) (10.53)

Nr = U
∫
L

xa22 dx − Ux2
Ta22(xT). (10.54)

Here a22(x) means the 2D added mass in sway
and A22 is the 3D added mass in sway for the
vessel. Further, xT is the x-coordinate of the tran-
som. The x-integration in eq. (10.54) is along the
x-axis defined in Figure 10.5. However, this inte-
gral is small and will be neglected in the following
expressions. Further, Xu̇ will be neglected. Sub-
stituting the slender body theory expressions into
eqs. (10.49) and (10.50) gives

v = U |xT| MYδδ

C
(10.55)

r = −U A22Yδδ

C
, (10.56)

where

C = U2 {
x2

Ta2
22(xT) − [A22 − |xT|a22(xT)]

×[M − |xT|a22(xT)]
}

(10.57)

= U2[−MA22 + |xT|a22(xT)(M + A22)].

Because Yδ is proportional to U2, eqs. (10.55)
and (10.56) show that v and r are proportional to
U. Because Yδ is positive, C must be positive, and δ

is negative, eq. (10.55) shows that v is negative and
r is positive. The latter is consistent with the fact
that the bow is pointed into the turn, as illustrated
in Figure 10.11.

10.3.6 Multihull vessels

The procedure can be easily generalized to a cata-
maran by accounting for the effect of hull inter-
action when evaluating the 2D “low-frequency”
added mass in sway. Figure 10.12 shows 2D added
mass results for semi-submerged circular demi-
hulls with axes in the mean free surface in equi-
librium position. The hydrodynamic interaction
between the demihulls reduces the added mass.

Kaplan et al. (1981) applied a slender body
theory like this to an SES by also accounting
for viscous drag force and moment. This was
done by using the cross-flow principle (see sec-
tion 10.6.1) with constant drag coefficient along
the ship. Kaplan et al. (1981) ignored the hydro-
dynamic hull interaction and the fact that the free
surface is lower inside the cushion than outside.
However, they reported satisfactory agreement
with experiments. Kaplan et al. (1981) also studied
the effect of a ventral fin or rudder, as in Figure 7.5.
This was considered as an appendage in the math-
ematical modeling.
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Figure 10.12. 2D “low-frequency” sway-added mass a22

for a catamaran with semi-submerged circular demihulls
in infinite fluid depth, based on Greenhow and Li (1987).
The value of a22/(ρπ R2) when p/R = 1 is π2/6 − 1.

10.3.7 Automatic control

If a vessel is directionally unstable, it can be stabi-
lized by automatic control. Here, we will describe
a control system based on the use of a PID (pro-
portional integral derivative) regulator in combi-
nation with rudders. The control system acts by
reducing the error,

e = ψ − ψd f (t), (10.58)

where ψ is the actual yaw angle (see Figure 10.4)
and ψd is the yaw angle desired by the helmsman.
In eq. (10.58), f (t) is a filter function, so that the
desired yaw angle is not introduced abruptly. We
now express the rudder angle as

δ = −Kp e − Ki

t∫
0

e dt − Kd ė, (10.59)

where Kp, Ki , andKd are positive constants set by
the system. Here Kp and Kd will act as restor-
ing and damping coefficients, respectively, in the
mathematical model. Ki eliminates static offset
(bias). The subscripts p, i, and d are associated
with the name of the regulator, that is, PID or
that p refers to proportional, i to integral, and d to
derivative. More details of a control system design
such as this can be found in Fossen (2002).

10.4 Linear ship maneuvering at moderate Froude
number in finite water depth

If we base the calculations on a slender body, we
can use the same expressions for Ajk and Bjk as
those in section 10.3. The important difference is
that the two-dimensional added mass in sway is
influenced by the water depth. Our discussion will
be based on a constant water depth and a rigid sea
floor.

Figure 10.13 presents the ratio between “low-
frequency” sway added mass A22 at water depth h
and A22 at h → ∞ as a function of water depth–to-
draft ratio h/D. The figure includes results for both
low-speed ships and two-dimensional sections. We
have used the same notation for the 2D and 3D
added mass. A22(h)/A22(∞) is clearly a function
of the cross-sectional shape.

The results in Figure 10.13 show a clear increase
in A22(h)/A22(∞) when h/D decreases. This
strong change in hydrodynamic coefficients with
depth influences the directional stability of a ves-
sel. For instance, a vessel may start by being
directionally stable in infinite depth, then become
unstable in a certain h/D range and then stable
again at shallow depth (Fujino 1976).

The trim and sinkage of a vessel affect the ratio
between the water depth and the local draft along
the ship. The directional stability will therefore be
influenced. We discussed the importance of sink-
age and trim in shallow water for a ship on a
straight course in section 4.5.6.

When h/D becomes close to 1, three-dimen-
sional flow effects become pronounced (Newman
1969). This causes a strong flow around the ship
ends.

10.5 Linear ship maneuvering in deep water
at high Froude number

Previous analysis is also relevant for high-speed
vessels, for instance, when moving at moderate
speed in their approach to harbors. However,
Chapman (1976) shows that the hydrodynamic
coefficients for maneuvering at high speed are
quite different from those for maneuvering at
moderate speed and should be properly evaluated.
The differences are connected with the divergent
wave system generated by the ship during maneu-
vering. The high-speed analysis can be carried out
numerically by using a 2.5D (2D+t) theory in a
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Figure 10.13. Comparison of the shallow-water effects on the sway-added mass A22 obtained by two-
dimensional calculations and by experiments. We normally use A22 as the 3D sway-added mass for the
vessel. However, because both 2D and 3D results are presented, A22 is used as a common notation.
h = water depth, D = draft (Fujino 1976).

way similar to the one we described for wave
resistance in section 4.3.4 and for wave-induced
motions in section 7.2.12.

van den Brug et al. (1971) presented exten-
sive experimental results for hydrodynamic sway
force and yaw moment on vertical surface-piercing
flat plates at high Froude numbers. Chapman
(1976) demonstrated good agreement between
these experiments and his 2.5D numerical results
(Figure 10.14). The results show a clear Froude
number dependency. When the Froude number is
small, there is fair agreement with the slender body
theory presented in section 10.3. The results illus-
trate that the maneuvering model must account
for the Froude number dependency at high Froude
numbers.

Ishiguro et al. (1993) studied the maneuvering
properties of the high-speed vessel “Super Slen-
der Twin Hull” (SSTH). The waterjet version is
shown in Figure 10.15. PMM (planar motion mech-
anism) tests were used to obtain hydrodynamic
coefficients in sway and yaw. Nondimensional
hydrodynamic derivative terms Yv, Yr , Nv, and Nr

are presented as a function of Froude number

in Figure 10.16. The derivative terms are nondi-
mensionalized by dividing by corresponding val-
ues at Froude number 0.184. The results show a
very clear Froude number dependence. How this
influences the directional stability as a function
of Froude number can be illustrated by means of
Figure 10.17, in which

C′ = N′
r

Y′
r − M′ + X ′

u̇
− N′

v

Y′
v

(10.60)

is plotted as function of Froude number for
the vessel with and without skegs. The nota-
tion m′

x is used instead of −X ′
u̇ in Figure 10.17.

The nondimensional coefficients on the right-hand
side of eq. (10.60) are defined in eqs. (10.4) and
(10.5). Figure 10.17 shows that the vessel with-
out skegs becomes directionally unstable for Fn >

0.25 in the considered Froude number range up to
Fn = 0.735.

A skeg was mounted at the stern of each demi-
hull. The ratio between total projected area of both
skegs divided by the product of ship length and
draft was 0.02. Each skeg had a rectangular shape
with an aspect ratio of 1.5. The skegs caused the
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Figure 10.14. Theoretical and experimen-
tal hydrodynamic derivative terms Yv and
Nv as a function of the draft Froude num-
ber U/

√
gD for flat plates with differ-

ent aspect ratios D/L. D draft, L = plate
length. The yaw moment N is with respect
to an axis through the mid-chord (mid-
ships). The experiments are by van den
Brug et al. (1971) (Chapman 1976).

vessel to be directionally stable up to Fn = 0.37.
The benefit of using skegs at moderate speed from
a directionality stability point of view is also evi-
dent from eq. (10.42). The skegs increase a22(xT).

A vessel at high speed will heel during turn-
ing. This means that the coupled effect of sway,
yaw, and roll (heel) on the directional stability
should be investigated. This is discussed further
in section 10.9.3.

Ishiguro et al. (1993) also presented full-scale
results with a 30 m–long version of the vessel.
The results were compared with simulated results.
Model test results were used for the hydrody-
namic coefficients in the simulation model. Figure

Figure 10.15. Waterjet version of the high-speed vessel
“Super Slender Twin Hull” (SSTH), shown together with
length dimensions used in PMM model tests. LPP is the
length between perpendiculars (Ishiguro et al. 1993).

10.18 shows turning test results with a ship speed
of 12 knots. One meter per second corresponds
to 1.944 knots. Even though the full-scale trial
results may be influenced by current, wind, and
waves, there is satisfactory agreement between the

Figure 10.16. Length Froude number dependence of
nondimensional hydrodynamic derivative terms Yr , Yv,

Nr , Nv obtained by PMM tests of the twin hull vessel
SSTH shown in Figure 10.15. The hydrodynamic deriva-
tive terms are normalized with respect to corresponding
values at Froude number 0.184 (Ishiguro et al. 1993).
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Figure 10.17. Length Froude number dependence of
combinations of nondimensional hydrodynamic deriva-
tive terms Y ′

v , Y ′
r , N ′

v , N ′
r , m ′

x of the twin-hull vessel
SSTH shown in Figure 10.15. C′ is defined in eq. (10.60)
and expresses the directional stability of the vessel. If
C′ > 0, the vessel is stable, and if C′ < 0, the vessel is
unstable (Ishiguro et al. 1993).

simulated and measured results. The turning diam-
eter is about four ship lengths. Figures 10.19 and
10.20 show similarly good agreement between sim-
ulations and measurements for a zigzag maneuver
test and a crash astern test. The ship speed is about
9 knots in the zigzag maneuver test. The maxi-
mum rudder angle is 20◦, with a resulting maxi-
mum yaw angle that is about 30% larger. The ini-
tial speed is 24 knots in the crash astern test, and
the vessel stops moving ahead after about three
ship lengths. The documented performance can be
related to the IMO maneuvering criteria for ships
longer than 100 m discussed in connection with
Table 10.1 and Figures 10.1 and 10.2.

10.6 Nonlinear viscous effects for maneuvering
in deep water at moderate speed

The previous sections consider hydrodynamic
loads that can be described by linear potential flow
theory. This section focuses on nonlinear viscous
loads due to sway and yaw velocities.

10.6.1 Cross-flow principle

First we will use the cross-flow principle to evalu-
ate the transverse viscous force and yaw moment
on the ship. This requires the transverse compo-

nent of the ship velocity to be larger than the for-
ward ship speed. Thus, in dynamic positioning and
low speed maneuvering, this assumption is good.
The cross-flow principle assumes that (i) the flow
separates because of the cross-flow past the ship,
(ii) the longitudinal velocity components do not
influence the transverse forces on a cross section,
and (iii) the transverse force on a cross section is
mainly the result of separated flow effects on the
pressure distribution around the ship. This means
we can write the transverse viscous force Fv

2 on
the ship as

Fv
2 = −1

2
ρ

∫
L

[CD(x)|η̇2 + xη̇6|

(10.61)
× (η̇2 + xη̇6)D(x)] dx,

where the integration is over the ship length
L. Here, CD(x) is the drag coefficient for
the cross-flow past an infinitely long cylinder,
with the cross-sectional area of the ship at the
longitudinal coordinate x. D(x) is the sectional
draft. Further, |η̇2 + xη̇6| is equal to (η̇2 + xη̇6)
and −(η̇2 + xη̇6) when η̇2 + xη̇6 is positive and
negative, respectively. This behavior of |η̇2 + xη̇6|
implies that |η̇2 + xη̇6| (η̇2 + xη̇6) cannot be ex-
plicitely expressed in terms of η̇2

2, η̇2η̇6 and η̇2
6 in

a simple way.
The viscous yaw moment due to the cross-flow

is

Fv
6 = −1

2
ρ

∫
L

[CD(x)|η̇2 + xη̇6|
(10.62)

× (η̇2 + xη̇6)D(x)x] dx.

CD-values for ship sections
In order to improve the predictions by eqs. (10.61)
and (10.62), we need to know more about CD-
values. It is difficult to do this by theoretical
means only. In the following text, we discuss what
the important parameters are that influence CD

when the ship has zero forward speed. Impor-
tant factors are, for instance, free-surface effects,
beam-to-draft ratio, bilge radius, Reynolds num-
ber, hull roughness, Keulegan-Carpenter (KC)
number and three-dimensional flow effects. The
KC number describes the effect of oscillatory ship
motions. Let us consider a 2D section with trans-
verse velocity Va sin((2π/T)t + ε), where Va is
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Figure 10.19. Full-scale zigzag maneuver test with a 30 m–long version of the twin-hull vessel SSTH.
Simulated and measured time history records are compared (Ishiguro et al. 1993).

the velocity amplitude, T is the oscillation period,
and ε is the phase. Then KC can be defined as
KC = Va T/Lc, where Lc is a characteristic length
of the cross section, such as the beam of the sec-
tion. How KC affects CD is discussed by Faltinsen
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Figure 10.20. Full-scale crash astern test with a 30 m–long version of the twin-hull vessel SSTH.
Simulated and measured time history records are compared (Ishiguro et al. 1993).

(1990) and Sarpkaya and Isaacson (1981). In the
following part of this section, we also consider
that the horizontal velocity of the cross section is
time independent. This is the same as studying a
fixed cross section in a current and, therefore, this
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V

Γ(t)

Γ(t)

Figure 10.21. Simple vortex system with an image flow
above the free surface so that the rigid free-surface con-
dition ∂ϕ/∂z = 0 on z = 0 is satisfied. �(t) = circulation,
V = inflow (ambient) velocity.

problem is considered. Two-dimensional flow is
first assumed. Three-dimensional effects are con-
sidered at the end.

1. Free-surface effects
The free surface at moderate Froude number
tends to act as an infinitely long splitter plate.
There is, of course, a difference because of the
boundary layer on the splitter plate. However,
there is no cross-flow either at the splitter plate
or at the free surface. Hoerner (1965) refers to
CD-values for bodies with splitter plates of finite
length in steady incident flow. The splitter plate
causes a clear reduction of the drag coefficient.

A simple explanation of why the free-surface
presence affects the drag coefficient can partly be
given by means of Figure 10.21. The shed vortic-
ity is represented by one single vortex of strength
�, which is a function of time. To account for
the free-surface effect, one has to introduce an
image vortex. This ensures zero normal velocity on
the free surface (see Figure 2.13 for a more com-
plete picture of vortices). If the splitter plate (free
surface) had not been there, instabilities would
cause a Karman vortex street to develop behind
the double body. The image vortex illustrated in
Figure 10.21 has a stronger effect on the motion
of the real vortex than the vortices in a Karman
vortex street behind the double body have on each
other. Because there is a connection between the
velocities of the shed vortices and the force on
the body, we can understand why the free surface
influences the drag coefficient.

In the case of oscillating ambient flow at low
amplitudes, the eddies will stay symmetric for the
double body without a splitter plate. This means
the free surface has the same effect in this case.
However, we should note that the drag coefficient
for ambient oscillatory flow with small amplitude
is larger than that for steady incident (ambient)
flow.

2. Beam-to-draft ratio effects
Experimental results by Tanaka et al. (1982) show
only a small effect of the height-to-length ratio
on the drag coefficient for two-dimensional cross
sections of rectangular forms. One exception is for
small height-to-length ratios. If one translates the
results to ship cross sections, it implies that the
beam-to-draft ratio B/D has a small influence on
the drag coefficient when B/D > 0.8.

3. Bilge radius effects
Experimental results by Tanaka et al (1982) show a
strong effect of the bilge radius r on the drag coef-
ficient. The bilge radius influence on CD appears
as CD = C1e−kr/D + C2, where C1 and C2 are con-
stants of similar magnitude and D is the draft. As
an example, k may be 6. Therefore, the increase
of bilge radius will cause a substantial decrease of
the drag coefficient. This effect is less relevant for
high-speed hulls.

4. Effect of laminar or turbulent
boundary-layer flow
The classical results for steady-state flow past a
circular cylinder in infinite fluid and with a con-
stant incident flow show the existence of a crit-
ical Reynolds number. The boundary layer flow
is laminar below the critical Reynolds number.
In the supercritical and transcritical ranges, the
boundary-layer flow is turbulent. As a conse-
quence, the location of the separation points is
substantially different in the subcritical and trans-
critical Reynolds number ranges. A further con-
sequence is a difference in drag coefficient. For a
smooth cylinder, the critical Reynolds number is
2·105. In this case, Reynolds number is defined as
VD/ν, where V is the ambient cross-flow veloc-
ity, D is the diameter, and ν is the kinematic vis-
cosity coefficient. By increasing the roughness of
the cylinder surface, the critical Reynolds number
will decrease. One often finds a situation in which
model tests have to be performed in the subcriti-
cal range, whereas the full-scale situation is in the
transcritical range. However, when the separation
occurs from sharp corners one would expect less-
severe scale effects.

Aarsnes (1984, see also Aarsnes et al. 1985) has
shown that the drag coefficient may be substan-
tially different depending on laminar or turbulent
separation. This is also evident from Delany and
Sorensen’s (1953) results. Aarsnes’s results are for
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Figure 10.22. Sketch of the vertical vortex system at ship
ends present in steady incident cross-flow past the ship.
V is inflow (ambient) velocity.

ship cross sections. There are, in general, signif-
icant differences between the drag coefficient in
subcritical and transcritical flows. The reason is
that the flow separates more easily in the sub-
critical regime. In subcritical flow conditions, the
boundary layer is laminar and the flow separates
at the “leading” bilge. In contrast, in turbulent
boundary layers, which occur in the transcritical
regime, the flow can sustain a larger adverse pres-
sure gradient without separating. This is the reason
there is no separation at the leading bilge for trans-
critical flow. If separation occurs at both corners,
the drag coefficient is, roughly speaking, twice the
value we have when separation occurs at one cor-
ner only.

