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NOTATION 

a Value     s at transverse plane through boat center of gravity 

B Bobyleff s function of deadrise; see Equation 54 

b Beam of boat 

CDc Cross flow drag coefficient; see Table 2 

Cf Hydrodynamic friction coefficient 

Cjjj Boat lift coefficient, nondimensionalized by the beam 2C^/Cy2 

Cy Speed coefficient, U/>/ib 

C^ Load coefficient, A/pgb3 

e,. e«. Coordinate measured parallel to keel from transom of tow point and 
resultant of wind force, respectively 

FBS Steady state buoyancy force 

FD Dynamic part of hydrodynamic normal force on hull 

FDS Steady state part of FD 

Fp«; Steady state hull friction force 

Fws Steady state wind drag 

^kn. e
n) Nondimensional moment arm about the center of gravity of tow force 

n = 1 and wind force n = 2 

f(0) Deadrise function of Wagner; see Equation 53 

g Acceleration of gravity 

^tv en^ Negative of derivative of f(kn, en) with respect to trim angle T 

h(T) See Equation (96) 

L Pitch moment of inertia about the boat center of gravity 

kj, k2 Coordinate measure normal to keel of tow point and resultant wind force, 
respectively 

k Radius of gyration of boat with respect to center of gravity 

LCG Distance from transom to boat center of gravity, measured parallel to keel 

1 Same as LCG 

lk Length of wetted portion of keel 

M Hydrodynamic pitch moment relative to center of gravity 

MBS Steady state pitch moment due to buoyancy 

Mp Dynamic part of hydrodynamic pitch moment on hull 

MDS Steady state part of MD 
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MpS Steady state hull friction pitch moment 

Mg Total steady state pitch moment acting on hull 

MTS Pitch moment about center of gravity due to towing force 

Mws Pitch moment about center of gravity due to wind force 

Mr M^, Mg, etc. Partial derivative of pitch moment with respect to motion variables z, z. 0, 
etc., respectively 

m Mass of boat 

P See Equation (78) 

Q See Equation (78) 

s Coordinate measured along keel from foremost immersed station of keel; 
see Figure 20 

scl See Equation (73) and Figure 20 

sc2 See Equations (76) and (77) and Figure 20 

Ts Steady state towing force 

t Time 

U Steady reference speed of boat in feet per second 

u. ü Perturbation surge velocity and acceleration 

W Boat weight 

X Hydrodynamic force component in direction of positive x 

XD Dynamic part of hydrodynamic X-force 

Xs Steady state part of X 

Xy, X^,, Xj, etc. Partial derivative of X-force with respect to motion variables u, Ü, z, etc., 
respectively 

x Horizontal coordinate in direction of U 

Z Hydrodynamic force component in direction of positive z 

ZD Dynamic part of hydrodynamic Z-force 

Zs Steady state part of Z 

Zv Z-z, Zg, etc. Partial derivative with respect to motion variables z, z, », etc.. respectively 

z Vertical coordinate, positive down 

ß Deadrise angle; see Figure 20 

A Boat weight, W 

AFD Time dependent part of FD 

AMD Time dependent part of MD 

ATS Time dependent part of towing force 

vii 
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T 

AXp Time dependent part of XD 

AZp Time dependent part of ZD 

{", f Components, normal to the keel, of hull velocity and acceleration, 
respectively 

6 Boat pitch angle perturbation, positive bow up 

X Mean wetted length-to-beam ratio 

Xc Length of wetted chine-to-beam ratio 

Xcj Nondimensional value of scl, scl/b 

Xc2 Nondimensional value of sc2, sc2/b 

X Nondimensional value LCG, LCG/b 

X„ Value of X. at inception of porpoising 

Xv Nondimensional value of lk, 1^/b 

Xmc Value of X at inception of porpoising 

Xy Nondimensional value of normal distance of center of gravity from keel 

ju Total sectional added mass 

Ma Contribution to sectional added mass 

Ms Sectional added mass at transom 

v Kinematic viscosity 

£ Boat-damping ratio 

p Mass density of water 

o Stability root; see Equation (22) 

T Steady state trim angle measured from keel line to calm water free 
surface at reference speed U 

rc Value of r at inception of porpoising 

0(X) Three-dimensional or aspect ratio correction; see Figure 21 

7 Volume of waL. displaced at rest, cu ft 

The prime (') symbol is generally used to denote quantities in nondimensional form.  Factors 
used for nondimensionalizing the previously described quantities are p, U, b.  Typical examples 
are given as follows: 

FM' -Fgg/d^pU2»)2) xd=scl/b 

MBS' = MBS/(l/2pU2b3) p' = p/l/2pb2 

Mö' = M£/(l/2pb5) o' = ob/U 

t' - tU/b 

viii 



ABSTRACT 

A theoretical method is derived for predicting trim angle and speed coeffi- 
cient at the inception of porpoising of prismatic planing hulls.  Although 
equations are derived for the surge, pitch, and heave degrees of freedom, it i? 
seen that the effect of surge is small at ordinary operating trim angles. 
Comparisons of theoretical predictions with existing experimental data on 
coupled pitch and heave porpoising show reasonably good agreement for a 
wide range of speed coefficients, load coefficients, and deadrise angles.  The 
theory may also be used for estimating the natural frequencies and damping 
characteristics of prismatic hulls in the stable, high-speed planing range. 

ADMINISTRATIVE INFORMATION 

This investigation was authorized and funded by the Naval Sea Systems Command 

\ 035)i 

562-002. 

(SEA 035) under the General Hydrodynamics Research Program, SR-023-0101, Work Unit 

Pernng, W.Ci.A. and II. Clauert. "Stability on the Wat« of a Seaplane in the Planing Condition," Aeronautical Research 
Council, IK Vol. 42 (3ep 1933).   A complete luting of references is given on pages 60 and 61. 

Lutowskl, R.N.."A Computer Program for Various Performance Aspects of Planing Crafl." Thesis submitted to Stevens Institute 
of Technology. Castle Point. Hoboken, N.J. (1973). 

Payne. P.R.. "Coupled Pitch and Heave Porpt ising Instability in Hydrodynamic Planing," Journal of Hydro.iautict, Vol. 8, 
No. 2 (Apr 1974). 

Day, J.P. and R.J. llasg, "Planing Boat Porpoising" Thesis Submitted to W;bb Institute of Naval Architecture. Glen Cove. 
Long Island, N.Y. (May 19S2). 

INTRODUCTION 

Porpoising is an instability in pitch and heave experienced by planing craft traveling at 

high speeds on calm water.   It has been known to lead to such violent motions as to cause 

many serious boating accidents.  With constantly increasing boat speeds, this phenomenon is 

becoming more and more of a problem to planing- boat designers. 

Perhaps the first attempt at treating this problem analytically wis made by Perring,' who 

developed a theory for porpoising based on low-aspect-ratio wing theory.  The practical 

application of this theory was unsuccessful since the theory was oversimplified.  Since then, a 

great deal of experimental work has been done concerning porpoising for water-based aircraft 

and planing boats, and more recently additional attempts2,3 at developing a theoretical treat- 

ment have met with varying degrees of success.   Perhaps the only systematic experimental 

investigation for planing boats was done by Day and Haag   on prismatic bodies. These bodies 

comprised a wide range of design parameters. The results of this work have been widely used as 

1 —.in niii mu ■ mill w-«teaWiMBi 



a guide in estimating the porpoising limits of planing hulls.    Although this is a reasonable 

empirical approach, it does not contribute much to a good theoretical understanding of the 

problem.  Such an understanding is required to determine the effects of variations in hull 

parameters of practical boatr as well as to evaluate innovative ideas for prevention of 

porpoising.   Furthermore, it is important for providing a tool for estimating the effects of 

design parameters on natural oscillation frequencies and damping characterises of the boat, 

since these characteristics play a dominant role in dynamic behavior in a seaway.   In fact, the 

theoretical approach derived herein has been used ^n development of a linearized theory for 

predicting the motions of planing boats of arbitrary deadrise angle in waves. 

Although the theory has been developed for prismatic planing hulls, it appears to be 

suitable as a guide for predicting effects of parameter variation on porpoising of practical 

planing-boat configurations.   Furthermore, the methods used lend themselves to direct 

extension to a theory for nonprismatic hulls. 

STABILITY EQUATIONS 

Stability equations for the longitudinal motions in surge, pitch, and heave are derived in 

Appendix A.  To make comparisons with the large quantity of existing porpoising data from 

towed models, provision was made to include the effect of the tow force.   Since the models 

were fowed at constant speed, the surge equation played no role in determination of the boat 

model stability; only the coupled pitch and heave equations were needed to investigate the 

problem.  However, it is believed that the results obtained in this manner are generally 

applicable to boats with all three degrees of freedom, since, as shown in Appendix A, the 

magnitude of the stability derivatives in the surge equation are considerably smaller than those 

in the pitch and heave equations for most cases of interest.  We therefore used the following 

nondimensional* linearized stability equations for the dynamic heave force and pitch moment 

equilibrium, respectively.** 

^svitaky. [)., "Hydrodynimic Design of Planing Hulls." Marine Technology (Oct 1964). 

