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NOTATION

Value s at transverse plane through boat center of gravity
Bobyleff’s function of deadrise; see Equation 54

Beam of boat

Cross flow drag coefficient; see Table 2

Hydrodynamic friction coefficient

Boat lift coefficient, nondimensionalized by the beam 2C A/CV2
Speed coefficient, U/\/g—b

Load coefficient, A/pgb3

Coordinate measured parailel to keel from transom of tow point and
resultant of wind force, respectively

Steady state buoyancy force

Dynamic part of hydrodynamic normal force on hull
Steady state part of Fp

Steady state hull friction force

Steady state wind drag

Nondimensional moment arm about the center of gravity of tow force
n =1 and wind force n = 2

Deadrise function of Wagner; see Equation 53

Acceleration of gravity

Negative of derivative of f(kn, e,) with respect to trim angle 7
See Equation (96)

P:itch moment of inertia about the boat center of gravity

Coordinate measure normal to keel of tow point and resultant wind force,

respectively

Radius of gyration of boat with respect to center of gravity

Distance from transom to boat center of gravity, measured parallel to keel

Same as LCG

Length of wetted portion of keel

Hydrodynamic pitch moment relative to center of gravity
Steady state pitch moment due to buoyancy

Dynamic part of hydrodynamic pitch moment on hull

Stcady state part of Mp

vi



Z,, 2, Zg, etc.
z

B

A

AFp

Steady state hull friction pitch moment

Total steady state pitch moment acting on hull

Pitch moment about center of gravity due to towing force
Pitch moment about center of gravity due to wind force

Partial derivative of nitch moment with respect to motion variables z, z. 6,
etc., respectively

Mass of boat
See Equation (78)
See Equation (78)

Coordinate measured along keel from foreniost immersed station of keel;
see Figure 20

See Equation (73) and Figure 20

See Equations (76) and (77) and Figure 20

Steady state towing force

Time

Steady reference speed of boat in feet per second
Perturbation surge velocity and acceleration

Boat weight

Hydrodynamic force component in direction of positive x
Dynamic part of hydrodynamic X-force

Steady state part of X

Partial derivative of X-force with respect to motion variables u, u, z, etc.,
respectively

Horizontal coordinate in direction of U

Hydrodynamic force component in direction of positive z

Dynamic part of hydrodynamic Z-force

Steady state part of Z

Partial derivative with respect to motion variabies z, z, 9, eic.. respeciively
Vertical coordinate, positive down

Deadrise angle; see Figure 20

Boat weight, W

Time dependent part of Fp

Time dependent part of Mp

Time dependent part of towing force

vii
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AZp
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Time dependent part of Xp,
Time dependent part of Zp,

Components, normal to the keel, of hull velocity and acceleration,
respectively

Boat pitch angle perturbation, positive bow up
Mean wetted length-to-bean ratio

Length of wetted chine-to-beam ratio
Nondimensional value of s, s /b
Nondimensional value of s, sczlb
Nondimensional value LCG, LCG/b

Value of )\8 at inception of porpoising
Nondimensional value of I, I, /b

Vaiue of A at inception of porpoising
Nondimensional value of normal distance of center of gravity from keel
Total sectional added mass

Contribution to sectional added mass

Sectional added mass at transom

Kinematic viscosity

Boat-damping ratio

Mass density of water

Stability root; see Equation (22)

Steady state trim angle measured from keel line to calm water free
surface at reference speed U

Value of 7 at inception of porpoising
Three-dimensional or aspect ratio correction; see Figure 21

Volume of wat.. uisplaced at rest, cu ft

The prime (') symbol is generally used to denote quantities in nondimensional furm. Factors
used for nondimensionalizing the previously described quantities are p, U, b. Typical examples

are given as follows:

Fgs = Fgs/(1/2 pU2b?) Ay =5q/b
Mgs' = Mpg/(1/2 pU?b%) W' =u/1/2 pb?
My’ = Mg/(1/2 pb%) o' = ob/U

t' = tU/b

viii



ABSTRACT

A theoretical method is derived for predicting trim angle and speed coeffi-
cient at the inception of porpoising of prismatic plaring hulls. Although
equations are derived for the surge, pitch, and heave degrees of freedom, it is
seen that the effect of surge is small at ordinary operating trim angles.
Comparisons of theoretical predictions with existing experimental data on
coupled pitch and heave porpoising show reasonably good agreement for a
wide range of speed coefficients, load coefficients, and deadrise angles. The
theory may also be used for estimating the nacural frequencies and damping
characteristics of prismatic hulls in the stable, high-speed planing range.

ADMINISTRATIVE INFORMATION

This investigation was authorized and funded by the Naval Sea Systems Command
(SEA 035) under the General Hydrodynamics Research Program, SR-023-0101, Work Unit
1-1562-002.

INTRODUCTION

Porpoising is an instability in pitch and heave experienced by planing craft traveling at
high speeds cn calm water. It has been known to lead to such violent motions as to cause
many serious boating accidents. With constantly increasing boat speeds, this ph~nomenon is
becoming more and more of a problem to planing- boat designers.