5. Three-dimensional effects
Aarsnes (1984) pointed out that three-dimen-
sional effects at the ship ends will reduce the drag
force compared with a pure strip theory approach.
One way of taking this into account would be
to use a reduced effective incident flow at ship
ends, as predicted in a qualitative way by Aarsnes.
Physically, the reduced inflow velocity is caused
by the eddies at the ship ends (Figure 10.22). The
effective reduced inflow can be translated into
a reduction factor of the two-dimensional drag
coefficient. The reason is that the forces on a
cross section are proportional to the square of

3 - D Reduction
factor 

0.5

AP 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 FP

Figure 10.23. Examples of the three-
dimensional reduction factor of local drag
coefficient due to the vertical vortex sys-
tem at ship ends described in Figure 10.22.
FP and AP mean forward and aft per-
pendicular, respectively (Adapted from
Aarsnes et al. 1985).

the local inflow velocity, that is, v2
L, and that the

drag coefficient is normalized by the square of the
global inflow (ambient) velocity, that is, V2. The
reduction factor is simply v2

L/V2. This reduction
factor is exemplified in Figure 10.23 and should
be multiplied by the two-dimensional results to
obtain the correct local two-dimensional solution.
The local two-dimensional results can be added
together by a strip theory approach to find the
three-dimensional results.

10.6.2 2D+t theory

When the forward speed of the ship is high relative
to the transverse velocity component along the
vessel, it is relevant to consider a 2D + t approach,
where t indicates the time variable. In order to
explain the procedure, we start out with a 2D time-
dependent cross-flow past a fixed circular cylin-
der of radius R in infinite fluid. High Reynolds
number and laminar boundary layer (subcritical)
flow are assumed. The fluid is at rest at time
t = 0−. At time t = 0, an ambient flow velocity
V is assumed that will thereafter remain constant
in time. Under these conditions, it takes a nondi-
mensional time Vt/R = 0.351 (Schlichting 1979)
before flow separation starts. Separation occurs
first at the downstream stagnation point on the
cylinder. The separation points then move rapidly
to the vicinity of separation points for steady-state
conditions. The importance of pressure drag forces
relative to viscous shear forces increases with time
after the flow separation has started. Figure 10.24
shows the experimental flow path of particles in
the wake of an impulsively started cylinder for
Vt/R = 2,3,4, and 5. The Reynolds number is
VD/ν = 5000. We note that the wake is symmetric;
that is, no asymmetric vortex shedding has devel-
oped. As time increases in Figure 10.24, we see the
development of two large symmetric eddies in the
wake.

Sarpkaya (1966) presented experimental results
for drag coefficients CD for a circular cylinder
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Figure 10.24. Early stage of development of the wake behind an impulsively started cylinder. Rn =
VD/ν = 5000 (Bouard and Coutanceau 1980).

in infinite fluid during nearly impulsively started
(transient) laminar flow (Figure 10.25). Because
there is a finite acceleration time during the exper-
iments, hydrodynamic forces in phase with accel-
eration are present initially. Morison’s equation
(Morison et al. 1950) with a mass coefficient CM =
2 was used to subtract the acceleration-dependent
term from the experimental force record.

The Morison equation expresses the transverse
force per unit length on a nonmoving circular
cylinder as

f = ρ
πD2

4
CMa1 + ρ

2
CDD |V| V, (10.63)

where D is the cylinder diameter. V and a 1 are
the undisturbed (ambient) cross-flow fluid velocity
and acceleration at the cylinder axis, respectively.
The force direction coincides with the direction of
the ambient fluid velocity.

The results in Figure 10.25 are presented as a
function of

s
R

=
t∫

t0

V dt/R. (10.64)

Here s corresponds to the longitudinal motion of a
particle in the incident flow during the time inter-
val t − t0, where t0 corresponds to the initial time
of flow separation. This is a function of dV/dt . The
CD-value has a maximum value around s/R = 8.
The wake flow is symmetric, as the one shown in

Figure 10.24 up to that time instant. Antisymmet-
ric vortex shedding will start at a later stage. This
is because symmetric wake flow is unstable. Small
perturbations of the flow can cause the wake flow
to be asymmetric even before s/R = 8. The time
it takes for CD to reach its maximum value and the
time it takes to reach steady value are sensitive
to the ambient flow velocity evolution (Sarpkaya
and Shoaff 1979).

The CD-value during steady-state conditions
contains mean and time-dependent parts. The
time-dependent part is small relative to the mean
part and oscillates with twice the vortex shedding
(Strouhal) frequency (Faltinsen 1990).

In order to facilitate the use of these experi-
mental data in the subsequent 2D+t analyses, we
assume an impulsively started laminar flow and
make the following approximation of the experi-
mental data:

CD = p1t ′5 + p2t ′4 + p3t ′3 + p4t ′2 + p5t ′ + p6,

(10.65)

where t ′ = (Vt/R − 0.351) ≥ 0. The nondimen-
sional pi -coefficients are given as p1 = 2.4805 ·
10−7, p2 = −3.647 · 10−5, p3 = 1.9058 · 10−3,

p4 = −4.4173 · 10−2, p5 = 4.3146 · 10−1, and p6 =
7.3386 · 10−2. When 0 ≤ Vt/R ≤ 0.351, we set CD

equal to zero. Strictly speaking, the above repre-
sentation of CD is not correct. The experimental
data are not for an impulsively started flow, and
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Figure 10.25. Transient drag coefficient CD for a circular cylinder in nearly impulsively started laminar
flow. The particle motion s of the ambient flow is defined by eq. (10.64). Experiments by Sarpkaya
(1966).

CD will differ from zero until flow separation
starts. We should also recall that maximum CD

may in reality occur for a smaller s/R-value
than that shown by Sarpkaya (1966) (see Figure
10.25). These effects can be illustrated by numer-
ical simulations reported by Koumoutsakas
and Leonard (1995). Initially, their predicted
CD-value is large and friction and pressure drag
have equal importance. When flow separation
is established, pressure drag is dominant. The
results by Koumoutsakas and Leonard (1995)
show a maximum CD-value close to Vt/R = 4,
that is, earlier than that shown in Figure 10.25.

Let us now consider a circular cylinder of length
L and forward speed U in infinite fluid. We have
made a streamlined bow to avoid flow separation
at the bow when this body has a straight course
(Figure 10.26). We then give to the body a con-
stant sway velocity at time t = 0. If we see the
flow from the body reference frame, there is then
an incident cross-flow velocity V. If we see the
motion of the shed vorticity from an Earth-fixed
coordinate system, the vorticity will mainly move
in the transverse direction of the body. The conse-
quence is that different cross sections of the body
experience different vorticity fields in the cross-

sectional plane and therefore different CD-values.
Figure 10.27 illustrates how the vortex pattern
looks according to a 2D+t theory.

L

X

U

X=Ut

V

2R

2R

t=0

t>0

Figure 10.26. A slender body in infinite fluid consisting
of a bow part and a circular cylindrical part with radius
R and length L. The forward speed is U. At time t ≥ 0,
there is a constant incident cross-flow velocity V.
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U

V

�sep

Earth-Fixed 
Plane

Figure 10.27. 2D+t analysis of a cylinder
with constant forward velocity U and inci-
dent cross-flow velocity V. The cross-flow
starts to separate at a longitudinal distance
xsep from the front end.

Let us quantify the transverse force and
moment on the body by disregarding the stream-
lined bow part and applying eq. (10.65) for the
circular cylinder part. We define a body-fixed lon-
gitudinal x-axis with x = 0 in the front of the circu-
lar cylinder and with positive x pointing toward
the stern (see Figure 10.26). Then we consider
time t and the cross section at x = Ut. The vortic-
ity field at that cross section must be the same as
that developed during the cross-flow of the cylin-
der with incident velocity V at the same time t.
Because the body is moving forward, the vorticity
field in this cross-plane of the ship cannot further
develop. This means we can obtain the CD-value
on this cross section by using eq. (10.65) with

s ′ = Vt
R

= V
R

x
U

(10.66)

and by using the assumption that CD = 0 when 0 ≤
s ′ < 0.351. We then get a total transverse drag force
on the body that is equal to

F2 = ρV2 R

L∫
0

CD

(
V
R

x
U

)
dx

(10.67)

= ρVU R2

s1∫
0

CD(s ′)ds ′,

where

s1 = VL
UR

. (10.68)

If we had used the cross-flow principle, then the
mean drag force would have been

FCF
2 = ρ1.2V2 RL (10.69)

based on using a steady-state mean CD-value of
1.2. This gives

F2

FCF
2

=
∫ s1

0 CD(s ′)ds ′

1.2s1
. (10.70)

This ratio is presented in Figure 10.28. When
VL/(UR) < 5, the transverse drag force is less
than about 60% of the drag force based on the
cross-flow principle. For instance, if L/R = 20, this
means V/U < 0.25. We should realize that this
approach does not account for damping forces
due to potential flow contributions. The latter
effect is included in the linear theory presented
in section 10.3 and is the result of changing cross-
sectional area. The results indicate that a cross-
flow approach as expressed by eq. (10.61) and
with drag coefficients for steady ambient flow will
overestimate the transverse damping for increas-
ing forward speed. We can also calculate the yaw
moment about the midpoint of the cylinder. This
will be zero according to the cross-flow principle.
Using the 2D+t approach, we have

F6 = ρV2 R

L∫
0

CD

(
V
R

x
U

)
x dx − L

2
F2

(10.71)

= ρU2R3

s1∫
0

CD(s ′)s ′ ds ′ − L
2

F2.

This gives

F6

F2 L
=

∫ s1
0 CD(s ′)s ′ds ′

s1
∫ s1

0 CD(s ′)ds ′ − 0.5. (10.72)

The results are presented in Figure 10.28. We
note that the moment approaches zero when
VL/(UR) → ∞. This is consistent with the cross-
flow principle. Further, the center of pressure of
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Figure 10.28. Sway force F2 and yaw
moment F6 about COG of a circular cylin-
der with forward speed U and incident
cross-flow velocity V in infinite fluid and
with subcritical boundary-layer flow. Only
the viscous force after flow separation is
accounted for. R = cylinder radius, L =
cylinder length, F2 and F6 are estimated by
a 2D+t approach, FCF

2 = sway force based
on cross-flow principle. Note that the hor-
izontal axis with VL/ (UR) does not start
from zero.

the drag force moves toward the transom stern
when VL/(UR) → 0.

The longitudinal distribution of CD as a func-
tion of x/R is presented in Figure 10.29 for V/U =
0.05 and 0.2. This is obtained by using eq. (10.66)
and eq. (10.65) for positive CD-values and setting
CD equal to zero for other x-values. In reality,
there will be a transverse viscous force for all x/R-
values. When the flow separation has not occurred,
the transverse viscous force will have a component
that is linearly dependent on V for laminar flow.

For the results presented in Figure 10.29, the
wake behind the cylinder is always symmetric, that
is, like in Figure 10.24. If we interpret the cylin-
der as a double body consisting of a semicircular

Figure 10.29. Longitudinal distribution of
drag coefficient CD along the body shown
in Figure 10.26 for different ratios V/U
between transverse and longitudinal body
velocities. Only the viscous force after flow
separation is accounted for. R = cylinder
radius, x = 0 is at the front end of the circu-
lar cylinder. The results assume cross-flow
with subcritical boundary layer.

cylinder and its image above the free surface, it
means that our results will implicitly account for
free-surface effects for moderate Froude number,
that is, when a rigid free surface is appropriate.

We want to emphasize that the results presented
are for laminar boundary-layer flow. Turbulent
boundary-layer flow will change the separation
points, and this has a large influence on CD-values.

We could use the 2D+t analysis qualitatively to
estimate when the cross-flow principle is appropri-
ate. Let us somewhat arbitrarily require CD to have
the 2D steady-state value for x/R > 2. Further, we
assume that we are close to the steady-state CD-
value when Vt/R > 10, that is, Vx/UR > 10. This
gives that V/U must be larger than 5.
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The transverse ship velocity in reality will
be oscillatory. A characteristic time scale T of
the oscillations may be from half a minute to
three minutes. If the ship has zero forward speed,
The Keulegan-Carpenter (KC) number reflects
the important effect of shed vorticity becoming
incident to the ship during an oscillation cycle. If
the ship has a forward speed, the shed vorticity at
the forward part of the ship can be incident to an
aft cross section of the vessel. Let us make a sim-
plified analysis and assume V = Va cos ωt , where
ω = 2π/T. The vorticity will as a first approxima-
tion be convected with V in the Earth-fixed coor-
dinate system. We consider the shed vorticity at
the forward part of the vessel corresponding to
t = 0. This shed vorticity will be incident to the ship
after the time t = T/4. The vessel has then moved
forward a length UT/4. If this length is larger than
the ship length L, we can be sure that this shed
vorticity will not be incident to a cross section of
the vessel. We therefore introduce

KCUL = UT/L (10.73)

as a parameter. It has a similar physical mean-
ing as the KC number for cross-flow past a sta-
tionary object. We have denoted it as KCUL to
indicate that the velocity U and the length L are
the characteristic velocity and length. The ratio
between KC = Va T/ (2R) and KCUL is propor-
tional to the angle of attack Va/U which is an
important parameter.

We could have done a 2D+t analysis similar
to the one we did for sway by studying the com-
bined sway and yaw motions of the vessel. How-
ever, for this to be of any practical use, we have to
consider all the flow parameters mentioned previ-
ously. Further, we have to account for the change
of the cross section shape along the ship. As a
result, the 2D+t method should solve the time-
dependent 2D Navier-Stokes equations for cross
sections varying with time.

Nonaka (1993) combined a 2D+t method with
a vortex method to represent the cross-flow wake.
A difficulty is to correctly predict the separa-
tion points with a vortex method. Nonaka (1993)
chose instead to specify where separation occurs.
Oblique towing of realistic ships at moderate
Froude number was considered. Good agreement
between numerical and experimental results for
transverse force and yaw moment up to a drift
angle β (see Figure 10.4) of 20◦ was documented

for both finite and infinite water depths. Obviously
one can also numerically solve the maneuvering
problem by the 3D Navier-Stokes equation (see
e.g., Fujino 1996).

10.6.3 Empirical nonlinear maneuvering models

One way to introduce nonlinear terms into a
maneuvering model as described by eqs. (10.1)
and (10.2) is to use a Taylor expansion in terms
of the variables of interest. The notation used in
eqs. (10.1) and (10.2) is based on a Taylor expan-
sion of the hydrodynamics sway force Y and yaw
moment N in v, r, and δ. However, only linear
terms are kept in eqs. (10.1) and (10.2). If we
now consider the results in Figure 10.28, we should
interprete F2 as Y and F6 as N. A formal Taylor
expansion in v gives terms like

Y = Y0 + Yvv + Yvvv
2 + Yvvvv

3 + · · · (10.74)

This requires that Yvv = 1
2 ∂2Y/∂v2 |v=0 and Yvvv =

1
6 ∂3Y/∂v3 |v=0 . The transverse viscous force is anti-
symmetric in v. It means that Y0 and Yvv are zero.
The lowest-order nonlinear term is the result of
Yvvv . The results in Figure 10.28 should be supple-
mented by a linear viscous term in V as well as a
linear potential flow term, as predicted by slender
body theory. This can be generalized to account
for the viscous influence of r on Y as well as the
viscous influence of v and r on the yaw moment N.

An alternative way to express the influence of
viscous flow is to write

Y = Yvv + Yrr + Yv|v| v |v| + Yv|r | v |r |
+ Y|v|r |v| r + Yr |r | r |r | (10.75)

N = Nvv + Nrr + Nv|v| v |v| + Nv|r | v |r |
+ N|v|r |v| r + Nr |r |r |r |. (10.76)

This implies that N and Y are antisymmetric with
respect to v and r. Eqs. (10.75) and (10.76) are
more consistent than eq. (10.74) regarding how
drag formulas are expressed. However, it is not
clear if eqs. (10.75) and (10.76) are the physically
correct way to represent N and Y. Even if we
assumed the valid cross-flow formulation given by
eqs. (10.61) and (10.62), it would not be straightfor-
ward to find the link with eqs. (10.75) and (10.76),
except in the case in which either v or r is equal to
zero.
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The coefficients in eqs. (10.75) and (10.76) have
to be experimentally determined, for example by
PMM (planar motion mechanism) tests. A diffi-
culty is to account properly for nondimensional
flow parameters. Examples are the influence of
Reynolds number, the Keulegan-Carpenter num-
bers, and the Froude number. Further, cavitation
and ventilation may also matter for high-speed
vessels.

Before starting to estimate all nonlinear terms,
it is important to have an idea of their influence
on ship motion, that is, what accuracy is needed in
estimating the different coefficients. If v′ = v/U
and r ′ = r L/U are small, as they would be for a
ship at high speed, the effect of viscous flow on
the linear terms Yv , Yr, Nv , and Nr is the most
important.

10.7 Coupled surge, sway, and yaw motions
of a monohull

We have in the previous sections assumed con-
stant forward speed and discussed coupled sway
and yaw motions. The effect of varying longitudi-
nal vessel velocity is now investigated. A monohull
at moderate speed and equipped with a propeller
and rudder is considered.

Søding (1984) formulated the longitudinal com-
ponent of Newton’s second law in the body-fixed
coordinate system as

M(u̇ − vψ̇)

= Xu̇u̇ − RT (u) + (1 − t) T (u, n) (10.77)

+ Xvvv
2 + Xvψ̇ vψ̇ + Xψ̇ψ̇ ψ̇2 + Xδδδ

2.

The notation is consistent with Figure 10.4, and
derivative terms such as Xu̇, Xvv, . . . are used to
express longitudinal hydrodynamic forces on the
hull and the rudder. u and v are the longitudi-
nal and transverse velocity of the center of gravity
of the vessel in the body-fixed coordinate system.
Further,

ψ̇ = r = yaw angular velocity
RT = ship resistance
t = thrust deduction coefficient
T = propeller thrust based on open-water

propeller characteristics
n = number of propeller revolutions per

second
δ = rudder angle

The mass term −Mvψ̇ on the left-hand side
of eq. (10.77) is a consequence of formulating
Newton’s second law in the body-fixed coordinate
system. This can be shown similarly to how the
term −MUdη6/dt in eq. (10.37) was derived by
means of Figure 10.9. A more general derivation
of the mass terms in a body-fixed coordinate sys-
tem is presented in section 10.9, in which we con-
sider motions in six degrees of freedom.