''Martin. M., "Theoretical Determination of Motion of High-Speed Planing rut in Wives" OTNSROC Report 76-0069 
(Apr 1976). 

'The prime symbol, no:mally used to denote a nondimensional quality, is omitted tor convenience. 

"The effect of the surge degree of freedom is readily determined from the stability equations for surge, pitch, and heave as 
derived in Appendix A. 



(ZJ; - m)'z + Z^z + Z2z + Zßd + ZQ6 + Zßd * 0 (1) 

MjjZ + M^z + Mzz + (Mg - ly)ö + Mö0 + Mö0 * 0 (2) 

These equations describe the motion relative to fixed horizontal and vertical axes, 0 x and 0 z, 

along and at right angles to the direction of motion; see Figure 1.  The origin 0 was taken at 

the boat center of gravity and rroves with the constant reference speed U of the boat.  The 

symbols Z and z represent the verucal force and displacement, respectively, at 0, positive 

in the down direction.    The symbols M and 0 are the pitch moment and angular displacement 

perturbation, respectively, with respect to the origin 0, positive in the sense of bow up.  The 

coefficients of the variables z, z, z, 0, 9, and 0 are the stability derivatives; e.g., Z'ß is the 

nondimensional linearized rate of increase of vertical force Z with nondimensional angular 

acceleration 0. 

The stability derivatives have been derived for constant deadrise planing hulls in Appendix 

A in terms of the geometric and operational characteristics of the boat.  They were derived on 

the assumption that the craft could be treated as a slender body with an empirical three- 

dimension J correction.   Because of the high Froude number range of operation and the low 

aspect ratio, wavemaking and unsteady lift effects were assumed negligible. 

The velocity and acceleration derivatives (Appendix A) are 

Zt = -*>(X)cos2 rju'ds (3) 

Zi =-2v?(X)*is'cos3T (4) 

Zfl *<p(\)f/(a'- s')ds' (5) 

Ze =-2*>(A)/Jx'Xgcos2 T (6) 

Mk- = *>(X) cos rl p'( a- s'): ds' (7) 

M^VKXJCCK
2
^ yVds'-Xg/VJ (8) 

Me = -*{\)JM'(a'"s')2ds' (9) 

My = -2*(X) cos rh/$' Xg
2 +y/(a' - s') ds'j (10) 

where r      = equilibrium trim angle 

X      = mean wetted length-to-beam ratio 

0(X) = three-dimensional correction factor 

y.'    ■ nondimensional sectional added mass 

Ht'   - nondimensional sectional added mass at transom 

Mi 
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X     ■ nondimensional distance from transom to center of gravity 
D 

s'     = nondimensional distance from foremost wetted point on keel 

to any boat section; see Figure 20 

a'     = value of s' at boat center of gravity 

The integrations have been taken over the wetted length of the boat. Expressions for the 

sectional added mass distribution are derived in Appendix A. 

The so-called static derivatives are obtained directly from the expressions for the steady 

state Zg' force and M«.' moment.  Since both are functions of X and T, and X = X(z, T), we 

have 

leJIi^^ (l2) v     3r       3X    or 

0     or        d\     3T 

The steady state Zg' force which is the negative of the lift force (Appendix A) is 

Zc =-ip(X)p ' sin TCOS2 T +   ' "   X2 sin r COST-XCf sin r/cosß (15) 

where ß    = deadrise angle 

Cv = U/\/gb" = speed coefficient 

Cf  = skin friction coefficient 

The first term is the dynamic lift on the hull, the second term is the hydrostatic lift, and the 

last term is the vertical component of the skin friction force, assumed to act parallel to the 

keel line. 

The expression for the steady state moment Ms' about the boat center of gravity 

(Appendix A) is 

Ms'^XHinrcmr^'d^^^^ 

CfßX(Xv"^)'Ts'f(k,,ei) + FwS'f(k2,e2) (16) 
COS] 

I 



where Tg ■ nondimensional towing force = drag 

Fws' = nondimensional aerodynamic drag 

f(kj, ej) = moment arm of towing force 

f(k2, e2) = moment arm of aerodynamic force 

The equation for Tg (Equation (90) of Appendix A) is 

XCf 
Tc' = -Zo'tanT + + FW</ (17) 

s a COS p COS T        wa 

The first term in Equation (16) is the hydrodynamic moment, the second term is the hydro- 

static moment and the third term is the moment due to skin friction.  The last two terms are 

the moment due to the tow force and the aerodynamic drag. 

The steady state values of X and r used in Equations (3) through 04) are determined 

from the following equations of planing equilibrium. 

W' + Zs' = 0 (18) 

Ms' = 0 (19) 

These equations are solved by an iteration process described in Appendix A. 

The solution to Equations (1) and (2) are 

z' = Zj e '     + z2 e 2    +  (20) 

o.Y         <t' 
0 = 0, e '     +02e 

2    +  (21) 

where Zj, z2> • * • 0j, 02' * ' * are constants which depend on the initial conditions.  The a' 

terms determine the character of the time history response of the boat to any small disturbance. 

Four values of o' are obtained from the roots of the resulting characteristic equation. 

Ao'4 + Bo'3+ Co'2 + Da'+ E = 0 (22) 

where A = (Zg - m)(Mg - I ) - MgZjf 

B = ZjKMjf - ly) + (Z-z- - m) Mß - MgZj - MiZ$ 

C = ZZ(MÖ - ly) + ZZMÖ- + (Z| - m) M9 - Mz-Z0 - MzZg - MZZ0' (23) 

D - ZZM0 ♦ ZZMÖ - MzZe - MzZg 

E=ZZM0-MZZÖ 

The roots of these equations may be real or complex conjugate pairs.   In either case, it is 

seen from Equations (20) and (21) that if any root has a positive real part, the transient 

response increases without limit, and the boat is considered unstable in the linear sense. 



In general, a complex pair of roots represents an oscillatory mode, e.g., for the root pair 

a' - oR' ± ioj', the z' response is 
_ i.i 

z' = e°R l (C, cos aj't' + C2 sin Oj't') 

where Cj and C2 are real constants which are determined by the initial conditions.  The 

magnitude of the imaginary part of the root Oj' is the nondimensional natural frequency of 

the modal motion.   In dimensional form the natural frequency and period are 

Oj = Oj' — rad/sec (24) 

T = — sec (25) 
°I 

The effect of the real part of the root oR' may be illustrated by computing the time for a 

disturbance to either halve or double itself in magnitude.  Thus, if oR' is negative, the 

envelope of the disturbance will be halved when 

e R     =e 
R   = 1/2 

It follows that the time for the disturbance motion of each mode to halve or double itself is 

*l/2 or *2 = 0-69/oR sec (26) 

Another useful measure of damping of oscillatory modes is the damping ratio £, which is 

directly related to the rate of decay of disturbance oscillations. 

It is given by 

, gR 
z = - r~i—T (27) 

In the vicinity of the resonant encounter frequency in waves, the damping ratio is also 

inversely related to the amplification ratio of the boat response.  Values of £ between 0.6 and 

1.0 are usually considered to give well-damped modes.   Values less than about 0.4 are generally 

consideied to produce underdamped modes.   Although the forgoing may provide a rough 

indication of the vertical plane dynamic characteristics of the boat, a dynamic motions analysis 

is required for any detailed study. 

' 
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DETERMINATION OF PORPOISING CONDITIONS 

Perhaps the only systematic experimental investigation of porpoising was carried out in 

1952 by Day and Haag.4  Measurement by other investigators7,8,9 have generally been 

incidental to a broader program primarily concerned with resistance.  The experiments of Day 

and Haag were carried out with 3.8-inch-beam, prismatic wood models towed by a light line 

from a point slightly forward of and above the center of gravity.  Deadrise angles of 0, 1 C.6, 

and 20.5 degrees were investigated.  The load coefficients were 0.36, 0.48, and 0.72.  For each 

speed the boat center of gravity was gradually moved aft until the boat porpoised. The trim 

at which this occurred defined the critical trim angle and provided a point on the trim angle 

versus speed stability boundary.  Values of the mass and moment of inertia for practically all 

the models at porpoising were provided.  Thus, it was possible to make a theoretical calculation 

for each test condition. Small allowances for aerodynamic effects and chine corner radius 

were made.  These are described in Appendix B. 

Calculations of each of the four stability roots for each test condition were obtained from 

Equation (22).   In the vicinity of porpoising, the least stable root was complex in each case, 

indicating that the response to a disturbance would always be oscillatory.   Figure 2 is a typical 

plot of the variation of the real part of the least stable root a^' with the nondimensional 

longitudinal distance XR of the center of gravity from the transom for three of the test speeds 

with ß = 10.6 degrees and C^ = 0.48.   It is seen that the stability roots become negative 

(stable) for values of X   less than about 0.20 and greater than about 0.85 for the cases shown. 
0 

We note that in the stable region, corresponding to the small X   range, the equilibrium trim 

angles are much higher than in the stable region of the high X   range.  Also, the magnitude of 

the stability root in the small X   range is usually quite small, so that the damping of the boat 

oscillations may usually be expected to be poor.  Taking an example from the figure, we find 

from Equation (26) that the time for a disturbance to damp to half amplitude at Cy = 2.67 

would be more than 15 seconds for a boat with a 15-fcot beam, and oR1' = -0.01.  This 

would be intolerable in the presence of even very small disturbances.  On the other hand, it is 

seen from the same figure that moving the center of gravity forward of the upper value at 

which the root becomes negative results in increasingly negative values of the stability root and. 

