## raternas



0 C




# MODEL TEST RESULIS AND PREDICTED EHP 

FOR AN 86-FOOT PERSONNEL BOAT, FROM TESTS OF MODEL 4675
by

Eugene P. Clement and Charles W. Tate, Sr.

NOTATION
$T$

Area of a vertical transverse inderwater section
Area of waterplane at the load waterline
Area of maximum vertical transverse underwater section Baseline

Breadth at the maximm-area section, measured at the IWL
Block coefficient (volume of the underwater body, $\nabla$, divided by the volume of a rectangular parallelepiped, LWL $\cdot \mathrm{B}_{\mathrm{X}} \cdot \mathrm{H}_{\mathrm{X}}$ )
Center of gravity
Centerline
Prismatic coefficient (volume of the underwater body, $\nabla$, divided by the volume of the prism, IWL • $A_{X}$ )
Waterplane coefficient (ratio of area, $A_{W}$, to area $=$. . rectangle, IWL • $B_{X}$ )
Maximum section coefficient (area, $A_{X}$, divided by the area of rectangle, $B_{X} \cdot H_{X}$ )
Effective horsepower
Froude number based on volume, in any consistent units, $v / \sqrt{\nabla^{1 / 3}}$
Acceleration due to gravity
Draft of underwater hull, measured from $\&$ to IWL
Draft at the section of maximum area
Longitudinal center of gravity location
Length overall
Load waterline or length on load waterline
Effective power, ft-Jb/sec
Total resistance, lb
Speed, knots
Speed
Density of water, weight per u.it volume
Displacement at rest, weight of
Displacement at rest, volume of
Linear ratio, ship to model
Trim angle of hull with respect to the at-rest position

AESTRACT
Smooth-water model tests were made of an $86-\mathrm{ft}$ personnel boat deamed for "all-weather" operation. The model was tested for ehp at full-scale displacements of $130,000 \mathrm{lb}, 140,000 \mathrm{lb}$, and $150,000 \mathrm{lb}$. In addition, at one speed and displacement, the lines of flow were determined by the acid-trace method, in order to find the appropriate location for the bilge keels.

## INTRODUCTIUN

The Bureau of Ships, by Reference ?.* requested ehp tests of a new design for an $86-f t$, "all-weather," personnel boat.

MODEL AND TEST PROGRAM
A 1/16-scale model, 4675, was built to the lines of Reference 2. The lines are shown in Figure 1 . The tests were made in the high-speed basin, using Carriage 3. The model was towec. In the shaft centerline, which is shown in Figure 1. Tests were made $\varepsilon t$ full-scale displacements of 130,000 $\mathrm{lb}, 140,000 \mathrm{lb}$, and $150,000 \mathrm{lb}$. Initial trim was zero deg in each case. The speed range tested was up to 18 knots, full scale. Sesistance, trim angle, and bow rise were measured.

Because of the relatively small size of the model ( 5 ft in length), it was considered that artificial stimulation of turbulence might be required. Accordingly, the model was towed both with and without a trip wire. The trip wire was 0.04 ? in. In diameter and was attached to the model suriace 3 in . aft of the bow. The 3 -in. dirension was reasured along the curface of the model, parallel to the waterline planes. However, it was lound that at low speeds the trip wire did not consistentiy have the expected effect of prolucing hieher and more consistent vaiues of rosistincs. Furthermore, at the hign speeds, the trip wire caused the water to separate from the side of the model for a short distance aft of the wire. For these speeds, the model had consistently lower resistance with the trip wire than without--presumably because of the reduced wetted urea. For the above reasons, only the data obtained without a triy aire are presented in this report.

## TEST RESULTS

The moiel data obtained are presented in Figure 2. The air drag of the towinc evar has been subtracted from the measured rasistance data. Values of i:ull-scale ohp are presented in Figure 3. The ohp was calculated by $t$ 'u method described in Reference 3, using the 1947 ATTC friction coefficiente with zero roughness allowance. Values of wetted surface and wetted lenf, th for the differert ilsplacements tested, are tabulated.
*References are listed on page 2.

| Full-Scale | Model | Model IWL | Model Wetted |
| :---: | :---: | :---: | :---: |
| Displacement | D1splacement | Length | Surface |
| Ib | Ib | ft | $\mathrm{ft}^{2}$ |
| $1.30,000$ | 30.85 | 5.02 | 5.138 |
| 140,000 | 33.24 | 5.03 | 5.330 |
| 150,000 | 35.61 | 5.03 | 5.505 |

An acid-trace test was also run to determine the appropriate location for the bilge keels. This test was run, in accordance with Reference 1 , at a full-scale displacement of $140,000 \mathrm{lb}$, and at a speed corresponding to 160 ehp , full scale ( 12.1 knots, full scale). Figure 4 shows the appropriate location for the bilge keels, as indicated by the acid-trace test.

RWFERENCES

1. Bureau of Ships ltr $\mathrm{s} 82 / 27(452)$ Ser $452-30$ of 51 May 1957 to David Taylor Model Basin.
2. Bureau of Ships Sketch No. 027170, 86-Foot, All-Weather Boat, Lines and Offsets.
3. Gertler, M., "The Prediction of Effective Horsepower of Ships by Methods in Use at the David Taylor Model Basin," David Taylor Model Basin Report 576 (Dec 1947).



Stations


## DATA SHEET

-OR MODEL BASIN
coel not calculation
men in on !




Effective Horsepower, EHP





INITIAL DISTRIDOTION
Coples 12

CHBUSHIPS, Libiary (Code 312)
5 Tech Liorary
1 Tech Asst to Chief (Code 10б)
2 Preliminary Design (Code 420)
1 Eull Design (Code 440)
3 Boats and Small Craft (Code 449)