If we assume an incompressible fluid with irro-
tational motion, no circulation, and a rigid free-
surface condition, the coefficients Xvv,Xvψ̇ , and
Xψ̇ψ̇ in eq. (10.77) can be theoretically deter-
mined by infinite fluid results by Kochin et al.
(1964). We can show the equivalence to the infi-
nite fluid problem by introducing an image ship
with respect to the free surface (see Figure 2.9).
Because the ship velocity is in a horizontal plane
and the rigid free-surface condition is assumed, the
flow around the double body consisting of the ship
and the image ship will correctly describe the flow
around the ship. Using general expressions pre-
sented by Kochin et al. (1964) (see section 10.10.2)
and accounting for the fact that the x-z–plane is a
symmetry plane for the hull gives, according to
eq. (10.159),

Xvv = 0, Xvψ̇ = A22, Xψ̇ψ̇ = A26. (10.78)

Here A22 and A26 are the low-frequency added
mass in sway and coupled added mass between
sway and yaw, respectively. A22 and A26 can, for
instance, be calculated by a 3D boundary element
method (BEM) or by a strip (slender body) the-
ory, as shown in section 10.3. If the ship has fore-
and-aft symmetry about the y-z–plane, A26 or Xψ̇ψ̇

will be zero according to potential flow. Because
A22 is the order of magnitude of the ship mass,
we see from eq. (10.77) that the term Xvψ̇ vψ̇ on
the right-hand side is of equal importance as the
mass term −Mvψ̇ on the left-hand side. Norrbin
(1971) reported that experimental values of Xvψ̇

may be as low as 20% to 50% of the theoretical
value based on eq. (10.78). To what extent this
is true for a high-speed slender hull at moderate
speed needs experimental documentation.

A main cause of speed loss in a turning motion is
the terms −Mvψ̇ and Xvψ̇ vψ̇. In order to see that
they cause a speed loss, we keep both terms on
the right-hand side of eq. (10.77). We can write
u = Rψ̇, where R is the radius of curvature of
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the ship’s path. Further, v ≈ −uβ according to eq.
(10.7) for small drift angles β. This gives the fol-
lowing two terms on the right-hand side of the
modified eq. (10.77):

(M + Xvψ̇)vψ̇ = −(M + Xvψ̇)
u2

R
β. (10.79)

Here u2β/R is the x-component of the centrifugal
acceleration. Because the ship proceeds with the
bow pointing inward in a steady turn, β is positive
(see Figure 10.11). This means that (M + Xvψ̇)vψ̇

causes a resistance, that is, a speed loss. The term
Xδδδ

2 in eq. (10.77) is also important to consider
in assessing the speed loss due to maneuvering.

We need to determine v, ψ̇ , and δ in order
to solve eq. (10.77) for u. Two additional equa-
tions follow by considering the transverse com-
ponent of Newton’s second law and the equation
for yaw angular momentum. These equations are
discussed in detail for linear sway and yaw in sec-
tion 10.3. Nonlinear terms in viscous transverse
force and yaw moment due to sway and yaw veloc-
ities are handled in section 10.6. If the control sys-
tem for maneuvering is based on a PID regulator,
the rudder angle is expressed by eq. (10.59).

In the following section, we further discuss the
coupled surge-sway-yaw equations.

10.7.1 Influence of course control on
propulsion power

Søding (1984) studied the influence of course con-
trol on the propulsion power P = 2πnQ for a
monohull at moderate speed. Here Q is the pro-
peller torque, which is a function of the instanta-
neous values of u and n. In order to estimate the
added power, we need to calculate the time aver-
ages of the time fluctuations in u and n. Eq. (10.77)
is used as a part of the analysis. The calm water
resistance was estimated by empirical formula by
Auf’m Keller (1973). Xvv , Xvψ̇ , and Xψ̇ψ̇ were
experimentally obtained. The rudder control algo-
rithm was here expressed as a PD (proportional
derivative) controller according to

δ = aψ + bψ̇, (10.80)

and the influence of the control factors a and b was
studied (see Fossen (2002) about more details con-
cerning automatic control). The deviations from
a straight course were assumed to be small so
that the linearized coupled sway and yaw equa-

tions could be applied. A time-harmonic excita-
tion force in sway and yaw was assumed. The lin-
earized coupled sway and yaw equations (see eqs.
(10.1) and (10.2)) can, by using eq. (10.80), be
expressed in matrix form as

Aẍ + Bẋ + Cx = ŝeiωt . (10.81)

Here
x = motion vector = [y, ψ]T . Further, y and

ψ follow from the equations ẏ = v and
ψ̇ = r , respectively.

ŝ = [ŶS, N̂S]T , where ŶS and N̂S are complex
amplitudes of environmental external late-
ral force and yaw moment.

The superscript T indicates matrix transposition.
Further,

A =
[

M − Yv̇ −Yṙ

−Nv̇ I66 − Nṙ

]
(10.82)

B =
[

−Yv (M − Xu̇) u − Yr − bYδ

−Nv −Nr − bNδ

]
(10.83)

C =
[

0 −aYδ

0 −aNδ

]
. (10.84)

In eq. (10.83), we use u instead of U. This is con-
sistent with linear theory.

Søding (1984) determined the hydrodynamic
derivative terms in eq. (10.81) by the method
described by Søding (1982). This means that the
hull coefficients were derived by slender body the-
ory with correction factors. The rudder force is
determined by the lifting line theory that accounts
for the propeller slip stream and hull-rudder
interaction.

Assuming a steady-state response, x = x̂eiωt

gives that the solution of eq. (10.81) can be
expressed as

x̂ = [−Aω2 + iωB + C
]−1

ŝ. (10.85)

Here the superscript −1 indicates matrix inver-
sion.

The presence of the restoring matrix C due
to the control factor a in combination with the
mass matrix A means that the control algorithm
introduces natural periods for the sway and yaw
motions. The control factor b has a damping effect
and can be used to minimize the resonance.

When there is no excitation ŝ, the ship is
assumed to have a straight course along the
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XE-axis with the heading ψ equal to zero (see Fig-
ure 10.4). The longitudinal speed is u = u0, and
the number of propeller revolutions per second is
n = n0. When ŝ is different from zero, the resis-
tance RT and propeller thrust T is expressed by
the Taylor expansion

RT(u) = RT(u0)

+ dRT

du

∣∣∣∣
u=u0

(u − u0) + · · · (10.86)

T(u, n) = T(u0, n0) + ∂T
∂u

∣∣∣∣ u=u0
n=n0

(u − u0)

+ ∂T
∂n

∣∣∣∣ u=u0
n=n0

(n − n0) + · · · (10.87)

The derivative terms dRT/du, ∂T/∂u, and ∂T/∂n
can be obtained by numerically differentiating the
known curves of RT(u) and T(u, n) .

In order to find the influence of course con-
trol on the propulsion power, we need to find
the time average eq. (10.77). Using eqs. (10.86)
and (10.87) and introducing �u = u − u0 and
�n = n − n0 give

M
(

¯̇u − vψ̇
)

= Xu̇ ¯̇u − RT(u0) − dRT

du
�u + (1 − t)

(10.88)
×

[
T (u0, n0) + ∂T

∂u
�u + ∂T

∂n
�n

]

+ Xvvv2 + Xvψ̇ vψ̇ + Xψ̇ψ̇ ψ̇2 + Xδδδ2,

where the bar over the different terms indicates
time average. For instance,

u̇ = 1
Te

Te∫
0

u̇ dt = 1
Te

[u (Te) − u (0)] , (10.89)

where Te is the excitation period. Because a
steady-state solution is considered, u(Te) = u(0);
that is, ¯̇u = 0. The terms v2, vψ̇ , and ψ̇2 can be
found by using x̂ given by eq. (10.85) with u = u0.

The term δ2 follows by using eq. (10.80). It should
be noted that it is only the real part of x̂eiωt

that has physical meaning. This real part must be
taken before time averaging the quadratic expres-
sions in v and ψ̇. Let us show how vψ̇ can be
expressed by writing y as ya cos(ωt + εy) and ψ

as ψa cos(ωt + εψ). This gives

vψ̇ = ω2 yaψasin (ωt + εy) sin (ωt + εψ)

= ω2 yaψa
1
2

[cos(εy − εψ) − cos(2ωt + εy + εψ)]

= ω2 yaψa
1
2

cos(εy − εψ) .

The same can be done with the other terms.
Eq. (10.88) can be simplified by using the
fact that the resistance balances the propeller
thrust at u = u0 and n = n0; that is, −RT (u0) +
(1 − t) T(u0, n0) = 0.

There are two unknowns, �u and �n, in
eq. (10.88). An additional equation is therefore
needed. The term �u expressing the time aver-
age of the longitudinal speed oscillations can be
found by considering the vessel speed dXE/dt
along the Earth-fixed XE-axis in Figure 10.4. This
is expressed by eq. (10.8). The time average of
dXE(t)/dt is u0. Further, noting that ψ is assumed
to be small and Taylor expanding cos ψ and sin ψ

in eq. (10.8) gives

u0 = (u0 + �u)
(

1 − 1
2
ψ2

)
− vψ

≈ u0 + �u − 1
2

u0ψ2 − vψ.

This means

�u = 1
2

u0ψ2 + vψ. (10.90)

Eq. (10.88) with using balance between the resis-
tance and propeller thrust at u = u0 and n = n0

determines �n, that is,

�n =
[
−Mvψ̇ + dRT

du
�u − (1 − t)

×∂T
∂u

�u − Xvvv2 − Xvψ̇ vψ̇ − Xψ̇ψ̇ ψ̇2

− Xδδδ2

] /
(1 − t)

∂T
∂n

. (10.91)

When �u and �n are known, the added propul-
sion power is determined from the propeller
torque Q as a function of u and n. Q is known
from the open-water propeller characteristics. The
propulsion power P is 2πnQ. The mean added
propulsion power is

�P = ∂ P
∂u

�u + ∂ P
∂n

�n, (10.92)

where ∂ P/∂u and ∂ P/∂n are numerically evalu-
ated at n = n0 and u = u0.

Søding (1984) applied the described procedure
in a case study with the Mariner ship. Represen-
tative wind gust loads for Beaufort 8 to 9 were
used to express the complex excitation vector ŝ in
eq. (10.81). The excitation period Te was varied
between 27 s and 566 s, and the influence of the
control factors a and b in eq. (10.80) was investi-
gated. The added propulsion power had a typical
resonant behavior that depended on a, b, and the
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Figure 10.30. The axial slip stream veloc-
ity US behind a propeller in infinite fluid
divided by the inflow velocity Ua to the pro-
peller as a function of the thrust coefficient
CT = T/(0.5ρU2

a π R2), where T is the pro-
peller thrust and R is the propeller radius.
Also shown is the slip stream radius rs. The
calculations are done by actuator disc the-
ory, assuming axially symmetric flow. Note
that the horizontal axis with CT does not
start with zero.

excitation period Te. This is a consequence of our
comment following eq. (10.85) and the fact that
�u and �n are functions of ψ and v. The added
propulsion power could be as much as the order of
20% of the power in calm water conditions without
wind. Søding (1984) also showed how to general-
ize the procedure to include the effect of a wind
gust spectrum. However, we will not discuss this
here.

10.8 Control means

Figures 2.1 and 2.2 show examples of propeller-
rudder arrangements for high-speed vessels. The
rudders in Figure 2.2 are twisted and adapted to
the propeller slip stream. Cavitation and ventila-
tion are important concerns for high-speed rud-
ders. This was discussed in section 6.10 and related
to a rudder-foil system on a foil catamaran. It can
also be demonstrated by Figures 6.58 and 10.14
that free-surface wave generation, that is, Froude
number, has an important effect on a free surface–
piercing rudder.

If waterjet propulsion is used to steer the vessel
(see Figure 2.56), the consequences are reduced
thrust and reduced maximum operating speed. An
alternative is to use interceptors as described in
section 7.1.3. This is more efficient at Froude num-
bers larger than 0.3 to 0.4. Another alternative is to
use a high-speed rudder as illustrated in Figure 7.5.
The effect of the hull must then be considered in
evaluating the steering force and moment. If the
hull boundary layer is neglected and the hull sur-
face is approximated as horizontal, the hull can
be accounted for by introducing an image rudder

about the horizontal hull surface, that is, similar
to the one illustrated for a ship at low Froude
number in Figure 2.9. The lift coefficient can be
estimated by considering a fictitious foil in infi-
nite fluid consisting of the rudder and the image
rudder. Because this increases the aspect ratio rel-
ative to the rudder in infinite fluid, the lift coef-
ficient CL of the rudder is increased because of
the presence of the hull. Procedures on how to
calculate CL are described in Chapter 6; see for
example, eq. (6.130). We must also account for the
change in the inflow velocity due to the waves gen-
erated by the vessel. The ship wave calculations
are then done by neglecting the presence of the
rudder.

Let us consider as another case a rudder operat-
ing behind a propeller. The rudder is in the center-
plane of the vessel. We use the coordinate system
with velocities, forces, moments, and rudder angle
δ defined in Figure 10.4. The centroid of the rudder
has a longitudinal coordinate xR.

We can use eqs. (2.142), (2.143), and (2.144)
to show how the inflow velocity US to a rudder
behind a propeller increases over the height 2rs .

This is illustrated in Figure 10.30, which shows
US/Ua and rS/R as a function of the thrust-loading
coefficient CT = T/(0.5ρπR2U2

a ). Here Ua, R, and
T are the inflow velocity to the propeller, the pro-
peller radius, and the propeller thrust, respectively.
We can express Ua as U(1 − w̄), where w̄ is the
mean wake fraction and U is the vessel veloc-
ity. Because a rudder provides steering force and
moment through lift and the lift force and moment
increase with the square of the incident flow veloc-
ity in noncavitating and nonventilating conditions,
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Figure 10.31. An all-movable rudder with
a rudder angle δ as defined in Figure 10.4.

There is an incident flow velocity
√

u2
R + v2

R
to the rudder with an angle of attack δH. L
and D are the rudder lift and drag force,
respectively (see also Figure 2.16). The
body-fixed coordinate system (x, y) is con-
sistent with Figure 10.4.

we can understand that the propeller slip stream
is beneficial for the effectiveness of the rudder.
However, the calculations in Figure 10.30 neglect
the swirling flow in the propeller slip stream and
do not consider the effect of the free surface
and the vessel. Further, the analysis requires the
rudder to be, let us say, at least the order of
a propeller radius behind the propeller (Søding
1982).

We illustrate how to evaluate forces and
moments on the vessel due to an all-movable rud-
der behind a propeller. As seen from the rudder,
there is an incident flow velocity

√
u2

R + v2
R with

components uR and vR along the body-fixed neg-
ative x- and y-axes, respectively (Figure 10.31).
Here uR will vary along the rudder axis and is Us if
we consider a rudder cross section within the pro-
peller slip stream. Otherwise uR is Ua . We intro-
duce an averaged u2

R instead of using a varying u2
R.

One way of doing this is by using the rudder plan-
form area parts inside and outside the propeller
slip stream as weighting factors, that is,

uR =
√[

ARSU2
S + (AR − ARS) U2

a

] /
AR, (10.93)

where
AR = rudder planform area
ARS = rudder planform area within propeller

slip stream
The transverse (vR) inflow velocity component

along the negative y-axis as observed from the rud-
der can be expressed as

vR = γvv + γr r xR, (10.94)

where xR is the x-coordinate of the rudder centroid
and γv and γr are flow rectification factors due to
the hull and the propeller (Ankudinov et al. 1993).
Neglecting this effect means that γv = γr = 1.

The incident flow causes an angle of attack
δH relative to the rudder (see Figure 2.16 for a
definition of angle of attack). We can write (see

Figure 10.31)

δH = arctan(vR/uR).

The total or effective angle of attack δe of an
all-movable rudder must also include the rudder
angle, that is,

δe = δ − δH. (10.95)

The resulting force on the rudder can be decom-
posed into a lift (L) and a drag (D) component
(see Figure 10.31). The lift is perpendicular to the
inflow velocity direction and can be expressed as
0.5ρ ARCLR(u2

R + v2
R), where CLR is the lift coef-

ficient of the rudder. The drag force, which is in
line with the inflow direction, can be expressed
as 0.5ρ ARCDR(u2

R + v2
R), where CDR is the drag

coefficient.
The hydrodynamic longitudinal (XR) and trans-

verse (YR) force components and yaw moment
(NR) due to the rudder in the body-fixed coordi-
nate system can then be expressed as

XR = ρ

2
AR

(
u2

R + v2
R

)
(−CLR sin δH − CDR cos δH)

YR = ρ

2
AR

(
u2

R + v2
R

)
(CLR cos δH + CDR sin δH)

NR = YRxR. (10.96)

Whicker and Fehlner (1958) did an extensive
experimental study of the lift and drag CLR and
CDR for rudders as a function of the angle of
attack. A spatially uniform inflow velocity along
the rudder span was considered. Investigations
were made of the following: three aspect ratios,
1, 2, and 3; five section shapes; two tip shapes,
faired and square; and three sweep angles (−8,
0, 11). Aspect ratios and sweep angles are defined
by Figure 6.3. Tests were made in a low-speed wind
tunnel, and the models were mounted on a ground
board. If the rudder is free surface–piercing, then
the ground board will simulate the effect of
the free surface for small and moderate Froude
numbers.
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Figure 10.32. Body-fixed coordinate sys-
tem (x, y, z). The center of gravity (COG)
has velocity V = (u, v, w), and the angular
velocity of the vessel is Ω= (p, q, r). The
external forces and moments with respect
to COG acting on the vessel are, respec-
tively, (X, Y, Z) and (L, M, N). All compo-
nents are in the (x, y, z)-system. The Earth-
fixed coordinate system (XE, YE, ZE) is
shown in Figure 10.4 (Saito et al. 1991).