' Iridsma, G., "A Syitemttic Study of Rough-Water Performance of Planing Boats," Davidson Laboratory, Stevens Institute of 
Technology, Hoboken, N.J.. Report 1275 (Nov 1969). 

a 
Clement. F.P, and D. Blount, "Resistance Tests ol Systematic Series of Planing Hull Forms," Transactions Society of Naval 
Architectsand Marine Engineers, Vol. 71, pp. 491-S61 (1963). 

9David«on, K.S.M. and A. Suarez, "Tests of Twenty Related Models of V-Bottom Motor Boats - EMB Series 50," David Taylor 
Model Basin Report R-47 (1949). 
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therefore, considerably higher damping for this mode.   For example, for the same speed and 

\  = 1.5, we find oR1' = 0.3, and the time for a disturbance to damp to half amplitude is of 

the order of only one-half second.  Since the calculated value of o..' at this condition is about 

0.5, the damping ratio from Equation (27) is found to be approximately 0.50; whereas, for the 

previous condition it was only about 0.02. 

An alternative plot to Figure 2 showing the variation of the calculated oR1' with trim 

angle, for a complete range of test speeds, with 0 = 0 degrees and C^ = 0.72, is shown in 

Figure 3.  This plot is typical of those used to determine the critical trim angle as a function 

of the speed coefficient.  Where two trim angles at zero root crossing are shown, the smaller 

trim angles are taken.  The porpoising boundaries thus determined are discussed in the next 

section. 

COMPARISONS WITH EXPERIMENTS ON PRISMATIC HULLS 

Figure 4 shows the variation, with the speed coefficient Cy, of the critical trim angle of 

a prismatic planing configuration, with a deadrise angle of zero degrees, for three values of 

load coefficient  The points in the figure represent the experimental data.4  The curves were 

obtained from the present theory.   It is seen that the theory agrees reasonably well with the 

experiments for C^ = 0.36 and 0.72.  For the intermediate load coefficient C^ = 0.48, the 

theory gives intermediate values of critical trim angle; whereas, the data for this condition are 

close to those obtained at C^ = 0.36. 

Figure 5 is a similar set of graphs for the prismatic hull with a deadrise angle of 10.6 

degrees.  Here, the agreement between the theory and the experimental results over the whole 

speed range is quite good for C^ = 0.48 and 0.72.   However, for C^ = 0.36. the theory tends 

to underpredict the critical trim angle about 1 degree at the higher speeds.  Part of this 

discrepancy is due to the fact that the chine became unwetted at the transom, and the theory 

does not account for this.*  The discrepancy tends to be greatest at the high-st speeds and for 

the lowest loading conditions.  The region where the whole chine is out of the water is indi- 

cated approximately by the dashed portion of the curve. 

Figure 6 is a similar comparison for a hull with deadrise angle of 20.5 degrees.   Here the 

theoretical curve tends to fall slightly lower than the data, at the lower speeds, and underpre- 

dicts the critical trim angle by about one degree at the higher speeds.   In this case the chine 

became unwetted sooner than for the boat with a 10.6 degree deadrise angle.  The approxi- 

mate region of occurrence is indicated by the dashed portion of the curves.  An attempt was 

•The theory is being modified to include these effects. 
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made to determine the effect of modifying the magnitude of the lower limit of integration 

in part of the added mass integral as discussed in Appendix A.  This had the effect of further 

improving the predictions as shown by the broken curves in Figure 6.  This slight alteration to 

ihe theory had practically no effect on the predicted porpoising boundaries for the hulls having 

0- and 10.6-degree deadrise angles. 

Day and Haag found that by plotting the measured trim angle against (CJJ,/2)''
2
 or 

^/C^/Cy, the separate curves for each load coefficient collapsed into a narrow band. This 

result was also found from the theoretical calculations.  Figures 7 through 9 show comparisons 

between the experimental data and the calculations plotted in this manner.   Except as noted 

earlier, it is seen that the overall agreement between the theory and the data is reasonably good 

for all of the deadrise conditions investigated. 

For each critical trim angle TC, the corresponding critical position of the boat center of 

gravity X     must satisfy the steady state equilibrium equations.  Thus the degree of agreement 

between the measured and predicted magnitude of X„ is, in part at least, a measure of the 

accuracy of the steady state equations.   Figure 10 shows a comparison with theory of the 

measured variation of X    with speed coefficient for each of the conditions investigated by 
5*" 

Day and Haag. It is seen that the best overall agreement was obtained for the hull with zero 

deadrise angle For the deadrise angles of 10.6 and 20.5 degrees, the calculations were about 

10 to 15 percent lower than the measurements. 

This result seems to be consistent with the tendency of the steady state Equations (18) 

and (19) to underestimate the steady trim angle, thus requiring a more aft position of the 

center of gravity to obtain a given trim angle.  Comparison with the steady state trim data in 

Relerence 7 of a similar formulation recently proposed by Brown ° exhibits the same tend- 

ency to approximately the same degree.   However, the empirical formulation presented by 

Savitsky5 does not show this tendency and gives, on the average, better agreement with 

measured steady state trim angles.   As will be seen later, the use of this formulation generally 

gives larger values of X   for a given value of r.* 

Another interesting feature of Figure 10 is that the effect of load coefficient appears to 

be small.  This is mainly due to the fact that the more highly loaded configurations of the 

Day and Haag models had smaller radii of gyration.   As will be seen later, the theory shows 

that these two effects are generally compensatory in their effect on the critical center of 

gravity position.   It is also worth mentioning that the theoretical values of the location of the 

Brown, P.W., "An hx peri men l »I and Theoretical Study of Planing Surface« with Trim flaps." Davidion Laboratory, Stevens 
Institute of Technology. Hoboken. N.J., Report 1463 (Apr 1971). 

•The reasons for this discrepancy are bein«: investigated. 
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hydrodynamic center of pressure and center of gravity were within 5 percent of each other in 

nearly all cases. As one might expect, this was the case throughout the stable operating rangt 

as well. 

Figure 11 is a plot of the theoretical nondimensional mean wetted length of the boat at 

porpoising against speed coefficient for the various conditions investigated.  Unfortunately, 

Day and Haag did not measure the wetted length of their models, so no direct comparison 

with the data is possible.   Average values of observed wetted lengths of the spray sheet at the 

chine, which did not vary much with speed, are shown for a rough comparison.  As one might 

expect the spray sheet length relative tc the mean wetted length becomes smaller with increas- 

ing deadrise angle. 

For a typical configuration, Figures 12 and 13 show the separate effect of nondimensiona; 

loading C^ and radius of gyration lc/b on the magnitude of the critical trim angle TC as 

determined from the theory.  It is seen that TQ becomes smaller with both increasing radius of 

gyration and load coefficient.   However, the effect is not large   - especially for small values of 

^Lb*   '* w'" ^e reca"ed that the higher the loading the smaller was ihe radius of gyration for 

the models investigated by Day and Haag.  This effect also contributed, to some extent, to 

collapse of their data for different load conditions.  A similar effect, though more pronounced, 

may be shown to hold with respect to the critical nondimensiou?! value of the longitudinal 

centei of gravity position and mean wetted length.   Figures 14 through 16 show that the value 

oi X     and Xmc increases with both increasing C^ and increasing ky/b.   Here these effects 

account almost entirely for the tendency of the X    versus Cv curves (Figure 10) and the 

Xmc versus Cv curves (Figure 11) to collapse into a narrow band for the various loadings 

shown. 

Although, the calculated values of X    tend to be low. Figures 14 and 15 nevertheless 

illustrate some interesting trends.   It is seen that the value of X    has an increasing tendency 

to reach a limit with increasing deadrise angle and decreasing load coefficient. Also the value of 

X    becomes smaller with decreasing nondimensional radius of gyration and increasing deadrise 

angle. It thus appears that high deadrise angle, low loading, and a small radius of gyration permit 

a more aft location of the critical center of gravity. Furthermore, it appears that the tendency 

for the curve to turn down at the higher deadrise angles may explain the observation by Stolz   and 

others that "deadrise surfaces which are not deep into the porpoising range often regain stability 

at higher speeds." 

Relatively recently Fridsma' reported a rather limited amount of experimental data on 

the porpoising of prismatic hulls with deadrise aiigles of 10, 20, and 30 degrees and with 

'Theory and experiment thow, however, that natural frequency of oscillatory motion decreaaes significantly with increasing 
moment of inertia. 
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various load coefficients.  Experiments for the 20 degree deadrise case were carried out with 

models of length-to-beam ratio of 4, 5, and 6 so that different values of lc,/b were obtained 

for the same C^ in some cases.   Figures (17a) and (17b) show a comparison of measured 

values of critical trim angle made by Fridsma with those computed from the theory.  The 

theoretical curves are basically cross plots of curves such as those in Figure 12 for various load 

coefficients.  They provide a convenient method of indicating the effect of variations in ky/b, 

separately from C^ and C^ on the magnitude of TC.  It may be seen from the figure that the 

theory predicts T_ quite well in most cases but that there are insufficient data to verify the c 

variation with lc,/b predicted by the theory. 

The calculated values of Xor, and Xmr in these cases were about 28 and 15 percent lower, 

respectively, than the measured values.  The former is more than twice the difference computed 

for the Day and Haag experiments.   As noted earlier, this was felt to be due mainly to the 

fact that the steady state equations tend to underpredict steady state trim angle.  Values of 

X    were then recalculated tor each of the theoretical values of rc from the following steady 

state equations, adapted from Reference 5. 

X=0.75X -i-  *X (28) 
F (5.21 Cv

2/X2)+ 2.39       * 
v 

where Xmc is defined by the following equations 

C^ = rc'-'(0.0120 xJ/2 ♦ 0.0055 \Jl2ICyh | 

CLb = CLo " 0-0065 ß Cj>* 

and X_ is the nondimensional distance of the center of pressure forward of the transom.  The 

assumption that the center of pressure and center of gravity are coincident was found from 

the theory to be valid to within a few percent in nearly all cases.   The use of the above 

equations resulted in better agreement with the experimental values when the theoretical values 

of T( were substituted.  Table 1 shows a comparison of X    thus obtained with the measured 

values.   Also shown are comparisons with the measured mean wetted lengths.   It is seen that 

the calculated values are within a few percent of the measurements in nearly all cases. 

■ COMPARISONS WITH EXPERIMENTS ON NONPRISMATIC HULLS 

Although the theory and data presented thus far are for prismatic hull forms, they show 

trends which are close to those observed on a variety of nonprismatic models.  Two principle 

sets of data8,9 are available for comparison.  The DTMB Series 62 models of Clement and 

Blount8 are pure monohedran hulls with a transom-to-beam ratio between 0.64 and 0.80 and 

constant aft deadrise angle of 12.5 degrees.  Those of Davidson and Suare/   have a low chine 

II 



TABLE 1 - COMPARISON BETWEEN CALCULATED AND MEASURED 
VALUES OF X„c AND Xmc, USING COMPUTED CRITICAL TRIM 

ANGLE AND METHOD OF REFERENCE 5 FOR MEASURED 
PORPOISING CONDITIONS OF REFERENCE 7 

Deadrise 
0 

deg 

Load 
Coefficient 

Speed 
Coefficient 

cv 

Xop Calculated 

X„. Measured 

Xmc Calcula ed 

Xm„ Measured mc 

10 

20 

30 

0.912 
0.608 
0.304 
0.304 
0.608 
0.608 
0.304 
0.304 
0.609 
0.912 

3.83 
3.00 
3.33 
2.00 
3.89 
2.73 
2.66 
2.98 
2.73 
3.85 

0.86 
0.90 
0.93 
0.94 
1.07 
1.03 
1.00 
1.02 
1.02 
1.07 

0.94 
0.99 
1.06 
1.00 
1.17           i 
0.97 
1.12 
1.00 
0.95 
1.00 

line and warped bottom with a transom-to-beam ratio of 0.88 and a mean deadrise angle 

between 4.0 and 7.3 degrees.   In view of the approximate nature of the comparison it was 

felt that existing calculations for the 10.6-degree deadrise configurations would give a suffi- 

ciently good representation of the trends measured in the previously mentioned data. 

The porpoising boundary described by Clement and Blount was presented as a plot of 

C, b/X    versus the volumetric Froude number Fy where 

Cu, = 2 CA/CV
2 

Fv = U//"^ = CV/(CA)1/6 

It is seen that the critical trim angle does not appear anywhere, and the porpoising boundary 

is expressed mainly in terms of the critical position of the center of gravity.  This method of 

plotting was an apparent attempt to collapse the measured values of X    for the wide range of 

load coefficients investigated.   Figure 18 shows a comparison of the theoretical calculati ns 

with the Series 62 data.  The theoretical curves are constructed from the calculated curves of 

Figure 10 for 0 = 10.6 degrees and CA = 0.36. 0.48, and 0.72.  The C^ values are in the 

approximate range of most of the data.  The values of CLb/Xgc given in Reference 8 were 

nondimensionalized with respect to the beam at the center of gravity, while those shown in 

Figure 18 have been based on the mean of the maximum beam and the beam at the transom 

in order to provide a more realistic comparison with the constant beam case.   It is seen that 

the theoretical curve follows the same trend as the data but is about 10 to 15 percent higher. 
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theory to include more general-type hull configurations. 

CONCLUSIONS 

A theoretical method has been derived for predicting the conditions leading to porpoising 

in the surge, pitch, and heave degrees of freedom of prismatic hulls with arbitrary deadrise 

angle.  Comparisons of the theory with the porpoising boundaries measured on towed models 

Agnelli. I.C., "Kvaluilion of the Trim of i Planing Boat at Inception of Por^'iising." presented at Spring Meeting cf Society 
of Nival Architects and Marine Fnginecrs, Lake Hm-'u Vista, I'll. (Apr 1973). 
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This is mainly a reflection of the difference between predicted and measured values of X„_ 

shown in Figure 10.   It may be seen that the points for different loading conditions will fall 

on separate lines and that the trend with loading for each model is close to that given by the 

theory; e.g., compare Conditions 3, 4, and 5 with the trends shown in Figure 15. 

It is easy to shew that the measured effect of radius of gyration exhibits the same trends '- 
■. 

as that shown by the theory; see Figure 14.  Although the radius of gyration k^/b of the 

models was not measured, it is reasonable to assume that it was increasingly larger for the 

models with larger length-to-mean-beam ratio Lp/Bp^.   By comparing the trends of the data 

for different models with approximately the same load coefficient (Conditions 1 with 3 and 5 

with 6) we see that the value of A    follows the trends with k /b predicted by the theory. 

Gement and Blount found that the slope of a straight line through the data points was 

about -2.5.  This implies that, for a given value of CA 

- 
since Cy, = 2 C^/Cy .   From Figure 10 it is seen that the previously described equation would 

fit the theory and experimental data for the prismauc hulls quite well.   Although the equation 

may be a good approximation for the data shown, it is seen from the theoretical curves of 

Figures 14 and 15 for k /b constant that it is not safe to assume that this is true in all cases. 

The data of Davidson and Suarez9 are most conveniently compared in the form of a 

porpoising boundary presented by Agnelli.1   This is shown in Figure 19 as a plot of measured 

values of the critical trim angle TQ against 2/(CljbfK   ). Included also are the data points for the 

Series 62 hulls.  These were recently obtained by the author from Mr. Blount and are not 

quite the same as those shown in the plot of Reference 11.   Shown for comparison with the 

trends predicted by theory are straight lines drawn through points obtained from the calculated 

curves of Figures 5 and 10 for the case of 0 = 10.6 degrees and CA = 0.36. 0.48, and 0.72. 

Although many of the points do not fall on the lines, it is clear that the trends are predicted. 

More detailed comparisons with the individual models must await further extension of the 



with freedom only in pitch and heave showed reasonably good agreement.  Since no porpoising 

data with all three degrees of freedom are available, it was not possible to check the theory for 

this case.  However, from a comparison of the relative magnitudes of the coefficients in the 

surge equation it appears that this effect is small.  In any case this may readily be investigated 

in more detail with the three degree of freedom stability equations in Appendix A. 

The stability roots obtained from the characteristic equation provide estimates of the 

dynamic behaviour, such as oscillation natural frequencies and damping characteristics of the 

boat in the stable region. 

Although the theory was developed for prismatic hull forms, it appears to be suitable as 

a guide in estimating the porpoising limits and dynamic characteristics of more conventional- 

type planing hulls, as well as the effects of variations in several of the parameters.   It is felt 

that by an extension of the analytical methods used in the present analysis even closer agree- 

ment with data on prismatic hulls and conventional boats could be achieved, and a tool suitable 

for investigating the effects of detailed design modifications could be obtained. 
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APPENDIX A 

DERIVATION OF PORPOISING STABILITY EQUATIONS 

It is assumed that the planing craft has a prismatic hull of constant deadrise, is moving at 

constant speed parallel to a calm water surface, and is free to perform small perturbation 

motions in pitch, heave, and surge about its steady equilibrium attitude.  Since the theory is 

concerned mainly with the high-speed, low-aspect ratio condition, it is assumed that the craft 

may be treated as a slender body with an empirical three-dimensional correction, and unsteady 

effects are small.  The kind of analysis to be used was first used in 1924 by Munk'^ and later 

by Jones    in connection with the analysis of airships and slender wings, respectively.  More 

recently this method has been generalized by Bryson1    for completely submerged slender- 

finned missiles.   It has also been applied to the problem of pure translational impact of sea- 

planes on a calm water surface by Mayo1' and others.16, 

FORCES DUE TO PERTURBATIONS IN 
VELOCITY AND ACCELERATION 

The flow over the hull is assumed to occur in transverse planes which are fixed in space 

and oriented normal to the keel; see Figure 20.   The momentum of each layer of water trans- 

verse to the keel is /ifds, where (i is the two-dimensional added mass of the section of the hull 

at point s, interacting with the section of the flow plane of length ds, and f is the component 

of the velocity of the body normal to the keel at that point.  The coordinate s is measured 

from the foremost immersed station along the keel.   The normal force on the section ds of 

the hull is the time rate of change of the momentum of the layer of water ds at s. 