Rudder lift and drag at small angles of attack
If we assume that the effective angle of attack
δe and the incident flow angle of attack δH are
small (see Figure 10.31), we can linearize the trans-
verse rudder force given by eq. (10.96). Noting that
cos δH ≈ 1, sin δH ≈ δH and that vR � uR gives
YR ≈ 0.5ρ ARu2

RCLR, where CLR is a function of the
effective angle of attack δe. We will consider a sym-
metric rudder profile; that is, the camber is zero
(see definition of camber in Figure 6.3). This means
CLR is zero when δe is zero. A Taylor expansion
of CLR gives CLR ≈ dCLR/dδe|δe=0 δe. This implies
that the transverse rudder force YR can be approx-
imated as

YR = ρ

2
ARu2

RC�δ(δ − δH),C�δ = dCLR

dδe

∣∣
δe=0.

(10.97)

This means that the coefficient Yδ in eq. (10.1) can
be expressed as 0.5ARu2

RC�δ . Nδ in eq. (10.2) is
simply xRYδ according to eq. (10.96). For instance,
if we use eq. (2.97) to express CL, then C�δ is
2π/ (1 + 2/), where  is the aspect ratio (see
eq. (2.87)). However, eq. (2.97) is based on infi-
nite fluid, and we must modify it to account for
hull–free surface interaction.

When it comes to the drag on the rudder, we
will concentrate on the effect of the rudder angle
and once more consider small values of δe and δH.
We approximate XR given by eq. (10.96) in a way
similar to the one we used for YR. This gives

XR = −0.5ρ ARCDRu2
R. (10.98)

Part of CDR can be accounted for by consider-
ing the rudder as a lifting surface. If we approxi-
mate the rudder as an elliptical foil in infinite fluid

with uniform incident flow, lifting line theory gives
that CDR can be expressed by eq. (2.98). However,
the actual rudder shape, the presence of the pro-
peller slip stream, the hull, and the free surface
must be considered. Viscous flow will also con-
tribute to CDR. It causes, for instance, a viscous
resistance in a similar way as the viscous resis-
tance on the ship hull. If we concentrate on the lift-
induced drag, CDR is proportional to δ2

e for small δe

(see e.g., eq. (2.98)). We can write CDR = CDI R δ2
e ,

and eq. (10.98) gives that the coefficient Xδδ in
eq. (10.77) can be expressed as

Xδδ = −0.5ρ ARCDI Ru2
R. (10.99)

Additional specific details relevant to rudders
are considered by Søding (1982), Crane et al.
(1989), and Brix (1993).

10.9 Maneuvering models in six degrees
of freedom

10.9.1 Euler’s equation of motion

It is not sufficient to consider only surge, sway,
and yaw in a maneuvering analysis of a high-speed
vessel at high speed. If the vessel makes a turn, it
will heel (bank), as illustrated for a hydrofoil ves-
sel in Figure 6.20 and for a planing vessel in Fig-
ure 9.39. Further, a hydrofoil vessel with a fully
submerged foil system needs to be controlled in
heave, pitch, and roll. Nonlinear effects may also
matter. We will therefore formulate the Euler
equations of motions for a rigid body and use a
hydrofoil vessel in foilborne condition, as illus-
trated in Figure 10.32, as an example. A body-
fixed coordinate system (x, y, z) is introduced with
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origin in the center of gravity (COG) of the ves-
sel. The x-z–plane is assumed to be a symmetry
plane of the vessel. Further, the velocity vector
V of the COG has components (u, v, w) and the
angular velocity vector Ω of the vessel has compo-
nents (p, q, r) in the body-fixed coordinate system.
The translatory motions of the vessel are referred
to an Earth-fixed coordinate system (XE, YE, ZE) ,

as illustrated in Figure 10.4. The Earth-fixed and
body-fixed coordinate systems coincide at initial
time. A yaw angle �, pitch angle !, and roll
angle � of the vessel must also be introduced.
These angles are called Euler angles. Because the
angles are finite, it matters in which order they are
executed. The usual order is yaw, pitch, and roll,
as illustrated in Figure 10.33. We introduce a coor-
dinate system (x1, y1, z1) with origin in COG and
imagine that the vessel is first oriented so that the
x1-, y1-, and z1-axes are parallel to, respectively,
the XE-, YE- and ZE-axes.

The first step is to rotate the vessel in yaw about
the z1-axis. That brings the x1- and y1-axes
to the x2- and y2-axes. The z2-axis is the same
as the z1-axis.

The second step is to rotate the vessel in pitch
about the y2-axis. That brings the x2- and z2-
axes to the x3- and z3-axes. The y3-axis is the
same as the y2-axis.

The final step is to rotate the vessel in roll about
the x3-axis. That brings the coordinate axis to
the x-, y-, and z-axes.

Having defined the necessary variables describ-
ing the kinematics of the vessel, we will now apply
Newton’s second law. Because Newton’s law refers
to acceleration in an inertial system, we must be
careful in differentiating the body-fixed velocity
components of the vessel with respect to time. We
illustrated that for linear sway and yaw velocities
in connection with Figure 10.9. We can write

dV
dt

= du
dt

i + dv

dt
j + dw

dt
k + u

di
dt

+ v
dj
dt

+ w
dk
dt

.

(10.100)

Here i, j, and k are unit vectors along the body-
fixed coordinate axes x, y, and z, respectively. This
means that the unit vectors change with time rela-
tive to an inertial system. Let us start with showing
how dk/dt can be calculated. By definition,

dk
dt

= lim
�t→0

k(t + �t) − k(t)
�t

. (10.101)

Figure 10.33. The order of the rotation of the Euler
angles �, !, and �. We start with a coordinate system
(x1, y1, z1) that has origin in the center of gravity of the
vessel and axes parallel to the Earth-fixed coordinate
system (XE, YE, ZE) at initial time. When the rotations
are finished, we end up with the body-fixed coordinate
system (x, y, z).

Figure 10.34 shows a first approximation of k at
time t + �t.k has then moved because of the angu-
lar velocity vector Ω of the vessel to a new position
in the Earth-fixed coordinate. As a first approxi-
mation, the head of the k-vector follows a circular
path about the angular velocity vector Ω (see Fig-
ure 10.34). The length AB of the circular path from
t to t + �t can be approximated as

AB = sin α · |Ω| �t. (10.102)

Here |Ω| means the magnitude of the vector Ω
and α is the angle between the Ω-vector and the
k-vector at time t (see Figure 10.34).
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Figure 10.34. Rotating body-fixed frame of reference
(x, y, z) with unit vectors i, j, k. Ω is the angular velocity
vector of the vessel. The unit vector k is shown at time t
and t + �t , where �t is small.

It follows from the definition of a vector cross-
product that

|Ω(t) × k(t)| = |Ω(t)| · |k(t)| sin α. (10.103)

Here |k| is equal to one. Further, the vector Ω(t) ×
k(t) has, as a first approximation, the direction of
the vector k(t + �t) − k(t) with the head in point
B and the origin in point A. Using eq. (10.102) and
(10.103) gives, then,

k(t + �t) − k(t) ≈ Ω(t) × k(t)�t. (10.104)

Using eq. (10.101) results in

dk
dt

= Ω × k. (10.105)

By a similar analysis, we will find that

di
dt

= Ω × i,
dj
dt

= Ω × j. (10.106)

Eqs. (10.105) and (10.106) then give that
eq. (10.100) can be rewritten as

dV
dt

= du
dt

i + dv

dt
j + dw

dt
k + Ω × V. (10.107)

By decomposing eq. (10.107), it follows from New-
ton’s second law that

M(u̇ + qw − rv) = X − Mg sin !

M(v̇ + ru − pw) = Y + Mg cos ! sin �

M(ẇ + pv − qu) = Z + Mg cos ! cos �
(10.108)

Here M is the mass of the vessel and (X, Y, Z)
are the hydrodynamic and aerodynamic external
forces acting on the vessel. The other terms on the
right-hand side of eq. (10.108) follow by decom-
posing the weight Mg of the vessel along the body-

fixed coordinate axis. We can show that by means
of Figure 10.33. The gravitational acceleration acts
along the z1-axis. Going to the second drawing
in Figure 10.33, we see that the acceleration of
gravity will have components −g sin ! and g cos !

along the x3- and z3-axes, respectively. There is
no component along the y3-axis. We then use the
last drawing in Figure 10.33. Because the x-axis
coincides with the x3-axis, the x-component of g
is−g sin !. This is consistent with the first equation
in eq. (10.108). Decomposing the z3-component
g cos ! along the y- and z-axes then gives the terms
in the second and third equations of eq. (10.108).

We also need to consider external moments
about the x-, y-, and z-axes. These are related to
the time derivative of the moment of momentum,
that is,

d
dt

∫
r × (V + Ω × r) dM = H, (10.109)

where r = xi + uj + zk and dM is the mass of an
infinitesimally small structural element located at
(x, y, z). The integration in eq. (10.109) is over
the whole structure. Further, H is the external
moment vector with components along the x-, y-,
and z-axes. When differentiating with respect to
time in eq. (10.109), we must once more note that
the unit vectors along the body-fixed coordinate
axis vary with time; see eqs. (10.105) and (10.106).
The details of the derivation are given in Etkin
(1959). By assuming symmetry about the xz-plane,
we have that

I44 ṗ − (I55 − I66) qr − I64(ṙ + pq) = L

I55q̇ − (I66 − I44) r p − I64(r 2 − p2) = M

I66ṙ − (I44 − I55) pq − I64( ṗ − qr) = N
(10.110)

Here Ij j is the moment of inertia of the jth mode
and Ijk is the product of inertia with respect to the
coordinate system (x, y, z) . The expressions are
the same as those presented in eq. (7.37). Further,
L, M, and N are the external moments about the
x-, y-, and z-axes, respectively. We must obviously
not confuse M with the vessel mass in this con-
text. If we limit ourselves to a vessel with constant
forward speed and small sway and yaw velocities,
then eqs. (10.108) and (10.110) are consistent with
eqs. (10.1) and (10.2).

We have not said too much about the external
forces and moments. They are functions of the
unknowns (u, v, w) and (p, q, r) in eqs. (10.108)
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and (10.110) as well as the unknown orientation
of the vessel. It is not an easy task to find con-
sistent nonlinear expressions for external forces
and moments. If the hydrodynamic problem is
solved in the body-fixed coordinate system and
is based on potential flow theory, it would, for
instance, require that Bernoulli’s equation, which
is expressed in an inertial system, is transferred to
a body-fixed coordinate system. Additional terms
will then appear (Kochin et al. 1964).

In the body-fixed coordinate system, the hydro-
dynamic pressure can be expressed as

p
ρ

+ ∂�

∂t
+ 1

2
(∇�)2 − ∇�· (V + Ω

(10.111)
×(xi + yj + zk)) − gz1 = C.

Here � is the velocity potential and ∂�/∂t is cal-
culated in the moving coordinate system, that is,
for a point rigidly connected with the body-fixed
coordinate system Oxyz. The constant C can be
determined by evaluating eq. (10.111) on the free
surface far away from the body, where there is no
flow disturbance and the pressure is atmospheric
(see section 3.2.1). We note that eq. (10.111) dif-
fers from eq. (3.5), which is the Bernoulli equa-
tion for the pressure in an inertial coordinate sys-
tem. Final expressions of nonlinear, nonlifting and
nonviscous hydrodynamic forces and moments on
a maneuvering body in infinite fluid are given in
section 10.10.2.

In order to solve the Euler equations, we need to
derive equations that describe the orientation of
the vessel. Velocity components Ui , Vi , Wi of the
COG along the xi -, yi -, and zi -axes in Figure 10.33
are then introduced. Here the subscript i goes from
1 to 3. We consider the following differential equa-
tions describing the vessel position in the Earth-
fixed coordinate system (XE, YE, ZE):

dXE

dt
= U1,

dYE

dt
= V1,

dZE

dt
= W1. (10.112)

By using the first drawing in Figure 10.33, we see
that

U1 = U2 cos � − V2 sin �

V1 = U2 sin � + V2 cos �

W1 = W2

This can be shown by noting that the rotation
occurs in a plane, that is, similar to Figure 7.10
and resulting eqs. (7.16) and (7.17). The previous

expression can also be expressed as
 U1

V1

W1


 = A


 U2

V2

W2


 ,

where the matrix A is

A =


 cos � − sin � 0

sin � cos � 0
0 0 1


 .

The second drawing gives
 U2

V2

W2


 = B


 U3

V3

W3


 ,

where the matrix B is

B =


 cos ! 0 sin !

0 1 0
− sin ! 0 cos !


 .

The third drawing gives the relationships
 U3

V3

W3


 = C


 u

v

w


 ,

where the matrix C is

C =


 1 0 0

0 cos � − sin �

0 sin � cos �


 .

Using these relationships gives that eq. (10.112)
can be expressed as



dXE
dt

dYE
dt

dZE
dt


 = ABC


 u

v

w




or that

dXE

dt
= u cos ! cos �

+ v(sin � sin ! cos � − cos � sin �)

+ w(cos � sin ! cos � + sin � sin �)

dYE

dt
= u cos ! sin � + v (sin � sin ! sin �

+ cos � cos �) (10.113)

+ w (cos � sin ! sin � − sin � cos �)

dZE

dt
= −u sin ! + v sin � cos ! + w cos � cos !.
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Finally, we need differential equations for !, �,

and �. These can be expressed as (see Etkin
1959)

d!

dt
= q cos � − r sin �

d�

dt
= p+q sin � tan !+r cos � tan ! (10.114)

d�

dt
= (q sin � + r cos �) sec !, cos ! �= 0

We note that the angular velocity transformation
has a singularity for ! = ±90◦. Other formula-
tions may remove this (Fossen 2002). However,
the Euler formulation holds for practical purposes.
We then have presented 12 nonlinear differen-
tial equations given by eqs. (10.108), (10.110),
(10.113), and (10.114) with the 12 unknowns: u, v,

w, p, q, r, XE, YE, ZE, !, �, and �. In order to
solve these equations numerically we need to
specify initial conditions and express the external
forces and moments acting on the vessel. Practi-
cal procedures that partly rely on empirical knowl-
edge are presented by van Walree (1999) and Saito
et al. (1991) for a hydrofoil vessel. This means that
we must consider hydrodynamic loads on the foils,
struts, appendages, and propulsion units in com-
bination with aerodynamic loads on the vessel.
The effect of rudders and foil flaps in combination
with an automatic control system must be incorpo-
rated. As long as the vessel is maneuvering in calm
water, a quasi-steady approach for hydrodynamic
and aerodynamic forces can be followed. How-
ever, Saito et al. (1991) emphasize the importance
of nonlinear saturation effects due to ventilation
and cavitation on the foils and struts.

As another example, consider an SES in a turn.
There is the danger of air leakage from the cushion
as a consequence of the heel (bank) angle. This
can be handled in a way similar to that described
in Chapter 5.

10.9.2 Linearized equation system in six degrees
of freedom

We will use the Euler equation of motion as a
basis and consider small time-dependent devi-
ations from a steady upright equilibrium posi-
tion. The vessel is assumed to be on a straight
course with forward velocity U in the steady con-
dition. The unsteady part of u and the unsteady
velocity components v and w are assumed small

relative to U. We use the notations φ, θ , and ψ

for unsteady roll, pitch, and yaw, respectively.
The order in which these small angles are exe-
cuted in the linear case does not matter. Using
a Taylor expansion in the equation for d!/dt in
eq. (10.114) means that

d!

dt
= q cos � − r sin �

= q
(

1 − 1
2
�2 + · · ·

)
− r (� + · · ·) .

Keeping only linear terms in q, r, !, and � gives
dθ/dt = q, where we have used the small letter
θ for ! to indicate a linear quantity. Following
a similar procedure for the equations for d�/dt
and d�/dt in eq. (10.114) implies dφ/dt = p,

dψ/dt = r. Further, qw, rv, pw, and pv can be
neglected in eq. (10.108). Those terms are prod-
ucts between small quantities. Further, ru ≈ rU
and qu ≈ qU. We can also use the approximations
sin ! ≈ θ , sin � ≈ φ, cos ! ≈ 1, and cos � ≈ 1.
There appears, then, the term Mg, representing
the vessel weight on the right-hand side of the
third equation in eq. (10.108). This is a steady term
that will be balanced by a steady term in the z-
component of the external force. Keeping linear
unsteady terms in eqs. (10.108) and (10.110) gives,
therefore,

Mu̇ = X1 − Mgθ (10.115)

M(v̇ + Uψ̇) = Y1 + Mgφ (10.116)

M(ẇ − Uθ̇) = Z1 (10.117)

I44φ̈ − I46ψ̈ = L1 (10.118)

I55θ̈ = M1 (10.119)

I66ψ̈ − I64φ̈ = N1. (10.120)

The subscript 1 used for X1, Y1, Z1, L1, M1, and N1

means the linear unsteady part of X, Y, Z, L, M,
and N, respectively. By Taylor expansion, as in
eqs. (10.1) and (10.2), we can now express the
forces and moments acting on the vessel as linear
expressions in the motion velocity and accelera-
tion variables, as well as in terms of the unsteady
control angles, such as the rudder angle δ in eqs.
(10.1) and (10.2). However, for a hydrofoil ves-
sel with fully submerged foils, it is not sufficient
with a rudder angle controlling sway and yaw only.
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We need to control the vessel in heave, roll, pitch,
and yaw. This means more than one control angle.
Schmitke and Jones (1972) and Hamamoto et al.
(1993) have presented more details on this linear
equation system for a surface-piercing hydrofoil
craft.

As a consequence of linearity and symmetry
properties of the body, the coupled equations for
surge, heave, and pitch given by eqs. (10.115),
(10.117), and (10.119) will be uncoupled from the
coupled equations for sway, roll, and yaw given by
eqs. (10.116), (10.118), and (10.120) for a vessel
with a mean upright position. The reason is that
the hydrodynamic pressure associated with surge-
heave-pitch and sway-roll-yaw are, respectively,
symmetric and antisymmetric with respect to the
centerplane. Saito et al. (1991) have described how
the linear equation system is combined with a
control system for a hydrofoil vessel with a fully
submerged foil system. Equations similar to those
derived above are used in analyzing the dynamic
behavior of airplanes. A thorough presentation of
this is given by Etkin (1959).