' "Muni.. M.M.. "The Aerodynamic Force* on Airship Hull»." National Advisory Committee for Aeronautics Report 184(1924). 

Jones, R.T., "Properties of Low-Aspect-Ratio Wings at Speeds Below and Above the Speeds of Sound," National Advisory 
Committee for Aeronautics Repor' *53 (1946). 

Bryion, A.E., Jr., "Stability Derivativ«.      r a Slender Missile with Application to a Wing-Body Vertical Trail Configuration," 
Journal of Aeronautical Sciences. Vol. .    No. S, pp. 29'/ - 308 (I9S j). 

Mayo, W.L., "Aiul> si» and Modification of Theory for Impact of Seaplanes on Water," National Advisory Committee for 
Aeronautics Report 810(1945). 

Milwitzky, It . "A Generalized Theoretical and Experimental Investigation of the Motions and Hydrodynamic Loads 
Experienced hy V-Bottom Seaplanes During Step-Landing Impacts," National Advisory Committee for Aeronautics 
TN 1516(1948). 

Schnitzer. E., "Theory and Procedure for Determining Loads and Motions in Chine-Immersed Hydrodynamic Impacts of 
Prismatic Bodies," National Advisory Committee for Aeronautics Report 1152 (1053). 
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dFD=^Oinds (29) 

Both n and f will in general be functions of the longitudinal position coordinate x and time t. 

The time derivative is therefore 

dt 3x    dt 

where U is the steady state speed. 

The normal hydrodynamic force over the entire hull is obtained by integrating Equatior. 

(29) along the wetted length of the hull lk and multiplying by a correction factor 0(X) to 

account for the three-dimensionality of the flow. 

rck d 
Fr> = *(*)/     -r:(Mr)ds (31) D V.   T, 

where X is the mean wetted length divided by the beam.   A plot of <p(\) obtained empirically 

by Pabst1   is shown on Figure 21.  The integral may be expressed as the sum of a velocity 

term and an acceleration term. 

The longitudinal and heave perturbation velocities and accelerations arc, respectively, 

denoted by u, ü, z, z.  The pitch angle perturbations are 0, 0.   From Figures 1 and 20 we 

obtain the following relationships: 

— = - cos T (33) 
dx 

^ = ~ sin T (34) 
3x 

3t ■r- = u sin r + z cos T - 0 (a - s) (35) 
ot 

f = 0 (36) 

where r is the equilibrium trim angle of the boat, and a is the value of s at the tranverse flow- 

plane through the boat center of gravity. From these equations and Equation (30) we have to 

the first order in the perturbations 

18 
Pibit, W., "Landing Impact of Seapbutei," National Advisory Committee Tot Aeronautic! TM 624 (1931). 
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f = U sin T + u sin r + z cos T - 0 (a - s) 

f = 2 U 0 cos r + u sin T + z cos r - 0 (a - s) 

dp _ ,dfi _ sdn 
dt        9f        3s 

(37) 

(38) 

(39) 

On substituting these equations into Equation (32), dropping the r^cond order perturba- 

tion terms, and integrating, we obtain 

(40) FD = FDS + A FD 

where 

FDS = ifiCK) p U2 sin T cos r 

A Fn = (2 Fn<./U)(u + z cot r + 0 C/sin T) D DS I' 

+ <p(X)<(iisinr + zcosr)/     päs-6 j     p(a-s)ds 
I 

(41) 

(42) 

The term p% is the value of the sectional added mass at the stern and 1   = 1^ - a.  The first 

term FQ^ is the steady state hydrodynamic normal force, while the remaining terms A Fp are 

the linearized force contributions from surge, pitch, and heave perturbations in velocity and 

acceleration.  The factor 2 multiplying the z and 0 terms in Equation (42) arises from the fact 

that the sectional added mass is not only a function of position on the hull but also of depth. 

This is ..presented by the contribution of df/dt of Equation (35i to dn/dt in Equation (39). 

The hydrodynamic moment is obtained by integrating the product of the stripwise force 

in Equation (29) and the moment arm from the center of gravity a - s. 

fa - o 
dt 

r*k        d 
MD=*(AW     (a-s)-(p?)ds (43) 

With the aid of Equations (31 through 3**) we f.nd from Equation (43), after dropping second 

order terms in the perturbations 

MD = MDS + AMD (44) 

where 

•8i 
MDS ■ tf(A) U2 sin T cos r I    /     p ds - 8g pA (45) 
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2MDS 
AMD = —-— (u + z cot r) 

^(X)2UcosTMsßg
2 + /    P(a-s)ds 

+ ip(X)(u sin T + z cos T) /     p.(a-s)ds V. 

'I 
8L 

$(\)0 I     ju(a-srds 
o 

(46) 

The first term Mpg is the steady state hydrodynamic moment about the center of gravity of 

the boat. The remaining terms AMQ are the linearized contributions of the surge, pitch, and 

heave perturbations in velocity and acceleration. 

VELOCITY AND ACCELERATION STABILITY DERIVATIVES 

The vertical and horizontal components of the force stability derivatives with respect to 

the velocity and acceleration perturbations are the coefficients of the perturbation terms in 

the vertical and horizontal components of the perturbation force AFD in Equation (42). 

We write these equations in nondimensional form* by dividing through by 1/2 pU b .  Thus 

the vertical component of the perturbation force equation becomes with Z positive down 

AZD = 2 FDS' cos r (u' + z' cos T + 6' X /sin r) 

*5<X) (u sin T cos T + z c •: cos2 r)f V ds' + 9'f V(a' - s')ds' 

where 

FDS' * lp(\) j*s' sin r cos T 

6' = 0 b/U     , etc, 

(47) 

(48) 

' Nondin*nsional quanütirs ±K represented by a prime tymbol. 

IS 



Likewise the horizontal component with X positive forward becomes 

AXD' ■ AZD' tan T (49) 

The corresponding nondimensional stability derivatives for the moment equation are obtained 

in an analogous manner from the nondimensional form of Equation (46) as 

AMD' = 2MDS'(u' + z' cot T) 

where 

- *(X) 2 cos T  MS' Xg
2 +/ V (a' - s') ds'  8' 

+ ^(X)(u' sin r + 'i' cos T)I     fi'd' - s') ds' 

-*>(X)0'/ V(a'-s')2ds' 

rXjj 
MDS' = ^(X)/     n'(a'-s')2ds' 

(50) 

(51) 

Typical notation for the nondimensional stability derivatives are shown as follows 

zö' = -2 FDS Xg cot T 

K= zu'tan' 

M§' = ->p(\)J   V(a'-s')2ds' 

ZJ - - <p(\) cos2 T I     n' ds' 

X/ = Z^ tan r 

Mu' ■ 2 MDS' 
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SECTIONAL ADDED MASS DISTRIBUTION 

The next step is to find an expression for the distribution of the boat sectional added 

mass ß as a function of s.  A general theoretical expression for this quantity is not available, 

even for prismatic hulls with constant deadrise.   However, relatively simple approximate 

expressions for added mass have been used successfully in the past in the analysis of hydrody- 

namic impact of prismatic bodies.   -1'   For the sections of that portion of the body with the 

;hines above the water surface, the sectional added mass was estimated by thp following 

equation 

,-p-^m2 (52> 

where 

f(0) = «-l (53) 

ß = deadrise angle in radians 

This expression is based on the work of Wagner.'9  The quantity f f(0) is the radius of the 

semicircular cylinder representing the added mass of the section.   For the sections of the hull 

with the chine submerged, the following expression was used. 

M=-~ (f(0)tan0)2 + B|b(f-rc) (54) 

where B is a function of the angle of deadrise, and b is the beat beam.   The first term is the 

contribution of the V-shaped bottom alone at the instant of chine imm.rsion.  This is obtained 

from Equation (52) by putting f = fc = b/2 tan ß.   The second term is an estimate of the 

effect of chine depth as suggested by Schnitzer1    and is based on the theory of BobylefP^ 

for infinite immersion.   The Bobyleff function B is shown in Figure 22. 

The expressions for n given by Equations (52) and (54) will be used in Equations (40) 

and (44) to determine the normal force FQ and moment MQ.   However, it is first necessary to 

define the range of keel length over which each contribution to p is valid.   It is clear that no 

single location, such as suggested by Equations (52) and (54), exists at which the effect of 

chine immersion starts, since the flow is much more complex than these equations suggest. 

This is especially true in the vicinity of chine immersion.   However, a practical solution to 

this problem has been made possible by making the theory for the steady part of the normal 

force and moment consistent with the large amount of existing steady state data. 

19 
Wagner, H., "The Phenomena of Impact and Planing on Water." National Advisory Committee for Aeronautic! Translation 
1366,ZAMMBd 12. Heft 4. pp. 193 - 215 (Aug 1932). 