In the next section, we study in more detail
coupled sway-roll-yaw motions of a monohull.
The procedure can be easily generalized to a
catamaran.

10.9.3 Coupled sway-roll-yaw of a monohull

We will generalize the linear slender body theory
presented in section 10.3 to include roll. A body-
fixed coordinate system as shown in Figure 10.5 is
used. Further, the z-axis is positive upward, with
z = 0 in the mean free surface. The center of grav-
ity of the vessel has coordinates (0, 0, zG).

The body-boundary condition given by eq.
(10.18) for coupled sway-yaw motions has to be
modified to account for roll. The ship velocity
due to sway, roll, and yaw has the velocity com-
ponents η̇2 − zη̇4 + xη̇6 and yη̇4 along the y- and
z-axes, respectively. The body-boundary condition
becomes then

∂ϕ

∂n
= n2 (η̇2 + xη̇6)

(10.121)
+ (−zn2 + yn3) η̇4 on C(x).

The free-surface condition is ∂ϕ/∂z = 0 on z = 0.
This means no wave generation and is relevant for
Froude numbers up to approximately 0.2. Further,
ϕ satisfies a 2D Laplace equation in the yz-plane.

We focus on roll and denote the velocity potential
due to roll as ϕ4η̇4. Because the flow problem is
linearly dependent on η̇2, η̇4, and η̇6, we can study
separately the η̇4-dependent term on the right-
hand side of eq. (10.121). It follows then that ϕ4

satisfies

∂ϕ4

∂n
= n4 on C(x), (10.122)

where

n4 = −zn2 + yn3. (10.123)

Two-dimensional added mass in roll a44 and cou-
pled added mass between sway and roll a24 are
needed as a part of the analysis. We will show
how a44 and a24 are related to ϕ4. The procedure
described in section 7.2.1 is then followed, and the
hydrodynamic pressure due to roll velocity with-
out the presence of forward speed is considered,
that is,

p = −ρ
∂

∂t
(ϕ4η̇4) = −ρϕ4η̈4. (10.124)

This gives a 2D horizontal force,

−
∫
C

pn2 dS = ρ


∫

C

ϕ4n2


 η̈4. (10.125)

The coupled added mass between sway and roll is
by definition (see eq. (7.39)) equal to

a24 = −ρ

∫
C

ϕ4n2 dS. (10.126)

Similarly, we consider the roll moment −∫
C pn4 dS.

This gives

a44 = −ρ

∫
C

ϕ4n4 dS. (10.127)

We will also need the coupled added mass between
roll and sway, that is, a42. This follows by analyz-
ing the pressure −ρ∂ (ϕ2η̇2) /∂t due to forced sway
velocity and the resulting roll moment, that is,

a42 = −ρ

∫
C

ϕ2n4 dS. (10.128)

We will show by using Green’s second identity that
a42 = a24. We start out with eq. (6.23) and set ψ =
ϕ2 and ϕ = ϕ4. Because ϕ2 and ϕ4 both satisfy the
2D Laplace equation, it follows that∫
C+SF +S∞

ϕ2
∂ϕ4

∂n
dS =

∫
C+SF +S∞

ϕ4
∂ϕ2

∂n
dS. (10.129)
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Figure 10.35. Surfaces C, SF , and S∞ used in applying Green’s second identity to show symmetry
properties of 2D cross-coupling terms in sway- and roll-added mass. ϕ j , j = 2 and 4 are velocity
potentials due to unit sway and roll velocity, respectively.

Here, C + SF + S∞ is a closed surface, S∞ is a con-
trol surface at infinity, and SF is the mean free sur-
face (Figure 10.35). Because both ϕ4 and ϕ2 satisfy
a rigid free-surface condition, that is, ∂ϕ j/∂z = 0,
j = 2,4 on z = 0, the integration along SF does not
contribute to eq. (10.129). Further, ϕ2 and ϕ4 go to
zero at infinity and it can be shown that the inte-
grals along S∞ are zero. If we use that ∂ϕ4/∂n = n4.

and ∂ϕ2/∂n = n2 on C, it follows that∫
C

ϕ2n4 dS =
∫
C

ϕ4n2 dS. (10.130)

Using eqs. (10.126) and (10.128) gives that
a42 = a24.

The added mass coefficient can be deter-
mined by, for instance, a boundary element
method (BEM). Approximate expressions can
be obtained by the Lewis form technique. Grim
(1955) showed that

a44 = ρπ

8

(
b
2

)4

×

128

π2

[
a2

1 (1 + a3)2 + 8
9 a1a3 (1 + a3) + 16

9 a2
3

]
(1 + a1 + a3)4




(10.131)

a24 = a42 = ρ
8

3d

(
b
2

)4 [
a1(1 − a1)(1 + a3) + a1a3(1 + a3)0.6 + a3(1 − a1)0.8 − 1.714a2

3

]
(1 − a1 + a3)

(1 + a1 + a3)4
.

(10.132)

The Lewis form coefficients a1 and a3 are defined
in connection with eq. (8.89) in terms of the cross-
sectional area A, beam b, and draft d. Require-
ments for a Lewis form to exist are also given in
connection with eq. (8.89).

Figure 10.36 presents nondimensional values of
a24 and a44 as a function of b/d when A/(bd) = 0.6.
We note that a44 becomes small and has a mini-
mum for b/d close to 2. a24 changes sign close to
this minimum value of a44.

We consider now the 2D hydrodynamic roll
moment f HD

44 and sway force f HD
24 on a cross sec-

tion of the vessel due to roll velocity when the
vessel has a constant forward speed. This can be
derived in a similar way as eqs. (8.87) and (10.19),
that is,

f HD
44 = −

(
∂

∂t
+ U

∂

∂x

)
[a44η̇4] (10.133)

f HD
24 = −

(
∂

∂t
+ U

∂

∂x

)
[a24η̇4] . (10.134)

Further, there exist 2D hydrodynamic roll
moments f HD

42 and f HD
46 on a cross section as the

result of sway and yaw, respectively. They can be
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Figure 10.36. Two-dimensional added mass in roll a44 and coupled added mass a24 between sway and
roll for Lewis form cross sections with beam b, draft d, and cross-sectional area A. The calculations are
with rigid free-surface conditions and when A/(bd) = 0.6. The coefficients are defined with respect to
a coordinate system y-z with origin in the mean free surface and z positive upward. The z-axis is in the
centerline (see Figure 10.6).

expressed as

f HD
42 = −

(
∂

∂t
+ U

∂

∂x

)
[a42η̇2] (10.135)

f HD
46 = −

(
∂

∂t
+ U

∂

∂x

)
[a42xη̇6] . (10.136)

Integrating eqs. (10.133), (10.135), and (10.136)
along the length L of the ship gives the hydro-
dynamic roll moment

F HD
4 = −


∫

L

a42 dxη̈2 +
∫
L

a44 dxη̈4

+
∫
L

a42x dxη̈6 + Ua42(xT) η̇2 (10.137)

+Ua44 (xT) η̇4 + UxTa42(xT) η̇6


 .

Here xT is the x-coordinate of the transom stern.
Further, eq. (10.134) gives the following hydrody-
namic sway force due to roll:

F HD
24 = −


∫

L

a24 dxη̈4 + Ua24 (xT) η̇4


 .

(10.138)

Then we take the yaw moment F HD
64 based on

eq. (10.134). This means the equation is multiplied
by x and then integrated over the ship length. We
get in a way similar to how eq. (10.22) was derived
that

F HD
64 = −




∫
L

xa24 dxη̈4

(10.139)

+ U


xTa24(xT) −

∫
L

a24 dx


 η̇4


 .
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Introducing the definition of added mass and
damping coefficients given by eq. (7.39), we have
by using eqs. (10.137) through (10.139)

A24 =
∫
L

a24 dx; B24 = Ua24(xT) (10.140)

A42 =
∫
L

a42 dx; B42 = Ua42(xT) (10.141)

A44 =
∫
L

a44 dx; B44 = Ua44(xT) (10.142)

A46 =
∫
L

a42x dx; B46 = UxTa42(xT) (10.143)

A64 =
∫
L

a24x dx; B64 = − U A24 + UxTa24 (xT) .

(10.144)

The added mass and damping coefficients in the
linear sway-roll-yaw maneuvering equations of
a slender ship can then, according to slender
body theory, be expressed by eqs. (10.33) through
(10.36) and eqs. (10.140) through (10.144). How-
ever, this approach does not account for viscous
effects, which have to be experimentally or empir-
ically determined.

When formulating the linear maneuvering
equations, we must also consider the effect of
hydrostatic and steady hydrodynamic pressure
and the fact that the origin of our coordinate sys-
tem is not in the center of gravity (COG).

Because the vertical force on the hull due to the
hydrostatic and steady hydrodynamic pressures
balances the weight Mg of the vessel, we can disre-
gard the Mgφ term in eq. (10.116). However, there
are additional linear restoring terms due to roll.
They are a consequence of the fact that the hydro-
static and steady hydrodynamic pressure distribu-
tion on the hull is a function of the heel angle. This
is further discussed in the following text.

Because η̇2 − zGη̇4 is the sway velocity of COG,
the sway equation (10.116) can with the present
notation be expressed as

(M + A22)
d2η2

dt2
+ B22

dη2

dt

+ (−MzG + A24)
d2η4

dt2
+ B24

dη4

dt
(10.145)

+ C24η4 + A26
d2η6

dt2

+ (−MU + B26)
dη6

dt
= F S

2 .

The restoring coefficient C24 is a result of the
steady hydrodynamic pressure and will be small
at moderate speed when our slender body theory
is valid. F S

2 is the control force in sway.
Eqs. (10.118) and (10.120) can be modified as

(−MzG + A42)
d2η2

dt2
+ B42

dη2

dt

+ (I44 + A44)
d2η4

dt2
+ B44

dη4

dt
+ C44η4

(10.146)

+ (−I46 + A46)
d2η6

dt2

+ (MzGU + B46)
dη6

dt
= F S

4

A62
d 2η2

dt2
+ B62

dη2

dt
+ (−I64 + A64)

d 2η4

dt2

+ B64
dη4

dt
+ C64η4 + (I66 + A66)

d 2η6

dt2
(10.147)

+ B66
dη6

dt
= F S

6 ,

where the moment of inertia Ij j and product of
inertia Ijk are with respect to the coordinate sys-
tem (x, y, z) and defined by eq. (7.37). F S

4 and
F S

6 are the control roll and yaw moments, respec-
tively. We should note that there are also hydro-
dynamic forces and moments on a rudder due to
sway, roll, and yaw (see section 10.8). These should
be added to the left-hand sides of eqs. (10.145)
through (10.147). The restoring coefficient C44 can
be expressed as

C44 = ρg∇GM + CD
44, (10.148)

where ∇ is the displaced volume and the trans-
verse metacentric height GM is defined by eq.
(7.41). The restoring coefficients CD

44 and C64 are
a result of the steady hydrodynamic pressure and
are small at moderate speed. How C44 varies with
U for the different vessels is illustrated indirectly
in Figure 7.41. The static heel angle can be approxi-
mated as F4/C44, where F4 is a given constant heel
moment. Because the heel angle increases with
increasing Froude number, CD

44 is negative and
decreases with increasing Froude number for all
the cases presented in Figure 7.41. However, this
trend is not universal for all vessels. Lewandowski
(1997) presented experimental results for hard-
chine planing hulls showing a different trend as
a function of Froude number at planing speeds.
For instance, a minimum heel restoring moment
occurring between volumetric Froude numbers
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Fv = U/
√

g∇1/3 of 2 and 3 was characteristic for
the studied Series 62 hulls.

The restoring coefficients C24 and C64 are impor-
tant when the steady heel of a semi-displacement
vessel generates large asymmetric bow waves.
Müller-Graf (1997) has described a scenario such
as this. The bow waves become substantially
higher at the immersed side than at the emerged
side of the hull. The center of pressure of the
steady side force will be close to the bow. For
instance, if the vessel heels to the port, the steady
yaw moment will turn the bow to starboard; that
is, the largest hydrodynamic pressures occur on
the hull side where the bow waves are largest.
Eqs. (10.145) through (10.147) are consistent with
Lewandowski (1997) and Haarhoff and Sharma
(2000). However, they used standard maneuvering
nomenclature and did not express the added mass
and damping coefficients by slender body theory.

By setting F S
2 , F S

4 , and F S
6 equal to zero in the

linear maneuvering equations, assuming a solu-
tion of the form exp(st), we can study the coupled
sway-roll-yaw stability of the ship. This means we
write dη2/dt = η̇2a exp(st), η4 = η4a exp(st), and
dη6/dt = η̇6a exp(st). This leads to a linear equa-
tion system for η̇2a, η4a , and η̇6a with the unknown
η̇2a , η4a , and η̇6a on the left-hand side. Because the
right-hand side of this equation system is zero and
we are interested in the nontrivial solutions, these
can be obtained by enforcing the coefficient deter-
minant to be zero. This is similar to what we did in
analyzing eq. (10.37). The condition for nontrivial
solutions is then

det

∣∣∣∣∣∣∣
(M + A22) s + B22 (−MzG + A24) s2 + B24s + C24 A26s + (−MU + B26)

(−MzG + A42) s + B42 (I44 + A44) s2 + B44s + C44 (−I46 + A46) s + (MzGU + B46)
A62s + B62 (−I64 + A64) s2 + B64s + C64 (I66 + A66) s + B66

∣∣∣∣∣∣∣ = 0.

(10.149)

This gives the fourth-degree polynomial equation

A′s4 + B′s3 + C′s2 + D′s + E′ = 0. (10.150)

This is similar to eq. (9.85), used in the porpoising
stability analysis. However, the coefficients A′,B′,
C′, D′, and E′ are obviously different. The stabil-
ity can be studied by means of the Routh-Hurwitz
stability criterion given by eq. (9.87). Haarhoff and
Sharma (2000) studied the coupled sway-roll-yaw
stability and stated that three of the four stability
criteria given by eq. (9.87) are fulfilled for real-
istic conventional hull forms and that it is only

necessary to study if E′ > 0 to ensure stability.
Even though we cannot be sure about this for any
high-speed monohull at any speed, we will limit
the discussion to a study of E′.

It follows from eqs. (10.149) and (10.150) that
the stability criterion is

E′ = ρg∇GM [B22 B66 − B62 (−MU + B26)]

+ {
B22

[
CD

44 B66 − C64 (MzGU + B46)
]

− C24 [B42 B66 − B62 (MzGU + B46)]

+ (−MU + B26)
[
B42C64 − B62CD

44

]}
> 0.

(10.151)

When the ship speed is small or moderate, let us
say the Froude number Fn is less than 0.2, we can
use the slender body theory to estimate the damp-
ing coefficients. Because the restoring coefficients
C24, CD

44, and C64 are negligible for small Fn, eq.
(10.151) gives

ρg∇GM[B22 B66 − B62(−MU + B26)] > 0

(10.152)

as a criterion for directional stability of a slow
ship. Because GM is obviously positive because
of static heel stability requirements, eq. (10.152)
is consistent with the criterion for dynamic sway-
yaw stability discussed in section 10.3.3. When
the ship speed increases, the restoring coefficients
C24, CD

44, and C64 due to heel get increased impor-
tance in determining the dynamic stability. This
is particularly true if GM is low. We see that by
studying how the terms in eq. (10.151) depend on
the forward speed U. If the previously described

slender body theory is used, the damping coef-
ficients are proportional to U. This is based on
neglecting the generation of free-surface waves,
that is, the effect of Froude number. The restor-
ing coefficients C24, CD

44, and C64 depend on the
steady hydrodynamic pressure, which is propor-
tional to U2 when the generation of free-surface
waves is negligible. Even though we are interested
in Froude numbers in which wave generation mat-
ters, we will as a first approximation assume that
Bjk is proportional to U and C24, CD

44, and C64 are
proportional to U2. This means that the first term
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in E ′ involving GM is proportional to U2 and the
rest of the expression for E′ is proportional to U4.

It implies that the first term gets reduced impor-
tance with increased speed, particularly if GM is
small.

Eq. (10.151) indicates that a possible scenario
is a ship that is stable at low Froude number
and high GM, but becomes unstable with increas-
ing speed and/or decreasing metacentric height
(Haarhoff and Sharma 2000). This is consistent
with what has been reported in the literature, that
is, Eda (1980). Haarhoff and Sharma (2000) also
described another less likely but not impossible
scenario in which the vessel is unstable at low
Froude number and high GM but can become sta-
ble with increasing speed and/or decreasing trans-
verse metacentric height.

We need experimental results of Bjk and Cjk as
a function of Froude number in order to quantify
the dynamic coupled sway-roll stability of a vessel
at high speed by means of eq. (10.151). Because
Bjk and Cjk are functions of trim and sinkage, we
must also know how the trim and sinkage vary with
the Froude number.

Lewandowski (1997) has presented semi-
empirical added mass, damping, and restoring
coefficients for prismatic planing vessels at plan-
ing speed. The coefficients are expressed as func-
tions of the beam and deadrise angle, and the
speed, trim angle, and transom draft, which can be
determined by Savitsky’s (1964) method (see sec-
tion 9.2.2). Formulas for appendages are also pro-
vided. Lewandowski (1997) recommends that all
four Routh-Hurwitz stability criteria based on eq.
(10.150) be examined. Further, studies of dynamic
loss of transverse stability should not be restricted
to the highest operating speed. Systematic cal-
culations are reported, and maximum distance
between the keel and the center of gravity KG
(KGmax) for stable behavior is presented. Com-
parisons are made with experimental results of a
free-running radio-controlled model representing
a 22.5-m hard-chined patrol boat. The volumet-
ric Froude number varied between 1.3 and 4, and
experimental KGmax was about 60% of the beam
B. The linear stability analysis shows generally
good agreement with observed capsizes. Because
a linear stability analysis assumes small deviations
from the equilibrium position, it cannot predict
the details of the highly nonlinear capsize pro-
cess. The linear stability analysis can only sug-

gest when a dangerous situation may occur. A lin-
ear instability does not always lead to capsizing.
Lewandowski’s systematic stability calculations
for Series 62 models at planing speed show that
the ratio KGmax/B increases with either decreas-
ing length-to-beam ratio or decreasing deadrise
angle. A simple method to check the transverse
dynamic stability of a proposed design is also pre-
sented by Lewandowski (1997). More experimen-
tal data for hydrodynamic coefficients are needed
at planing speed in order to bridge the gap between
zero and planing speeds. If the vessel is turn-
ing at high speed, the resulting mean heel angle
implies that coupled motions in six degrees of free-
dom must be considered in the dynamic stability
analysis.