Lamb. H. "Hydrodynamics," Sixth Edition. Cambridge University Press. England (1932). 
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By assuming that the planing hull normal force at high speeds was made up of the sum 

of low-aspect-ratio wing lift and a cross flow drag term, Shuford21 arrived at the basic form 

of an expression which he was able to fit very well to data obtained by many investigators. 

These data cover a range of trim angles between 2 and 30 degrees, wetted lengths from 

one to seven beams, and deadrise angles betv/een 0 and 50 degrees.  His expression for the 

normal force is given by 

rA FDS=>>S[^ A) 

2 

sin r cos T (1 - sin ß) 

where 

+ CD   sin^ T cosz T cos ß 

Cpc = cross flow drag coefficient 

S = planform area of the wetted portion of the hull or Xb2 

A - aspect ratio of S, i.e. 

A = b2/S= I/X 

(55) 

(56) 

The values of CD   and the dependency on deadrise angle were obtained by a fit to the data. 

The cross flow drag coefficients were found to have the values shown in Table 2. 

TABLE 2 - CROSS FLOW DRAG COEFFICIENT21 

vD.c 
1.33 

Section shape  

V-bottom, constant deadrise  

V-bottom, horizontal chine flare  1.33 + 0.0147 0° 

V-bottom. vertical chine strips  1.60 + 0.0147 ß° 

We will now define the various contributions jua to the sectional added mass along the 

hull by the following equations, which are somewhat less restrictive than Equations (52) and 

(54). 

Bl n*a ,2 'f Uß)2 s2 tan2 r 

— Bb tan T (s - sc2) 

o < s < s cl 

"i = { ^T f<0)2 sc,
2 tan2 T scl < s < fik 

sc2 < s < Ck 

(57) 

(58) 

(59) 

21.. Shuford. C.L.. Jr., "A Ttietirctical and IiperimenUl Study of Planing Surfaces Including Effects of Croti Section and Plan 
form," National Adviaory Committee for Aeronautici Report 1355. (1957). 

21 

mmm*mmm* 

"   . ■*■ 



f- 

where we have made the substitution 

f = s tan r (60) 

The sectional added mass n at any section is simply the sum of the contributions at that section. 

The principle difference from Equations (52) and (54) is that scl and sc2 have not been 

assumed to be known in advance.   Equations (57) and (58) are the contributions from the 

bottom of the hull to the chine.  The quantity scl is the value of s at the point where the 

chine is effectively immersed.   Equation (59) is the contribution corresponding to the seconj 

term in Equation (54), and sc2 is the value of s at which this begins to grow. 

From Equations (57 through 59) we readily find that 

(61) 

r 

M, = y (f(0) scl tan r)2 +£ Bb tan r (fifc - sc2) 

r^k           air                             /        2     \    o                 ^k ~ sc2' 
J     Mds = i~(f(0)scl tanr)2^k-ysc]j + -|Bbtanr  (62) 

o 

Substituting Equation (61) into Equation (41) gives 

FDS = ~- l^(ß)n(({ß) scl tan r)2 sin T cos r 

+ ^(X)Bbsin2 T(Kk-sc2)] (63) 

This equation becomes identical with the formulation of Shuford in Equation (55) provided 

*,x'= rn ■ vh «*> 
y(f(ß)sc, tanr)2 = ^- (1 - sin 0) (65) 

*p{\)B = CDc cos2 r cosj3 (66) 

Bk - sc2 = X b (67) 

The three-dimensional correction factor of Equation (64) has a trend similar to the result 

obtained by Pabst as shown by Figure 21.   Also the variation of B with deadrise angle is seen 

to be proportional to cos ß in Figure 22. 

If we substitute Equations (64) through (67) into Equation (63) and nondimensionalize, 

we obtain 

FDS' ■ r-—r  ■=■ sin T cos r (1 - sin ß) 

+ CD   X sin2 r cos2 r cos ß (68) 
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Likewise if we substitute Equations (61) through (67) into Equation (45) and divide by 

1/2 pU2 b3 we obtain the nondimensional dynamic moment about the center of gravity 

M
DS' 

= fTx Tsin r cos T (1 "sin ß) (Xk" 3 xci - \) 

+ CDc sin2 T cos2 T cos ß (- - Xg) X (69) 

where Xd = scl /b 

\l = sc2/b 

Xg   - 8g/b 

Xk   =Ck/b 

DETERMINATION OF Xcl, Xc2, Xk 

Because of wave rise on impact, the effective depth of the V-bottom is greater than the 

depth relative to the calm water free surface.  Wagner19 found that before chine immersion, 

the effective depth was greater by a factor of ir/2.  Therefore the effective radius c of the 

semicircular cylinder of water representing M(S) is taken as 

(70) c 
ir 

"V 
tan r 
tan ß 

Combining with Equation (57) gives 

M(s) = 
it '[( -iff tan2 

ß2 

ß fors<sc, (71) 

The factor in brackets represents the effect of deadrise angle on the sectional added mass. 

Shuford found that this did not correlate well with data for angles of deadrise greater than 

25 degrees.   He therefore substituted the function (1 - sin ß) which correlated well with data 

to ß - 50 degrees.   Making this substitution in Equation (71) and substituting into Equation 

(65) we find the following expression for c 

■-"ft) 
for s ■ scl (72) 

This equation is seen to be independent of deadrise angle.  On substituti.r, into Equation (70), 

we obtain 

_ y/J_ tan£ k m 

jr    tan T 
sc, =2i_~-b = X ,b (73) 
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An expression for the mean wetted length-to-beam ratio X has been obtained by Brown1 

from extensive photographic observations as 

X = 0.5 (Xk + Xc) + 0.03 (74) 

where Xc, the ratio of the wetted length of chine to beam, is 

(75) Xc = Xk - (0.57 + 0.001 0) (tan 0/(2 tan r) - 0.006 0) 

provided Xc > 1.  The last term in Equation (74) is an allowance for stagnation line curvature. 

We then find from the previous equations that 

Xc2 = 0.5 (0.57 + 0.001 0)(tan 0/(2 tan T) - 0.006 0) - 0.03 (76) 

since according to Equation (67) 

Xk = X + Xc2 (77) 

Equations (73), (76), and (77) completely define the ranges of the sectional added mass 

distributions in terms of 0, X, and r. Both X and T are obtained from the steady state equili- 

brium conditions to be discussed in a later section. 

It is noted that the value of Xc2 as defined by Equations (59) and (76) is smaller than 

Xj, - Xc which corresponds to the lower limit of integration at which f = fc in the representa- 

tion of the second term of the added mass in Equation (54).   Although it appears more 

reasonable to use \ - Xc for the lower limit of integration, the best fit to the data10 requires 

that we use the X„0 of Equation (76).  In the numerical analysis, the effect of using Xv - X. 

in place of X 2 was found to be insignificant except for the 20-degree-deadrise case. 

Calculations of r using Xk - Xc are shown by the broken curves in Figure 6 where it is seen 

to produce a small improvement in the fit to the data. 

ADDED MASS FUNCTIONS 

The added mass functions used in evaluating the stability derivatives may now be 

expressed in terms of the hull geometry and the integration limits Xcl, Xc2, and \. 

The nondimensional sectional added mass at the stern, including the three-dimensional 

effects is readily obtained from Equations (61) and (64) through (67) as 

*(X)M$' = 2(P + Q) (78) 

where 

24 



Q = —r— X sin r cos r cos ß 

The nondimensional added mass in heave is, from Equation (62) 

where 

<fi(\)J     M'ds' = 2Px4+QX (79) 

X4 - xk - jXcl 

The nondimensional first moment of the added mass with respect to the point s = 0 is readily 

obtained with the aid of Equations (57) through (59) as 

*(k)J V s' ds' = 2fPx2 + ~\}j (80) 

where 

X 2     x   2 
X2"~2~-~4~ 

_ Xk   " \l      (\   ~\2 V 
X3 3 ^       2 / Ac2 

The nondimensional second moment of the added mass with respect to the point s = 0 is 

0{\)J V s'2 ds' = 2 (Px5 + yX6) (81) 

X   3     X 3     X   3 Acl    , Ak       \l 
where X5 = — + 3  

\   ~Xc2      [Xk   -Xc2  V 
*6 = 4 \ 3 )\2 

REMAINING FORCE AND MOMENT CONTRIBUTIONS 

To completely specify the forces and moments on a planing craft, it is necessary to add 

to Equations (40) and (44) the contributions due to perturbations in pitch and heave displace- 

ment, buoyancy, skin friction, thrusters, aerodynamic factors, and towing forces and moments. 

Although the thrusters may have a significant effect on the equilibrium trim and wetted length, 

their effect on the stability derivatives is probably not very large.   In any event these effects 
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may be estimated by means of existing techniques,22,23 and will not be considered further 

here.  However, the effect of a towing force and moment will be included in order to facilitate 

comparison with towed model data. 

The contributions due to perturbations in pitch and heave displacement may readily be 

obtained from the complete expressions for the steady state force and moment. The additional 

terms required to complete these expressions are described as follows. 