Unstable oscillatory sway-roll-yaw motions are
known to operators of high-speed vessels as “cork-
screwing” and make it difficult to steer the ves-
sel. A more dangerous situation is “calm water
broaching” (Müller-Graf 1997). This is a nonoscil-
latory sway-roll-yaw instability occurring at higher
speeds than the oscillatory “cork-screw” instabil-
ities. The loss of steady restoring moment in heel
with speed causes a sudden list of the vessel to one
side followed by a violent yaw to the other side.
The consequence may be capsizing. The stopped
vessel may be overrun by the stern wave system
and may create a dangerous situation for small
craft (Müller-Graf 1997). Calm water broaching
is the main reason round-bilge hulls should not
operate beyond a Froude number of 1.2 (Lavis
1980).

10.10 Exercises

10.10.1 Course stability of a ship in a canal

Let us consider a ship moving in a canal with con-
stant cross section, and let the coordinate axis OXE

in Figure 10.4 be along the centerline of the canal.
The presence of the canal introduces a side force
and yaw moment on the ship, which by lineariza-
tion can be expressed as the terms YYE YE(t) and
NYE YE(t) appearing on the right-hand side of eqs.
(10.1) and (10.2), respectively.

Use the Routh-Hurwitz criterion (see eq.
(9.87)) to express the conditions for course sta-
bility of the ship in terms of the coefficients in
the equations of motions of the vessel in the
canal.
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10.10.2 Nonlinear, nonlifting, and nonviscous
hydrodynamic forces and moments on a
maneuvering body

Kochin et al. (1964) presented expressions for
the nonlinear, nonlifting, and nonviscous hydrody-
namic force and moment on a maneuvering body
in infinite fluid. A body-fixed Cartesian coordinate
system with origin in O is introduced. The veloc-
ity vector of an arbitrary point M of the body is
expressed as

u = V + Ω × r, (10.153)

where V is the velocity vector of the point O, r is
the radius vector from M to O, and Ω is the vector
of the angular velocity of rotation of the body. We
express

V = (V1, V2, V3), Ω = (V4, V5, V6), (10.154)

where V1, V2, and V3 mean the components of V
along the body-fixed coordinate axis. V4, V5, and
V6 have similar meaning for Ω. We introduce

Bj =
6∑

k=1

AjkVk, j = 1, . . . 6. (10.155)

Here Ajk means added mass coefficients. These
can be calculated by, for instance, a 3D boundary
element method (BEM). We define the vectors

B = (B1, B2, B3) , I = (B4, B5, B6) . (10.156)

The hydrodynamic force vector F acting on the
body is

F = −∂B
∂t

− Ω × B (10.157)

and the hydrodynamic moment vector M with
respect to the body-fixed coordinate system is

M = −∂I
∂t

− Ω × I − V × B. (10.158)

a) Consider a ship that maneuvers in the horizon-
tal plane. The water has infinite depth and horizon-
tal extent. The Froude number is assumed mode-
rate so that the rigid free-surface condition applies.
Use eqs. (10.157) and (10.158) to express consis-
tently with Figure 10.5 the yaw moment and the
longitudinal and transverse forces on the ship in
terms of the yaw angular velocity and the lon-
gitudinal and lateral components of ship veloc-
ity. The expressions should account for the fact

that the hull is symmetric about the body-fixed
xz-plane defined in Figure 10.4. You must explain
why this causes some of the coupled added mass
coefficients Ajk to be zero. (Hint: Start with how
added mass was explained in section 7.2.1 and dis-
cuss symmetry and antisymmetry of the flow with
respect to the xz-plane due to forced surge, sway,
and yaw velocity.)

The answer is

X = −A11u̇ + (A22v + A26ψ̇)ψ̇

Y = −A22v̇ − A26ψ̈ − A11uψ̇ (10.159)

N = −A62v̇ − A66ψ̈ + (A11 − A22)vu − A26uψ̇.

Here X, Y, N, u, v, and r = ψ̇ are consistent with
Figure 10.4 and Ajk are the low-frequency added
mass coefficients for the ship.

Modify eq. (10.159) by introducing lifting terms
consistent with linear slender body theory.

b)Why can we not apply the infinite fluid results by
Kochin et al. (1964) to the roll of a ship moving at
moderate Froude number? Consider now the free-
surface condition that the velocity potential due to
body motion is zero on the mean free surface. Use
the infinite fluid results to derive hydrodynamic
transverse force, roll, and yaw moment due to roll.

10.10.3 Maneuvering in waves and broaching

We will consider the hydrodynamic loads during
maneuvering of a monohull at moderate speed in
linear regular deep-sea waves with a wavelength λ

that is long relative to the cross dimensions of the
vessel.

a)Show by making a coordinate transformation
of the results in Table 3.1 that the incident wave
potential can be represented as

ϕ0 = gζa

ω0
ekz cos(ωet − kx cos β − ky sin β + ε)

(10.160)

in the body-fixed coordinate system defined in
Figure 10.5 with z = 0 in the mean free surface
and positive z upward. Here

ωe = ω0 + ku cos β,k = ω2
0

g
= 2π

λ
, (10.161)

where u is the forward speed component of the
vessel along the negative x-axis. Further, β is the
wave propagation direction measured relative to
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the x-axis, so that β = 0◦ is head sea and β = 180◦

is following sea.

b) The wave-induced hydrodynamic loads can
be divided into Froude-Kriloff and diffraction
loads (see section 7.2). We consider first the
Froude-Kriloff loads, that is, the loads following
by integrating the pressure loads of the incident
waves. Consider the horizontal Froude-Kriloff
force f F K

2 per unit length on a cross section of
the vessel. Show that this can be approximated
as

f F K
2 = ρ A(x) a2 (10.162)

for long wavelengths relative to the cross-sectional
dimension. Here A(x) is the mean submerged
cross-sectional area and

a2 = ω2
0 sin βekzmζa cos(ωet − kx cos β + ε),

(10.163)

where zm is the z-coordinate of the centroid of
A(x).

(Hint: Use the generalized Gauss theorem given
by eq. (2.205).)

c)Linear sway and yaw motions and small ωe are
assumed. Explain that the horizontal diffraction
force follows from modifying eq. (10.19) as

f2 = −
(

∂

∂t
+ U

∂

∂x

)
[a22 (η̇2 + xη̇6 − v2)] ,

(10.164)

where

v2 = ω0ζaekzm sin β sin(ωet − kx cos β + ε).

(10.165)

Which part is the diffraction force per unit length?
You must argue that the diffraction potential sat-
isfies a rigid free-surface condition.

d)Express the wave-induced transverse force and
yaw moment on the ship.

e)We will now study broaching in following waves
at zero frequency of encounter. Broaching is
caused by directional instability. We express β as
π − η6, where η6 is the yaw angle. Hydrodynamic
forces and moments that are linear in η6 will be
derived. Show that v2 given by eq. (10.165) can
then be approximated as

v2 ≈ ω0ζaekzmη6 sin(ε + kx).

Express ε as π/2 + ka and explain that x = −a
corresponds to a wave crest.

In order to study the directional stability in
waves, you must first formulate the linear equa-
tions of motions in yaw and sway. When doing
this, you should assume a PD controller (see eq.
(10.80)) and include rudder forces and moment.

Derive the characteristic equation that deter-
mines the eigenvalues.

Does the directional stability depend on the
position of the vessel in waves?

10.10.4 Linear coupled sway-yaw-roll motions
of a monohull at moderate speed

Coupled sway-roll-yaw was analyzed in section
10.9.3 by using seakeeping nomenclature and a
coordinate system that differs from the traditional
maneuvering coordinate system.

a)Consider the body-fixed coordinate system
(x, y, z) and the nomenclature for velocity, angular
velocity, and external forces and moments defined
in Figure 10.32. Start out with the slender body
results for added mass and damping given by eqs.
(10.33) through (10.36) and eqs. (10.140) through
(10.144), and express the hydrodynamic derivative
terms Yṗ, Yp, Lv̇ , Lv, Lṗ, Lp, Lṙ , Lr , Nṗ, and Np.

(Hints: You must transfer the added mass (Ajk)
and damping (Bjk) coefficients to a coordi-
nate system with origin in the center of gravity.
This means you must consider forced velocities,
forces, and moments with respect to this coor-
dinate system. You must then realize the differ-
ences in positive signs of velocities, forces, and
moments between Figure 10.32 and the coordi-
nate system used in section 10.9.3.

b)Consider a ship in steady state turning with heel.
Generalize the analysis in section 10.3.5 to include
the effect of heel and derive an expression for the
yaw rate. Discuss why E ′ given by eq. (10.151) is
an important part of the analysis.

10.10.5 High-speed motion in water of an
accidentally dropped pipe

Pipes may be accidentally dropped from offshore
platforms used for oil and gas production. Pipe
impact may cause damage to risers and subsea
equipment. The drop height above the mean water
level may vary from 20 to 60 m. The orientation
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Figure 10.37. Nomenclature and coordinate systems of
motions of a slender pipe in the Earth-fixed X-Z–plane.
The body-fixed coordinate system (x, z) has origin in the
center of gravity of the pipe. U1 and U3 are translatory
velocity components of the pipe along the x- and z-axes,
respectively. �2 is the rate of turn of the pipe.

of the pipe when it hits the water surface is
an unknown parameter. The water entry of the
pipe will subsequently change the orientation and
velocity of the pipe. We will focus on the next
phase, when the pipe is completely submerged and
has no influence on the free surface. The situation
is illustrated in Figure 10.37. We assume 2D flow
in the global vertical X-Z–plane. The X- and Z-
coordinates of the center of gravity of the pipe
are denoted XG and ZG. We introduce a body-
fixed coordinate system (x, y, z) as illustrated in
Figure 10.37. The origin is in the center of grav-
ity of the pipe. The pipe has translatory velocity
components U1 and U3 along the x- and z-axes,
respectively. The angle of the pipe axis relative to
the X-axis is denoted β, and the angular velocity
of the pipe about the y-axis is called �2.

We can then set up the following relationships:

dXG

dt
= U1 cos β + U3 sin β (10.166)

dZG

dt
= U3 cos β − U1 sin β (10.167)

dβ

dt
= �2. (10.168)

We will first assume the pipe has end caps. The
following three equations follow from Newton’s
second law:

(M + A11)
dU1

dt
= FDx − (M − ρ∇) g sin β + Fx?

(10.169)

(M + A33)
dU3

dt
= − |U1| U3a33T

+ U1 (xTa33T + M) �2 (10.170)

+ FDz + (M − ρ∇) g cos β + Fz?

(I55 + A55)
d�2

dt
= U1 (A33 + xTa33T)

× U3 − xTa33T�2 |U1| (10.171)

+ MDy + Mz?.

Here the longitudinal viscous force can be
expressed as

FDx = −0.5ρCFπ DLU1 |U1| − ρ

8
πCDx D2U1 |U1| ,

(10.172)
where

CF = 0.0015 +
(

0.30 + 0.015
(

2L
D

)0.4
)

Rn−1/3.

(10.173)

The CF -value assumes turbulent axisymmetric
flow along a smooth surface (White 1972). Rn
means the Reynolds number. Further, CDx is a
base drag coefficient that may be set equal to 0.65
(Hoerner 1965). FDz and MDy in eqs. (10.170) and
(10.171) also represent viscous loads. The mass
of the pipe is called M, and we will assume uni-
form mass distribution. In eqs. (10.169) through
(10.171), we have not explicitly expressed all the
mass and added mass terms. The latter terms are
simply denoted Fx?, Fz?, Mz?.

a)Explain the different terms in eqs. (10.169)
through (10.171). Expressions for Fx?, Fz?, and Mz?

should be presented. Use the cross-flow princi-
ple to formulate the viscous terms FDz and MDy

in eq. (10.170) and eq. (10.171), respectively. One
should make a special effort to explain why |U1|
appears in the equations.

b)Assume now that the pipe has no end caps and
there is a flow through the pipe. Consider the spe-
cial case of steady incident flow with a constant
small angle of attack relative to the cylinder axis
and assume that the inner diameter of the pipe is
equal to the outer diameter.

Show by slender body theory that the lift force with
interior flow is twice the lift force on the same pipe
with end caps.
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APPENDIX

Units of Measurement and Physical
Constants

The fundamental units of measurement in mecha-
nics are mass, length, and time. The basic units in
the SI system are kilograms (kg), meters (m), and
seconds (s) for mass, length, and time, respectively.
Special names are given to derived units in the SI
system. The unit force is one newton (N), which is
equal to one kilogram-meter per second squared
(kgms−2). One pascal (Pa) is the unit of pressure
and stress. This is the same as one newton per
meter-squared (Nm−2). The unit of work or energy
is one joule (J), that is, one newton-meter (Nm).
The unit power is one watt (W), equal to one joule
per second (Js−1). Prefixes denote decade factors,
such as kilo- (k) for 103, mega- (M) for 106, giga-
(G) for 109,tera- (T) for 1012, centi- (c) for 10−2,
milli- (m) for 10−3, and micro- (µ) for 10−6.

Table A.1 presents the relationship between the
SI system and some other commonly used mea-
surement systems. Table A.2 lists values of density
and viscosity of water and air, whereas Table A.3
shows how the vapor pressure varies with the tem-
perature. The standard acceleration of gravity (g)
is equal to 9.80665 ms−2. The standard atmos-
pheric pressure at sea level is 1.01325 × 105 Nm−2.
The surface tension of the interface between
air and water varies between 0.076 Nm−1 and
0.071 Nm−1 for the temperature range 0◦ to 30◦C.
Representative values for speed of sound in water
and air are 1500 ms−1 and 340 ms−1, respectively.
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Table A.1. Conversion factors for different units of measurement

Quantity SI unit Other unit Inverse factor

Length 1 m 3.281 feet (ft) 0.3048 m
1 km 0.540 nautical miles 1852 m

Area 1 m2 10.764 ft2 0.0929 m2

Volume 1 m3 35.315 ft3 0.0283 m3

1 m3 264.2 gallons (US) 0.00379 m3

1 m3 220.0 gallons (UK) 0.00455 m3

Velocity 1 ms−1 3.281 fts−1 0.305 ms−1

1 ms−1 1.944 knots 0.514 ms−1

Mass 1 kg 2.205 pounds 0.454 kg
1000 kg 0.984 tons (long) 1016 kg
1000 kg 1 tonne (metric) 1000 kg

Force 1 N 0.225 pound-force 4.448 N
1 N 0.1020 kg-force (kgf) 9.807 N
1 MN 102.0 tonne-force 9807 N
1 MN 100.4 ton-force 9964 N

Pressure 1 Nm−2 0.000145 psi (pounds
per square inch)

6895 Nm−2

1 Nm−2 10−5 bar 100 kNm−2

Energy 1 J 0.738 foot-pounds 1.356 J
1 W 0.00134 horsepower 745.7 W

Table A.2. Mass density (ρ) and kinematic viscosity (ν) of water and air

Freshwater Saltwater (salinity 3.5%) Dry air

Temperature ρ(kg m−3) ν · 106(m2s−1) ρ(kg m−3) ν · 106(m2s−1) ρ(kg m−3) ν · 106(m2s−1)

0◦C 999.8 1.79 1028.0 1.83 1.29 13.2
5◦C 1000.0 1.52 1027.6 1.56 1.27 13.6

10◦C 999.7 1.31 1026.9 1.35 1.25 14.1
15◦C 999.1 1.14 1025.9 1.19 1.23 14.5
20◦C 998.2 1.00 1024.7 1.05 1.21 15.0

Table A.3. Vapor pressure of water for
various temperatures (Breslin and
Andersen 1994)

Temperature
Vapor pressure,

◦C ◦F pV(Nm−2)

0 32 610.8
5 41 871.8

10 50 1227.1
15 59 1704.0
20 68 2336.9
25 77 3166.6
30 86 4241.4
35 95 5622.2
40 104 7374.6
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Turbulenz, Nachr. Ges. Wiss. Goett, Math-Phys. Kl.,
58–76.

Kashiwagi, M., 1993, Heave and pitch motions of a cata-
maran advancing in waves, In Proc. FAST’93, ed. K.
Sugai, H. Miyata, S. Kubo, H. Yamata, Vol. 1, pp. 643–
55, Tokyo: The Society of Naval Architects of Japan.

Katayama, T., 2002, Experimental techniques to assess
dynamic unstability of high-speed planing craft, non-
zero heel, bow-diving, porpoising and transverse por-
poising, In Proc. Sixth Int. Ship Stability Workshop,
Jersey City, N.J.: The Society of Naval Architects and
Marine Engineers.

Katayama, T., Hinami, T., Ikeda, Y., 2000, Longitudinal
motion of a super high-speed planing craft in regu-
lar head waves, In Proc. Fourth Osaka Colloquium on
Seakeeping Performance of Ships, pp. 214–20. Osaka,
Japan: Dept. of Naval Architecture and Ocean Engi-
neering, Osaka University.

Kato, H., 1996, Cavitation, In Advances in Marine
Hydrodynamics, ed. M. Ohkusu, Ch. 5, pp. 233–
77, Southampton: Computational Mechanics Publica-
tions.

Kerczek, C. von, Tuck, E. O., 1969, The representation
of ship hulls by conformal mapping functions, J. Ship
Res., 13, 4, 284–98.

Kerwin, J. E., 1991, Hydrofoils and propellers. Lecture
notes, Dept. of Ocean Engineering, MIT, Cambridge,
Massachusetts.

Kerwin, J. E., Lee, C-S., 1978, Prediction of steady and
unsteady marine propeller performance by numerical
lifting-surface theory, Trans. SNAME, 86, 218–53.