BUOYANCY FORCE AND MOMENT 

We will consider only the cases for speed coefficient Cy greater than 0.5, where the water 

breaks clear of the transom, thus fully ventilating the backside of the boat to the atmosphere. 

For this case the hydrostatic force may be assumed to act normal to the keel.  The following 

expression was found to fit the data reasonably well.10'24 

FgS' = K X2 sin rjQyj (82) 

where K is an empirical correction factor which accounts for ventilation effects on the static 

pressure.  On the basis of preliminary analysis of planing boat test data, a value of K of 0.7 

was tentatively suggested by Hsu.      However, from recent extensive experiments with a 10- 

degree deadrise prismatic planing hull, Brown'0 obtained the best agreement with the data by 

putting 

K = 0.624 (83) 

and assuming that it acts at one third of the mean wetted length from the stern. Since the 

present analysis deals with prisr.iatic hulls Equation (83) will be used in the following. The 

moment about the center of gravity is clearly 

MBS = FW ih\) (84) 

SKIN FRICTION 

The contribution due to skin friction is assumed to act tangential to the bottom and mid- 

way between the keei and chine lines.   It is given in terms of the mean wetted area by 

Savitsky5 

23 

24 

"Uadler, J.B., "The Prediction of Power Performance on Planing Craft." Trantactioni Society of Naval Architect» and Marine 
Ingineei i. Vol. 74. pp. 563 ■ 6!0 (1966). 

Rtbner. U.S., "Propeller» in Yaw." National Advitory Committee for Aeronautici Report 820 (194V). 

Htu. C.C., "On the Motions cf High Speed Planing Craft," Hydronautkt Report Ml VI (Mt* 1967). 
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FFS' = X Cf/cos 0 (85) 

where the friction coefficient Cf is given by 

0.242 

7q " log10 hm 
as a function of Reynolds number.  The moment about the center of gravity is clearly 

MR - - FFS' (\ - S«£) (86) 

TOWING AND AERODYNAMIC FORCES 

Terms similar to the above Equation (86) may be written for the towing and aerodynamic 

force and moment contributions.  These are assumed here to act in a line parallel to the steady 

part of the straight line motion.*   The moments about the center of gravity, due to the tow 

force Tg' and wind force F^', respectively, are 

MTS  *-Tjf0c,,e,) (87) 

where 

steady state force and moment equations.  The force equation is resolved into a vertical (lift) 

component and a horizontal (drag) component.  The lift equation is readily obtained by setting 

the boat weight W equal to the sum of the vertical component of the various force contribu- 

tions defined earlier.  Thus in nondimensional form we have 

W - - Zj ■ (Fjjg' 4- FK') cos r - FFS' sin r (89) 

• ITm ii ■ food «Munipiion for the model experiment« ducuiard kter. 
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MWS * FWS f(k2- e2} (88) 

f(kn, en) = (X^ - Xv) cos T + (XCT - Xg) sin r 

\\* \\   = nondimensional coordinates of the towpoint with respect to 

keel at the stern; see Figure 23 

Nc2* ^e2 = coordinates of the resultant windforce 

N = perpendicular distance from the keel to the center of gravity 
■ 

STEADY STATE EQUILIBRIUM 

The steady state trim angle r and mean wetted length Xb are readily determined from the 
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where Z§' is the nondimensional hydrodynamic lift, positive down. Similarly the nondimen- 

sional tow force FTS' is set equal to the drag or horizontal component of the force contribu- 

tions. 

V = - Xs' = (FDS" + FM') sin r + FFS' cos r f Fws' 

= - Zs' tan r + FFS'/cos r + Fws' = Ds' (90) 

where Ds'  is the nondimensional drag of the boat.  The moment equation is obtained by 

summing the components 

Ms' = MDS' + MBS' + MFS' + MTS' + Mws' ^ 0 (91) 

where the component moments are given with respect to the center of gravity. 

If we substitute Equations (68), (82), and (85) into Equation (89) we obtain finally for 

the steady state lift equation 

W' = - ZP' = 5—r -T sin T cos2 r (1 - sin ß) + Cn . X sin2 r cos3 T cos ß 3      1 + A   2 u,t 

0.624 %2 % ^    •      i + — X^ sin T cos T - X Cf sin T/COS p (92) 

If we multiply this equation by 1 + X we obtain the following form of Equation (92) as a 

cubic equation in X. 

where 

DX3 + (C + D + E) X2 + (B + C - E - W) X - W = 0 

B = -^ sin T cos2 T (1 - sin ß) 

C ■ CJJ   sin2 T cos3 r cos ß 

(93) 

D ■ 0.624 sin r cos r/Cv* 

E = - Cf sin T/COS 0 (94) 

Substituting Equations (69), (77), (84), (86), (87), (88), and (90) into Equation (91) 

yields 

,    ir  sin 2r(l - sin ß)X 
MS =4 —X 

0.624 

(zs 

1*±M (X + h(r) - Xg) ♦ CDc (sin 2r)2 cot j(i- X,)^ 

-XCr \ 
J f(k,, e,) + Fws' f(k2, e2) =0 / ' tan T  - FWo' 

cos T cos p      wa (95) 
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d 
where 

h(r) = Xc2--Xcl (Q6) 

Equations (93) and (95) must be solved for X and T by an iterative procedure in which 

successive values of r are assumed.   Equation (93) is solved for X for each assumed value of 

T.   Successive pairs of X and T thus determined are substituted into Equation (95) until its 

magnitude becomes equal to zero within some prespecified amount.   In the present analysis 

this was taken as 0.002/Cv
2. 

STATIC STABILITY DERIVATIVES 

As noted eafüer the force and moment stability derivatives with retnect to the heave and 

pitch velocity and acceleration perturbations are readily obtained from Equations (47) and (50). 

There only remains the task of obtaining the derivatives with respect to the heave and pitch 

angle displacement perturbations.  These are readily obtained with the aid of the expressions 

for Zs' and Mg' in Equations (92) and (95).   Since, for a given deadrise and speed, they are 

functions only of X(z\ T) and r we have for the derivatives with respect to the heave and 

pitch perturbations 

az' 
dz' 

ax' 
37 

a_M' 
57 

3Z' 
30 

!*! 
30 

3M' 
30 

3X 

3Xs' 

3X 

3Ms' 

3X 

3T 

3Xs' 

dr 

3MS' 

3z' 

3X 
a? 

3X 
3? 

h 
bJ*   3X 
3X 3T 

3Xs 

3X 

3M 

3X 
3T 

S 3X 

(97) 

(98) 

(99) 

(100) 

(101) 

(101) 
dr        3X  3r 

where all rotations are with respect to the center of gravity; z' = z/b and z equals perturbation 

in heave displacement, positive down.   From Equations (90), (92), and (95) we r:adily find 
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3X 

3T 

where 

3X 

3X^ 

3T 

3X 

.      /cos r\2 2 3 - G sin T I -—- 1   - H sini T COS
J
 T 

- 2 J sin T cos T X + Cf sin T/COS ß 

- G -—- (cos3 T - 2 sin2 T COS T) 

- HX(2 sin T cos4 T - 3 cos2 t sin3 T) 

- J X- cos 2 T + Cj- X cos T/COS ß 

3ZS' 3FFS'      j        3ZS' 
: -rr- tan T + -rr—  * -rr- tan T 

3X 3X     cos r      3\ 

Zo'       Fcc' tan r     3ZS' Zs' 
« —— tan T + —— 

3T COC- T 

3ZS' ^S        ^FS  
_tanT+—y- + —^77 
o" cos   T 

G sin T cos T Km)2 (X + h(r) - Xg) + - h] 
+ H sin2 r cos2 T (X - Xg) + J sin r X(X - 2Xg) 

3Ms* 

3r 

1» 

tan ß 
cos 2r(X + h(r) - Xg) + (0.157 - 0.00025 0) — 

♦&&-0 ♦(£-'- afe)'*- 

«T*l[' 
+ HX^-Xg)sin2rcos2r + JX2^-Xgjc 

/3ZS' Zs'        CfXtanA + (,— !anT+^-snr^/f(k,,ei 

-^s'tanr-^Tf-Fws')^,- 

g(kn.fn)= (Xkn - Xv) sin r-(Xen-Xg) COST 

G = ir(l -sin0)/2 

H- CDccos? 

J = 0 624/Cv
2 

30 

(103) 

(104) 

(105) 

(106) 

(107) 

e,)-Fws'g(k2.e2) (108) 

(109) 

  



Also with the aid of Equations (76) and (77) and Figure 20 it is easy to show that 

3z'     sir. T 

g =_(X±1^ + Xv) + (0.57 ♦ 0.001 f)JSLL 3r        \ tan r        v/ 4 sin2 f 

(110) 

(111) 

STABILITY EQUATIONS 

The total nondimensional force and moment equations may now be written as 

(D     3z'      30 
m'u' = Ts' + Xs' + AXD' + 0 + |f + ATs 

m'z' = W'+Zs' + AZD' + p- + 
z*     80 

where 

V* •«.'♦«*♦£ + f 

m' = -       = nondimensional mass of the boat 
^pb3 

Iy 
1' =       = nondimensional pitch moment of inertia about the 

2 p center of gravity 

ATS'- 
ATc 

IpU^b2 
= perturbation in tow force 

From the static equilibrium Equations (89) through (91) we require that 

V + *S = 0 

w + V = 0 

Ms = 0 

(112) 

(113) 

(114) 

(115) 

If the body is free to surge then ATS' is zero.   If ihe body is restrained in surge u' and ü' 

are zero, and the pitch and heave motions are uncoupled from surge. 