Keuning, J. A., Gerritsma, J., 1982, Resistance tests
of a series planing hull forms with 25 degrees
deadrise angle, Intern. Shipbuilding Progr., 29, 337,
222–49.



P1: GDZ
0521845688ref CB921-Faltinsen 0 521 84568 7 October 20, 2005 17:17

References • 443

Keuning, J. A., Gerritsma, J., Terwisga, P. F. van, 1993,
Resistance tests of a series planing hull forms with 30
degrees deadrise angle and a calculation method based
on this and similar systematic series, Intern. Shipbuild-
ing Progr., 40, 424, 333–82.

Kijima, K., Furukawa, Y., 2000, Ship maneuvering per-
formance in waves, in Contemporary Ideas on Ship
Stability, ed. D. Vassalos, N. Hamamoto, A. Papaniko-
laous, D. Molyneux, pp. 435–48, Amsterdam: Elsevier
Science Ltd.

Kinnas, S. A., 1996, Theory and numerical methods
for the hydrodynamic analysis of marine propul-
sors, In Advances in Marine Hydrodynamics, ed. M.
Okkusu, Ch. 6, pp. 279–323, Southampton: Com-
putional Mechanics Publications.

Kinsman, B., 1965, Wind Waves, Englewood Cliffs, N.J.:
Prentice-Hall Inc.

Klotter, K., 1978, Technische Schwingungslehre. Erster
Band: Einfache Schwinger. Teil A: Lineare Schwingun-
gen, Berlin, Heidelberg and New York: Springer-
Verlag.

Kochin, N. E., Kibel, I. A., Roze, N. V., 1964, Theoretical
Hydromechanics, New York: Interscience Publishers.

Koehler, B. R., Kettleborough, 1977, Hydrodynamics of
a falling body upon a viscous incompressible fluid, J.
Ship Res., 20, 190–8.

Kotik, J., Mangulis, V., 1962, On the Kramers-Kronig
relations for ship motions, Intern. Shipbuilding Progr.,
9, 97, 183–94.

Koumoutsakas, P., Leonard, A., 1995, High-resolution
simulations of the flow around an impulsively started
cylinder using vortex methods, J. Fluid Mech., 296,
1–38.

Koushan, K., 1997, Beitrag Zum Kanaleinfluss bei
Tragflügelversuchen, Dr.ing thesis, Technische Uni-
versität Berlin.

Krasny, R., 1987, Computation of vortex sheet roll-up in
the Trefftz plane, J. Fluid Mech., 184, 123–55.

Kruppa, C., 1990, Propulsion systems for high-speed
marine vehicles, Second Conference on High-Speed
Marine Craft, Oslo: Norwegian Society of Chartered
Engineers.

Kruppa, C., 1991, On the design of surface piercing pro-
pellers, Seventh GE-US Symposium Hydroacoustics,
Part II, Hamburg, Germany.

Kruppa, C. F. L., 1992, Testing surface piercing pro-
pellers, In Hydrodynamics: Computation, Model
Tests and Reality, ed. H. J. J. van den Boom,
pp. 107–14, Amsterdam: Elsevier Science Publishers
B.V.

Kuchemann, D., 1978, The Aerodynamic Design of
Aircraft, Oxford: Pergamon Press.
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Index

accelerations
cargo and equipment, 232–233
hydrofoil vessel, 178–179, 217
planing vessel, 373–374
semi-displacement vessel, 254, 266
SES, 147, 149, 161–162

acoustic waves, 155–158
actuator disc, 51
added mass

air cushion oscillations, 312–313
catamaran section in heave, 242
catamaran section in roll, 250–251
catamaran section, low-frequency

sway, 402–403
elliptic disc, 308
finite water depth, 403–404
Lewis form sections, high-frequency,

heave, 327
Lewis form sections, low-frequency,

sway-roll, 427–428
Lewis form sections, low-frequency,

sway, 395–396
local hydroelastic slamming, 298
rectangular section, high-frequency,

heave, 327–328
rectangular section in heave, 237
surge, 393
wedge section in heave,

high-frequency, 368–369
added mass and damping, definition, 234
added propulsion power due to

maneuvering, 417–419
added resistance in waves, 39

planing vessel, 345
semi-displacement vessel, 261–263
SES, 159–161

added resistance in wind, 39
adiabatic pressure-density relationship,

151
advance ratio, propeller, 53
aerodynamic pitch-up instability, 344
after perpendicular, 43
air bags, SES, 145–147
air cushion vehicle (ACV), 5
air fan system, SES, 141
air lubrication technology (ALT), 5
air resistance, 35–36
angle of attack, foil, 32
antiroll damping, fin, 284–285
aspect ratio, foil, 32, 167
atmospheric pressure, 142
automatic control

hydrofoil vessel, 169
maneuvering, 403

PD regulator, 417
PID regulator, 403
semi-displacement vessel, 224–226,

249–250
SES, 158–159

azimuth thruster, 58

beam equation (Euler), 292, 326
bending moment, 271, 273–282, 317,

321–324
bending stress, 294
Bernoulli’s equation, 35

accelerated coordinate system, 424
Biot-Savart’s law, 186
blade area ratio (BAR), 49
Blasius solution, 16
block coefficient, 42–43
boundary element method (BEM), 117,

182, 184–185
boundary integral method (BIM), 117
boundary layer, 14

displacement thickness, 24
momentum thickness, 22

boundary-layer equations, 19–20
Boussinesq equation, 83, 98
bow-diving, 9, 162, 266, 286–287, 344
bow ramp, 318
bow seal fingers, 141–142, 147–149
brake power, definition, 61
breaking waves, 78–79, 86, 116, 120
broaching

calm water, 9, 267, 431
hydrofoil vessels, 165
waves, 9, 268, 391–392, 432–433

Buckingham’s Pi-theorem, 21
bucket curves,

foils, 170–171
waterjet inlet, 72

buttock lines, 342

cable equations
dynamic, 147

camber, foil, 32, 167
canard, foil configurations, 166
capacity coefficient, 68–69
capillary waves, 91
carborundum, 41
catamaran semi-displacement vessels,

221–224
cavitation

definition, 1
foil, 169–173
propeller, 55–59
slamming, 294–296

cavitation bucket
foil, 170
waterjet inlet, 72

cavitation inception index, 171
cavitation number, 42

propeller, 56–57
cavitation pressure, 435–436
center of pressure, 192
chine, 342–343
chine-walking, 267, 364
chord length, foil, 32, 167
circulation, 50, 179
cobblestone oscillations, SES, 4–5,

149–159
acoustic resonance, 154–159
uniform pressure resonance, 150–154

complex linear response, 232
compression force, 271
conservation of fluid momentum, 75–76
conservation of kinetic fluid energy, 77
continuity equation

compressible fluid, 164
incompressible fluid, 34

contouring mode, 169
control means, maneuvering, 419–421
convolution integral, 257
coordinated turn, 176–177
coordinate system

Earth-fixed, 393
maneuvering, 393, 421–422
wave-induced response, 229–231

cork-screwing, 9, 267, 431
crash stop, 406, 408
critical damping, 227
critical speed, 102, 125
cross-flow principle, 406

D’Alembert’s paradox, 26, 50
damping

air leakage, 152–153, 158
foil, 235, 247–249
hull-lift, 235, 246–247, 249
planing vessel, 370
springing, 337
viscous, 235

damping, wave radiation, 246
catamaran section in heave, 242
catamaran section in roll, 250
rectangular section in heave, 237

damping ratio, 227
deadrise angle, 286–287
densimetric Froude number, 139
density, air and water, 435–436
developed area, propellers, 49

451
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diagonal standing waves, 97
diffraction problem, 229
dipole, infinite fluid, 182
directional stability

coupled sway-roll-yaw, 430–431
coupled sway-yaw, 400–401

dispersion relationship, 85
displacement vessel, definition, 1
divergent waves, 101
double-body problem, 25
downwash, foil, 172–173, 206–208
drag bucket, foils, 32–33
drag coefficients

circular cylinder, transient flow,
410–412

foil, 32–33
ship cross sections, 406–410

drift angle, 394
drop test, 286, 288, 290–291, 340
Duhamel integral, 257
dynamic amplification factor, 228
dynamic free-surface condition, 78–80,

90, 97, 98
dynamic stability

linear analysis, 370–371
semi-displacement vessels, 266–270

efficiency, propeller, 53
hull, 61
ideal, 55
overall propulsive, 61
relative rotative, 60

efficiency, waterjet
jet, 67
overall propulsive, 67
pump, 67
relative rotative, 67
thrust power, 67

Ekranoplanes, 5–6
elliptical planform, 197
encounter frequency, 231
energy, potential flow, 84
equations of motions in waves

frequency domain, 233–236, 378
linear time domain, 257–258
nonlinear time domain, 378–380

Euler angles, 422
Euler’s equations

fluid motions, 164, 305
rigid-body motions, 421–425

expanded area, propellers, 48–49

fan characteristics, SES, 143
fetch, 93
flow separation, 26–28, 410–411
flutter

hydrofoil vessels, 165
skirts of SES, 149

foil catamaran, 166–167
foil interaction, 172–173, 205–208
foil lift damping, 247–249
foil span, 32, 167
foil with flap, 194–195
form factor, 41
form resistance, 25–28
forward perpendicular, 43
free shear layer, 33, 35

free-surface conditions
potential flow without surface tension,

78–81
potential flow with surface tension, 90
viscous flow, 98

free vibration phase, slamming, 291,
292–295

free vibrations, 226–227
frequency of encounter, 231
friction coefficient, definition, 22
frictional force coefficient, definition, 23
frictional resistance, 15–16
frictional stress, 14
Froude-Kriloff loads, 213, 229

generalized, planing vessel, 374–376
Froude number

critical, 38
densimetric, 139
depth, 38
length, 1
volumetric, 364

Froude scaling, 40
Froude’s hypothesis, 40

Gauss theorem, 76
generalized Wagner theory, 303
Glauert integral, 191
global wave loads, catamarans, 271,

273–282
Green function, linear wave resistance,

108
Green’s second identity, 181
green water, 286–287, 314–317
group velocity, 85

Hama strip, 41
head, 67
head coefficient, 68
heave, 229–231
high-aspect–ratio planing surface,

358–360
hogging, 281
hollow aft of transom, 116
horseshoe vortex, 186
Hughes formula, 23
Hughes method, 41–42
hull-lift damping, 246–247, 249
hull roughness, 28–31
humps and hollows, 101
hydraulically smooth surface, 30–31
hydrodynamic pressure, 35
hydroelasticity, 287
hydroelastic slamming, 290–301
hydrofoil vessel

foil catamaran, 166–167
free surface–piercing foils, 3–4, 166
fully submerged foil system, 3–4, 166

hydrostatic pressure, 35

ideal angle of attack, 193
IMO maneuvering criteria, 390–391
impeller, 63
impulsive load response, 228–229
impulse response function, 257
incompressible fluid, definition, 78
inlet velocity, 70
inlet velocity ratio (IVR), 71

inner layer, 20
interceptor, 12, 13, 225–226
internal waves, 138–140
irrotational motion, definition, 78
ISO 2631 (1 fatigue-decreased

proficiency boundaries, 8–9
ISSC, 91
ITTC, 91
ITTC 1957 model-ship correlation line,

15

jet domain, 305
JONSWAP spectrum, 92

Kelvin angle, 101
finite water depth, 127

Kelvin’s theorem, 180
Keulegan-Carpenter number, 406, 408,

415
kinematic free-surface condition, 80
kinematic viscosity coefficient, air and

water, 435–436
Kutta condition, 50, 178–179
Kutta-Joukowski formula, 188

laminar airfoils, 16
laminar flow, 14
Laplace equation, 34
large-eddy simulations (LES), 19
length between perpendiculars, 43
Lewis form, 327
lift coefficient, foil, 32–33
lift-induced drag, 176
lifting line theory

steady, 195–197
unsteady, 212

linear wave theory, 81–82
longitudinal prismatic coefficient, 43
long-term prediction,

response, 260–261
waves, 94–95

louver, SES, 156, 158
low-aspect–ratio lifting surface, 398–399

maneuvering
coupled six degrees of freedom,

421–426
hydrofoil vessel, 176–178, 425–426
planing vessel, 383–385
SES, 141, 143, 402

maneuvering in waves, 391–392, 432–433
maneuvering, semi-displacement vessel

coupled surge-sway-yaw, 416–419
coupled sway-roll-yaw, 426–431
coupled sway-yaw, 399

mass coefficient, 411
material derivative, 80
Mathieu instability, 268–270, 364
mean wetted length-to-beam ratio, 350
metacentric height

planing vessel, 363–365
semi-displacement vessel, moderate

speed, 235, 429–430
semi-displacement vessel, speed

effect, 267–268
SES, 143–145

Michell’s thin ship theory, 110–112
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microbubble drag reduction (MBDR),
12

midship section coefficient, 43
modal period, 92
model test procedure,

ship resistance, 39–42
waterjet propulsion, 63–70

moment of inertia, 234
momentum flux, 18
monohull semi-displacement vessels,

221–223
Morison’s equation, 411
most probable largest value, short-term

sea state
response amplitude, 279
wave amplitude, 93

motion equations in waves,
semi-displacement vessels

frequency domain, 233–236
three connected bodies, 321–325
time domain, 257–258

motion control, semi-displacement
vessel, 224–226, 249–250

Munk moment, 398

natural frequency
air cushion, 313
catamaran in roll, 252–253
cobblestone oscillations, 153, 155
damped, 227
dry beam, 293
elastic vibrations of monohull, 329–330
internal waves in tank, 140
monohull in heave, 236
piston mode, 245
planing vessel, 375–376
roll, 252–253
sloshing, 97
undamped, 228
wet beam, 294

natural period
two-node vertical vibrations of

monohull, 330
Navier-Stokes equations, 16–18
necklace vortex, 34
Neumann-Kelvin problem, 255
Newtonian stress relations, 18
Newton-Rader propeller series, 56–57
normal modes, 292
NS-ISO 2631/3 – severe discomfort

boundaries, 8

operational limits, 6–10
outer layer, 20
overlap layer, 20

peak period, 92
pentamaran, 2–3
phase angle, 231
phase velocity, 85
Pierson-Moskowitz spectrum, 92
piston mode resonance, 242–246
pitch, 229–231

propeller, 49–50
pitch connecting moment, 271, 273–282
Pi-theorem, 21
planar motion mechanism (PMM), 392

planform area, foil, 32
planing vessel, definition, 1, 342
platforming mode, 169
plunging breaker, 78–79
porpoising, 9, 344, 365–373
potential flow, 34
Prandtl’s lifting line theory, 195–197
Prandtl–von Karman friction formula, 16
pressure coefficient, 170
product of inertia, 234
propeller

free surface–piercing, 59, 342–343
high-speed vessels, 55–60
inclined shaft, 13
supercavitating, 55–56

propeller disc area, 48
propeller efficiency, 53
propeller slip stream, 51–53, 419–420
propeller thrust-loading coefficient, 52
propeller tunnel, 13
propulsive power, foil catamaran,

174–175
pump diagram, 68–69

radiation problem, 229
ram inlet, 73
random phase angles, 91
Rankine panel method, 117, 255, 258
Rankine source, 118
Rayleigh distribution, 93
reduced frequency, 211
refraction, 87–90
relative motion and velocity, catamaran,

287, 289
residual resistance, 40, 43–44
resistance

semi-displacement vessel, 42–45,
99–101

SES, 99–101
response amplitude operator (RAO),

231
restoring coefficients

hydrofoil vessel, 220
planing vessel, 366–368
semi-displacement vessel, 234–235

retardation function, 257
Reynolds-averaged Navier-Stokes

(RANS) equations, 18–19
Reynolds number, 14, 15

critical, 14–15
transition, 14–15

Reynolds stresses, 19
ride control system, 169
RMS value, 7
roll, 229–231
roll axis, 232
roll-up of vortex sheet, 207–208, 219–220
rooster tail, 116, 118–119
Routh-Hurwitz stability criterion, 371
rudder, 13, 166, 209, 225, 342–343,

419–421

sagging, 281
sailboats, 6, 166
Savitsky’s formula, 349–351
scaling

air cushion, 313

cobblestone oscillations, 154
Froude, 40
global hydroelasticity, monohulls, 338
local hydroelastic slamming, 297
maneuvering, 416

scatter diagram, 94–95
scattering problem, 229
Sears function, 217
sea state, statistics, waves, 95–96
second-order wave theory, 82–83, 97–98
self-propelled test, 61
semi-displacement vessel, definition, 1
separation point, 26–27
SES, 4–5
shallow water, steady ship problem,

128–135
shear force, 271, 273–282, 317, 321–324
shockless entry, 193
short-term prediction

response, 259–260
waves, 91–93

significant wave height, 92
similarity solution, slamming, 302
sink for steady flow, 108
sinkage

planing vessel, 360–362, 381–382
semi-displacement vessel, 44–45, 256
SES in waves, 159–160
shallow water, 134–135

SI system, 435–436
skirt, SES, 141–142
slamming

air cushion, 310–313
bow flare section, 332–333
elliptic disc, 308
fluid wedge, 313–314, 316–317
global hydroelasticity, monohull,