Assuming that the body is free to surge, the stability equations at the equilibrium flying 

conditions are obtained Sy putting ATS' equal to zero and substituting Equations (47), (49), 

(50), and (115) into Equations (112) through (114).  This leads to the following equations 
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where the primes have been omitted for convenience. 

(Xy - m) ü + \u + X^z + Xzz + Xzz + XQ6 + XQ6 + Xö0 = 0 

Z^ü + Zuu + (Z~ - m)z + Zzz + Zzz + ZQÖ + Zß6 + Zßd = 0 

Müü + Muu + M»z + Mzz + Mzz + (Mg - Iy)0 + Mgö + Mö9 = 0 

where the force derivatives are 

Z„ = - ifiCK) sin T cos r J n' ds' 

Zu = - 2*>(X)M$' sin r cos2 T 

Z-z- = - <p(X) cos2 T / ß' ds' 

Zi = - 2<p(k)p' cos3 T 

V 
azs' ?x_ 
3X    3z' 

zp - ^(X)y ß' (a' - s') ds' 

Z0 = - 2v?(Xi/is'X 2 
COS'' T 

9Zs'     dZS   3X 
^ö      3T        3X    3T 

X^ = Z • tan T 

Xy = Zu tan T 

X^ = Zz- tan T 

Xz = Z£ tan T 

Xz=Zztanr 

Xg = Ig tan T 

XQ=ZQ tan T 

Xg = Zg tan T + 
7 

COS' T 

and the moment derivatives are 

Mil=.p(X)sinT//i'(a'-s')ds' 

Mu= 2*(X) sin T cos Afß' ds' - Xg MS'J 

Mj = ifi(\) cos r / /i' (a' - s') ds' 

Mz= 2*(X) cos2 rljß' ds' - Xg M$'J 

3Ms'   3X 
M^°  3X    3z' 

M$--*(A)/V(a'-s')2ds' 

= - 2*{A) cos TL; Xg
2 +J ji' (a' - s') ds') 

3MS'     3MS'   gX 

(116) 

(117) 

(118) 

(119) 

(120) 
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The integrations are from 0 to Xk. The evaluation of the added mass terms are readily obtained 

with the aid of Equations (78) through (81). The static derivatives are given by Equations (97) 

through (108).  The expressions for FDS' and MD<j' are given by Equations (68) and (69). 

It is seen from Equation (119) that for small trim angles the derivatives of the X-equation 

are considerably smaller than those of the Z-equation.  Under these conditions it is reasonable 

to expect that the influence of the surge degree of freedom on the porpoising stability would 

be small enough so that the X-equation could be omitted.  In any case, if the boat is being 

towed at constant speed, then, as previously noted, values of u and ü in Equations (117) and 

(118) are zero.  This effectively uncouples the surge degree of freedom, and the stability may 

be determined from the pitch and heave equations alone.   In the present investigation, all of 

the data available for checking the theory were obtained by using planing boat models towed 

at constant speed.   For these reasons numerical calculations have been made using only the 

pitch and heave stability equations. 
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APPENDIX B 

ESTIMATES OF EFFECT OF WINDAGE AND CHINE RADIUS 
ON STABILITY DERIVATIVES 

A high metal framework was attached to the models of Day and Haag.4   Its purpose was 

to support a scribe for recording the motion after the boat started to porpoise.  This introduced 

a small aerodynamic drag and moment on the model.  The following estimated values for this 

drag were used in the computations 

Fws' = O.OÜ32 

Xe2 = 1.3 

\k2 = 2.6 

Shuford21 found that a small radius on the chine will account for a reduction in lift of 

5 to 10 percent - corresponding to a 1/64- and 1/16-inch radius, respectively, on a 4-inch-beam, 

flat-bottom, planing surface.  On the basis of chine radius measurements obtained from a 

typical wood model, it was estimated that the models used by Day and Haag had about a 5 

percent loss in dynamic lift.   The theoretical calculations were therefore modified to take this 

into account.   This amounted to reducing the magnitude of P and 0 in Equations (78) through 

(81) and G and H in Equations (103) through (108) by 5 percent. 

35 

HtSCEDINÖ Pi« 
**""'■'   !■■■   *■« »I I  HI       I 



M, 0,0.0 

Z, Z, 2, 2 

Figure I - Coordinate System 
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Figure 4 — Comparison of Theoretical and Measured Porpoising 
Boundaries for Deadrise of 0 Degree 
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THEORY (SEE p. 24) 

O A D   MEASUREMENTS 

0 = 20.5° 
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Figure 6 - Comparison of Theoretical and Measured Porpoising 
Boundaries for Deadrise of 20.5 Degrees 

4! 

—l 
i imi " 



16 

14 - 

12 - 

CO 
Ui 
UJ 

UJ 
O 

UI 

1    8 
< 
5 
E 

< 

8 « 
K 
O 

1 1 
G 

0 = 0° 

>0.72 

/A 
0 // 

REGIME OF PORPOISING 

Jf/ ^>0.48 

CA = 0.36 rv^ 

/k 

'   A 

— 

yD 

REGIME IF STABLE PLANING 
— 

- 
So      A 

— 
0 A Ü MEASUREMENTS 

0 A 

1 1 

4 - 

0.1 0.2 0.3 0.4 
LOAD SPEED FACTOR, VcTb/2 

Figure 7 - Variation of Critical Trim Angle with Load Speed Factor 
for Various Loadings. Deadrise Angle of 0 Degrees 

42 

*M* 



16 

14 

12 

CO 
Ul 
LU 
c 
Ü 
Ul 
D   10 
K 

UJ 
-I 
C 
z 
< 
S 
oc 

< 

cc 
u 

21- 
0.1 

0 » 2»*» 5 

CA = 0.36 

REGIME OF PORPOISING 

REGIME OF STABLE PLANING 

THEORY 

O A D    MEASUREMENTS 

1 
0.2 0.3 
LOAD SPEED FACTOR, s/c^/T 

0.4 

Figure 9 - Variation of Critical Trim Angle with Load Speed Factor 
for Various Loadings. Deadris«. Angle of 20.5 Degrees 

44 

„ 



16 

14 

12 

V) 
UJ 
UJ 
oc 
o 
UJ 
Q 

u t> 

UJ 
-I 
Ü 
Z 
< 

I- 

< 

cc 
o 

10 

21- 
0.1 

(? = 2" 5 

CA = 0.36 

REGIME OF PORPOISING 

REGIME OF STABLE PLANING 

THEORY 

O A D    MEASUREMENTS 

J. 
0.2 0.3 
LOAD SPEED FACTOR, s/cTTTT 

0.4 

Figure 9 - Variation of Critical Trim Angle with Load Speed Factor 
for Various Loadings. Deadrist Angle of 20.5 Degrees 

44 

-   .-;.■■■'■'■ 



1.5 

O   1.0 

< 
OC 

s 
< 
LU 
OQ 

O   0.5 
t- 
>   1.5 
H 
> 
< 
QC 
U 
u- 
O 
c   1.0 
UJ 
h- 
Z 
LU 
O 

< 

|   0.5 

?   1.5 
a 
z 
o 

< 
o 
H    1.0 
E 
o 

0 = 20.5° 

D     A 

T 

D 

0 = 0° 

C*D 

g   0.36 

eg. 8^   ' 

0.72 

0.5 
1.0 

1 
2.0 3.0 4.0 5.0 

VELOCITY COEFFICIENT, Cv 

Figure 10 - Comparison of Measured with Computed Position 
of Center of Gravity at Porpoising 

6.0 

45 

■HMMMI 

Miau_ 



2.0 
u 
E 

< 

i 
Hi 
CG 

o 

O in z ö  „ _ 
UJ CM   1.0 
-1 ii 

Q ca. 
UJ 

5 

< 
UJ 

5 

< 
y 

CC 
o 

2.0 

CO 

Ö 
r" 

!! 
«a 

1.0 

o o 
II 

«X 

2.0 

1.0 

 1 1 r 
MEAN OF DISTANCES FROM 
TRANSOM TO SPRAY 
SHEET AT CHINE O A D      CA - 0.72 

0.48 

2.0 

O 0.72 

A 0.48 

D 0.36 

3.0 4.0 5.0 
VELOCITY COEFFICIENT, Cv 

6.0 

Figure 11 - Variation of Mean Wetted Length to Beam Ratio at 
Porpoising, with Speed. Deadrisc Angle, and Loading 

46 



Figure 12 - Variation of Critical Trim Angle with Load Speed 
Factor and Radius of Gyration-Beam Ratio 
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Figure 17 - Comparison of Theoretical Values of Critical Trim 
Angles with Davidson Laboratory Measurements 
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Fws = WIND FORCE 

Ts = TOWING FORCE 

Figure 2^ - Coordinates of Tow Point and Center of Wind Force 
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