325–333
global hydroelasticity, wetdeck,

317–325
local hydroelasticity, 290–301
rigid wedges, 302–305
threshold velocity, 286, 338
wetdeck, 319–321, 324, 338–339

slender body theory
coupled sway-roll-yaw, maneuvering,

426–429
coupled sway-yaw, maneuvering,

395–398
vertical vibrations of monohull,

326–327
sloshing, 97, 252
smoothed particle hydrodynamics

(SPH), 117
Snell’s law, 89
source for steady flow, 108
span length, foil, 32, 167
speed loss

maneuvering, 416–417
semi-displacement vessel, 160–161,

265–266
SES, 159–162

speed of sound, 154
split moment, 273
spray deflector, 38
spray rail, 37

resistance, 37
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spray resistance, 36–38, 176
spray root, 305
springing, 334–338
stability analysis, linear, 370–371
stalling, 28, 32–33
stator, 63
steady-state solution, 228
stepped planing hull, 342–343, 355–358
strip theory, 237
Stokes’s theorem, 179
Stokes’s waves, 82–83
Stratford flow, 26
structural inertia phase, slamming, 291
subcritical flow, 27
submerged floating tunnel, 137
substantive derivative, 80
supercavitation, definition, 1
supercritical flow, 27
supercritical speed, 102–103
surface tension, 36, 90–91
surge, 229–231
SWATH, 2
sway, 229–231
sweep, foil, 167
swirling waves, 97

taper ratio, foil, 167
Taylor wake, 61
T-foil, 224–225
Theodorsen function, 211
thickness, foil, 167
thrust coefficient, propeller, 53
thrust-deduction coefficient

propeller, 61
waterjet, 67

thrust-loading coefficient, propeller, 52
tip vortex sheet cavitation, 51
Tollmien-Schlichting waves, 14–15
torque coefficient, propeller, 53
torsional moment, 271
tractor propeller, 57–58, 167
transcritical flow, cylinders, 27
transfer function, 231
transom stern, definition, 221
transverse waves, 101
transom wedge, 12
trim

planing vessel, 360–362, 381–382
semi-displacement vessel, 44–45, 256
shallow water, 134–135

trim tab, 224–225
turbulence intensity, 16
turbulence stimulators, 40–41
turbulent flow, 14
turbulent stress, 19–20
turning circle maneuver, 390–391, 405,

407

two-and-a-half D (2.5D) theory
(2D+t theory)

hydrofoil, 208
maneuvering, 403–405, 410–415
steady flow, planing vessel, 345–349,

385, 386–388
steady flow, semi-displacement vessel,

115–120
unsteady flow, semi-displacement

vessel, 253–254

unified theory, 245

vapor pressure, 435–436
velocity potential, definition, 34
vena contracta, 63–64
ventilation

definition, 1
propeller, 59
slamming, 294–296
strut-foil system, 173, 208–209
waterjet inlet, 5, 7–8

ventral fin, 402
viscosity coefficient, 435–436

dynamic, 14
kinematic, 14

viscous stress, 17–18
viscous sublayer, 20
viscous water resistance, 13–35

foils, 31–35
voluntary speed reduction, 160
von Karman method, slamming, 301
vortex, 182
vortex-induced vibrations, 28
vortex line, 186
vortex tube, 185–186
vorticity, 34

Wagner method, slamming, 301, 305–310
Wagner problem, foil, 183–184
wake, 45–47
wake fraction, 60

waterjet, 66
wall friction velocity, 21
wash, 1–2, 101–103
waterjet, 13, 61–73
waterjet inlet, 70–73
waterplane area coefficient, 237
wave-breaking limit, 86
wave-breaking resistance, 38
wave drift force, 261
wave energy density, 84–85
wave energy propagation velocity, 85
wave equation, 154
wave height

most probable largest, 93
significant, 92

wave-induced response
hydrofoil vessel, 212–219, 220
planing vessel, 373–382
semi-displacement vessel, 229–261
SES, 149–159

wave interference, 240
wavemaker solution, 283–284
wave pattern resistance, 38
wave period

mean (T1), 92
mean (T2), 92
modal or peak (T0), 92

wave-piercing catamaran, 2–3
wave radiation damping, 246
wave ray, 88
wave refraction, 87–90
wave resistance, 99–101

finite water depth, 123–126
hydrofoil, 199–201, 204
multihull vessel, 120–122
SES and ACV, 122–123
supercritical flow in shallow water,

132–134
subcritical flow in shallow water,

133–135
Tuck’s parabolic strut, 114–115
Wigley ship model, 112–114
Wigley’s wedge-shaped body, 112

wave spectrum, 91–93
function of frequency of encounter,

334–335, 341
ISSC, 92
ITTC, 92
JONSWAP, 92
Pierson-Moskowitz, 92
short-crested, 93
Torsethaugen, 334

wave trapping, 241–246, 251–252
Weber number, 36, 42
Weissinger’s approximation, 193–194
wetdeck, 286
wetdeck slamming, 162, 286–287
whipping, 287, 317
Wigley ship model, 112–113
wind velocity profile, 39
wing-in-ground effect, 199
wing-in-ground (WIG) vehicles, 5–6
winglet, 34

yaw, 229–231
yield stress

aluminium, 299
steel, 330

Young’s modulus, 330

Z-drive, 13, 57–58
zigzag (Z) maneuver, 390–391, 406–408


	pb14zcd9u90o1iq0ixgf.pdf
	Cover
	Half-Title
	Title
	Copyright
	Contents
	Preface
	List of symbols
	1 Introduction
	Submerged hull–supported vessels
	Foil-supported vessels
	Air cushion–supported vessels

	1.1 Operational limits
	1.2 Hydrodynamic optimization
	1.3 Summary of main chapters

	2 Resistance and Propulsion
	2.1 Introduction
	2.2 Viscous water resistance
	2.2.1 Navier-Stokes equations
	2.2.2 Reynolds-averaged Navier-Stokes (RANS) equations
	2.2.3 Boundary-layer equations for 2D turbulent flow
	2.2.4 Turbulent flow along a smooth flat plate. Frictional resistance component
	2.2.5 Form resistance components
	2.2.6 Effect of hull surface roughness on viscous resistance
	Example: Effect of hull roughness on viscous resistance

	2.2.7 Viscous foil resistance

	2.3 Air resistance component
	2.4 Spray and spray rail resistance components
	2.5 Wave resistance component
	2.6 Other resistance components
	2.7 Model testing of ship resistance
	2.7.1 Other scaling parameters

	2.8 Resistance components for semi-displacement monohulls and catamarans
	2.9 Wake flow
	2.10 Propellers
	Propeller slip stream
	2.10.1 Open-water propeller characteristics
	2.10.2 Propellers for high-speed vessels
	Example: Determination of propeller characteristics

	2.10.3 Hull-propeller interaction

	2.11 Waterjet propulsion
	2.11.1 Experimental determination of thrust and efficiency by model tests
	Thrust by conservation of fluid momentum
	Impeller effect by conservation of kinetic fluid energy

	2.11.2 Cavitation in the inlet area

	2.12 Exercises
	2.12.1 Scaling
	2.12.2 Resistance by conservation of fluid momentum
	2.12.3 Viscous flow around a strut
	2.12.4 Thrust and efficiency of a waterjet system
	A. Thrust by conservation of fluid momentum
	B. Impeller effect by conservation of kinetic

	2.12.5 Steering by means of waterjet


	3 Waves
	3.1 Introduction
	3.2 Harmonic waves in finite and infinite depth
	3.2.1 Free-surface conditions
	3.2.2 Linear long-crested propagating waves
	3.2.3 Wave energy propagation velocity
	3.2.4 Wave propagation from deep to shallow water
	Shallow water approximation

	3.2.5 Wave refraction
	3.2.6 Surface tension

	3.3 Statistical description of waves in a sea state
	3.4 Long-term predictions of sea states
	3.5 Exercises
	3.5.1 Fluid particle motion in regular waves
	3.5.2 Sloshing modes
	3.5.3 Second-order wave theory
	3.5.4 Boussinesq equations
	3.5.5 Gravity waves in a viscous fluid


	4 Wave Resistance and Wash
	4.1 Introduction
	4.1.1 Wave resistance
	4.1.2 Wash

	4.2 Ship waves in deep water
	4.2.1 Simplified evaluation of Kelvin’s angle
	4.2.2 Far-field wave patterns
	4.2.3 Transverse waves along the ship’s track
	4.2.4 Example

	4.3 Wave resistance in deep water
	4.3.1 Example: Wigley’s wedge-shaped body
	4.3.2 Example: Wigley ship model
	4.3.3 Example: Tuck’s parabolic strut
	4.3.4 2.5D (2D+t) theory
	4.3.5 Multihull vessels
	4.3.6 Wave resistance of SES and ACV

	4.4 Ship in finite water depth
	4.4.1 Wave patterns

	4.5 Ship in shallow water
	4.5.1 Near-field description
	4.5.2 Far-field equations
	4.5.3 Far-field description for supercritical speed
	4.5.4 Far-field description for subcritical speed
	4.5.5 Forces and moments
	4.5.6 Trim and sinkage

	4.6 Exercises
	4.6.1 Thin ship theory
	4.6.2 Two struts in tandem
	4.6.3 Steady ship waves in a towing tank
	4.6.4 Wash
	4.6.5 Wave patterns for a ship on a circular course
	4.6.6 Internal waves


	5 Surface Effect Ships
	5.1 Introduction
	5.2 Water level inside the air cushion
	5.3 Effect of air cushion on the metacentric height in roll
	5.4 Characteristics of aft seal air bags
	5.5 Characteristics of bow seal fingers
	5.6 “Cobblestone” oscillations
	5.6.1 Uniform pressure resonance in the air cushion
	Equations of heave and dynamic cushion pressure and density
	Example: Natural frequency, damping, and vertical accelerations

	5.6.2 Acoustic wave resonance in the air cushion
	Simplified response model

	5.6.3 Automatic control

	5.7 Added resistance and speed loss in waves
	5.8 Seakeeping characteristics
	5.9 Exercises
	5.9.1 Cushion support at zero speed
	5.9.2 Steady airflow under an aft-seal air bag
	5.9.3 Damping of cobblestone oscillations by T-foils
	5.9.4 Wave equation
	5.9.5 Speed of sound
	5.9.6 Cobblestone oscillations with acoustic resonance


	6 Hydrofoil Vessels and Foil Theory
	6.1 Introduction
	6.2 Main particulars of hydrofoil vessels
	6.3 Physical features
	6.3.1 Static equilibrium in foilborne condition
	6.3.2 Active control system
	6.3.3 Cavitation
	6.3.4 From hullborne to foilborne condition
	6.3.5 Maneuvering
	6.3.6 Seakeeping characteristics

	6.4 Nonlinear hydrofoil theory
	6.4.1 2D flow
	6.4.2 3D flow

	6.5 2D steady flow past a foil in infinite fluid. Forces
	6.6 2D linear steady flow past a foil in infinite fluid
	6.6.1 Flat plate
	6.6.2 Foil with angle of attack and camber
	6.6.3 Ideal angle of attack and angle of attack with zero lift
	6.6.4 Weissinger’s “quarter-three-quarter-chord” approximation
	6.6.5 Foil with flap

	6.7 3D linear steady flow past a foil in infinite fluid
	6.7.1 Prandtl’s lifting line theory
	6.7.2 Drag force

	6.8 Steady free-surface effects on a foil
	6.8.1 2D flow
	6.8.2 3D flow

	6.9 Foil interaction
	6.10 Ventilation and steady free-surface effects on a strut
	6.11 Unsteady linear flow past a foil in infinite fluid
	6.11.1 2D flow
	6.11.2 2D flat foil oscillating harmonically in heave and pitch
	6.11.3 3D flow

	6.12 Wave-induced motions in foilborne conditions
	6.12.1 Case study of vertical motions and accelerations in head and following waves

	6.13 Exercises
	6.13.1 Foil-strut intersection
	6.13.2 Green’s second identity
	6.13.3 Linearized 2D flow
	6.13.4 Far-field description of a high-aspect–ratio foil
	6.13.5 Roll-up of vortices
	6.13.6 Vertical wave-induced motions in regular waves


	7 Semi-displacement Vessels
	7.1 Introduction
	7.1.1 Main characteristics of monohull vessels
	7.1.2 Main characteristics of catamarans
	7.1.3 Motion control
	7.1.4 Single-degree mass-spring system with damping
	Free vibrations
	Response to impulsive loads


	7.2 Linear wave-induced motions in regular waves
	Vertical accelerations in the bow
	Complex expressions of response variables
	Wave-induced accelerations of cargo and equipment
	7.2.1 The equations of motions
	7.2.2 Simplified heave analysis in head sea for monohull at forward speed
	7.2.3 Heave motion in beam seas of a monohull at zero speed
	7.2.4 Ship-generated unsteady waves
	7.2.5 Hydrodynamic hull interaction
	Wave trapping due to vertical motions
	Piston mode resonance

	7.2.6 Summary and concluding remarks on wave radiation damping
	7.2.7 Hull-lift damping
	7.2.8 Foil-lift damping
	7.2.9 Example: Importance of hull- and foil-lift heave damping
	7.2.10 Ride control of vertical motions by T-foils
	7.2.11 Roll motion in beam sea of a catamaran at zero speed
	7.2.12 Numerical predictions of unsteady flow at high speed

	7.3 Linear time-domain response
	7.4 Linear response in irregular waves
	7.4.1 Short-term sea state response
	7.4.2 Long-term predictions

	7.5 Added resistance in waves
	7.5.1 Added resistance in regular waves
	7.5.2 Added resistance in a sea state

	7.6 Seakeeping characteristics
	7.7 Dynamic stability
	7.7.1 Mathieu instability

	7.8 Wave loads
	7.8.1 Local pressures of non-impact type
	7.8.2 Global wave loads on catamarans
	Global wave loads in regular waves
	Global wave loads in a short-term sea state


	7.9 Exercises
	7.9.1 Mass matrix
	7.9.2 2D heave-added mass and damping
	7.9.3 Linear wavemaker solution
	7.9.4 Foil-lift damping of vertical motions
	7.9.5 Roll damping fins
	7.9.6 Added mass and damping in roll
	7.9.7 Global wave loads in the deck of a catamaran


	8 Slamming, Whipping, and Springing
	8.1 Introduction
	8.2 Local hydroelastic slamming effects
	Free vibration phase of hydroelastic slamming
	Scaling
	8.2.1 Example: Local hydroelastic slamming on horizontal wetdeck
	8.2.2 Relative importance of local hydroelasticity

	8.3 Slamming on rigid bodies
	Pressure distribution
	Water entry force
	Separation from knuckles (chines)
	Asymmetric impact

	8.3.1 Wagner’s slamming model
	Prediction of wetted surface

	8.3.2 Design pressure on rigid bodies
	8.3.3 Example: Local slamming-induced stresses in longitudinal stiffener by quasi-steady beam theory
	8.3.4 Effect of air cushions on slamming
	8.3.5 Impact of a fluid wedge and green water

	8.4 Global wetdeck slamming effects
	8.4.1 Water entry and exit loads
	8.4.2 Three-body model

	8.5 Global hydroelastic effects on monohulls
	8.5.1 Special case: Rigid body
	8.5.2 Uniform beam

	8.6 Global bow flare effects
	8.7 Springing
	8.7.1 Linear springing

	8.8 Scaling of global hydroelastic effects
	8.9 Exercises
	8.9.1 Probability of wetdeck slamming
	8.9.2 Wave impact at the front of a wetdeck
	8.9.3 Water entry of rigid wedge
	8.9.4 Drop test of a wedge
	8.9.5 Generalized Wagner method
	8.9.6 3D flow effects during slamming
	8.9.7 Whipping studies by a three-body model
	8.9.8 Frequency-of-encounter wave spectrum in following sea
	8.9.9 Springing


	9 Planing Vessels
	9.1 Introduction
	9.2 Steady behavior of a planing vessel on a straight course
	9.2.1 2.5D (2D+t) theory
	9.2.2 Savitsky’s formula
	Alternative flow description in the bow region
	Gravity effects

	9.2.3 Stepped planing hull
	Local analytical solution near the transom

	9.2.4 High-aspect–ratio planing surfaces

	9.3 Prediction of running attitude and resistance in calm water
	9.3.1 Example: Forces act through COG
	9.3.2 General case

	9.4 Steady and dynamic stability
	9.4.1 Porpoising
	Restoring force and moment
	Added mass in heave and pitch
	Damping in heave and pitch
	Porpoising stability analysis
	Example: Porpoising stability


	9.5 Wave-induced motions and loads
	9.5.1 Wave excitation loads in heave and pitch in head sea
	Generalized Froude-Kriloff loads
	Diffraction loads
	Summary

	9.5.2 Frequency-domain solution of heave and pitch in head sea
	9.5.3 Time-domain solution of heave and pitch in head sea
	9.5.4 Example: Heave and pitch in regular head sea

	9.6 Maneuvering
	9.7 Exercises
	9.7.1 2.5D theory for planing hulls
	9.7.2 Minimalization of resistance by trim tabs
	9.7.3 Steady heel restoring moment
	9.7.4 Porpoising
	9.7.5 Equation system of porpoising
	9.7.6 Wave-induced vertical accelerations in head sea


	10 Maneuvering
	10.1 Introduction
	10.2 Traditional coordinate systems and notations in ship maneuvering
	10.3 Linear ship maneuvering in deep water at moderate Froude number
	10.3.1 Low-aspect–ratio lifting surface theory
	10.3.2 Equations of sway and yaw velocities and accelerations
	10.3.3 Directional stability
	10.3.4 Example: Directional stability of a monohull
	10.3.5 Steady-state turning
	10.3.6 Multihull vessels
	10.3.7 Automatic control

	10.4 Linear ship maneuvering at moderate Froudenumber in finite water depth
	10.5 Linear ship maneuvering in deep water at high Froude number
	10.6 Nonlinear viscous effects for maneuvering in deep water at moderate speed
	10.6.1 Cross-flow principle
	CD-values for ship sections
	1. Free-surface effects
	2. Beam-to-draft ratio effects
	3. Bilge radius effects
	4. Effect of laminar or turbulent boundary-layer flow

	10.6.2 2D+t theory
	10.6.3 Empirical nonlinear maneuvering models

	10.7 Coupled surge, sway, and yaw motions of a monohull
	10.7.1 Influence of course control on propulsion power

	10.8 Control means
	10.9 Maneuvering models in six degrees of freedom
	10.9.1 Euler’s equation of motion
	10.9.2 Linearized equation system in six degrees of freedom
	10.9.3 Coupled sway-roll-yaw of a monohull

	10.10 Exercises
	10.10.1 Course stability of a ship in a canal
	10.10.2 Nonlinear, nonlifting, and nonviscous hydrodynamic forces and moments on a maneuvering body
	10.10.3 Maneuvering in waves and broaching
	10.10.4 Linear coupled sway-yaw-roll motions of a monohull at moderate speed
	10.10.5 High-speed motion in water of an accidentally dropped pipe


	Appendix: Units of Measurement and Physical Constants
	References
	Index