Perhaps the first attempt at treating this problem analytically was made by Perring,l who
developed a theory for porpoising based on low-aspect-ratio wing theory. The practica!
application of this theory was unsuccessful since the theory was oversimplified. Since then, a
great deal of experimental work has been done concerning porpoising for water-based aircraft
and planing boats, and more recently additional attempt52’3 at developing a theoretical treat-
ment have met with varying degrees of success. Perhaps the only systematic experimenta!
investigation for planing boats was done by Day and Haag4 on prismatic bodies. These bodies

comprised a wide range of design parameters. The results of this work have been widely used as

lPerring. W.G.A. and H. Glauert, “Stabilily on lhe Water of a Seaplane in the Planing Condition,”™ Acronautical Research
Council, TR Vol. 42 (Sep 1933). A complele lisling of references is given on pages 60 and 61,

2Lu(owski. R.N.."*A Computer Program for Various Performance Aspects of Planing Craft,” Thesis submitted to Stevens Institute
of Technology, Castle Point, Hoboken, N.J. (1973),

3l’aync. P.R.. “Coupled Pitch and Heave Porpcising Instabilily in Hydrodynamic Planing,” Journal of llydroaautics, Vol. 8,
No. 2{Apr 1974).

‘Day. J.P. and R.J. Haag, "Planing Boat Porpoising™ Thesis Submitted to W2bb Institute of Naval Archltecture, Gien Cove,

Long Istand, N.Y. (May 1952).



a guide in estimating the porpoising limits of planing hulls. Although this is a reasonable
empirical approach, it does not contribute much to a good theoretical understanding of the
problem. Such an understanding is required to determine the effects of variations in hull
parameters of practical boatc as well as to evaluate innovative ideas for prevention of
porpoising. Furthermore, it is important for providing a tool for estimating the effects of
design parameters on natural oscillation frequencies and damping characteristics of the boat,
since these characteristics play a dominant role in dynamic behavior in a seaway. In fact, the
theoretical approach derived herein has been used ‘n development of a linearized theory for
predicting the motions of planing boats of arbitrary deadrise angle in waves.5

Although the theory has been developed for prismatic planing hulls, it appears to be
suitable as a guide for predicting effects of parameter variation on porpoising of practical
planing-boat configurations. Furthermore, the methods used lend themselves to direct

extension to a theory for nonprismatic hulls.

STABILITY EQUATIONS

Stability equations for the longitudinal motions in surge, pitch, and heave are derived in
Appendix A. To make comparisons with the large quantity of existing porpoising data from
towed models, provision was made to include the effect of the tow force. Since the models
were towed at constant speed, the surge equation played no role in determination of the boat
model stability; only the coupled pitch and heave equations were needed to investigate the
problem. However, it is believed that the results obtained in this manner are generally
applicable to boats with all three degrees of freedom, since, as shown in Appendix A, the
magnitude of the stability derivatives in the surge equation are considerably smaller than those
in the pitch and heave equations for most cases of interest. We therefore used the following
nondimensional® linearized stability equations for the dynamic heave force and pitch moment

equilibrium, respectively.**

Sﬁavitiy. D., “Hydrody ramic Design of Planing Hulls,” Marine Technology (Oct 1964).

6Mmin. M., "Theotetical Determination of Motion of High-Speed Plaring Craft in Waves,” DTNSRDC Report 76-0069
(Apt 1976).

*The prime symboi, no;mally used to denote a nondimensional quality, is omitted {or conventence,

S*The effect of the sutge degree of freedom is resdily determined from the stability equations for surge, pitch, an3 heave as
derived in Appendix A.



(Z;-m)i+Z,2+Z,2+ 250 +250 + 2,0 =0 ' (1)
MjE + Myz + M,z + (Mg - 1) + Mg6 + Mgf =0 (2)

These equations describe the motion relative to fixed horizontal and vertical axes, 0 x and Oz,
along and at right angles to the direction of motion; see Figure 1. The origin 0 was taken at
the boat center of gravity and moves with the constant reference spced U of the boat. The
symbols Z and z represent the veriical force and displacement, respectively, at 0, positive
in the down direction. The symbols M and 6 are the pitch moment and angular displacement
perturbation, respectively, with respect to the origin 0, pusitive in the sense of bow up. The
coefficients of the variables %, z, z, §, 6, and 0 are the stability derivatives; e.g., Zj is the
nondimensional linearized rate of increase of vertical force Z with nondimensional angular
acceleration 6.

The stability derivatives have been derived for constart deadrise planing hulls in Appendix
A in terms of the geometric and operational characteristics of the boat. They were derived on
the assu.nption that the craft could be treated as a slender body with an empirical three-
dimensional correction. Because of the high Froude number range of operation and the low
aspect ratio, wavemaking and unsteady lift effects were assumed negligible.

The velocity and acceleration derivatives (Appendix A) are

Z; =-p(\) cos? 1fu' ds' )
Z, =-2¢\) u cos3 7 4
Zj = ¢(ka'(a' -s)ds' (5)
o 2
Zj ——2¢(k)ps'kg cos* 1 (6)
M; = p(}) cos t/ u'a -s')° ds' 7
= 2 ) '
M; =2p(7) cos r(fp ds —7\8 us) (8)
Mj=-o(\) [ u'(@ -5 ds’ 9
Mg =-29(\) cos 1(ns' )\82 +/p’(a'-s') ds') 10
where r = cquilibrium trim angle

A = mean wetted length-to-beam ratio

¢(\) = three-dimensional correction factor

' = nondimensional sectional added mass

ps' = nondimensional sectional added mass at transom



A, = nondiinensional distance from transom to center of gravity

g
s = nondimensional distance from foremost wetted point on keel
to any boat section; see Figure 20
a'  =value of s’ at boat center of gravity

The integrations have been taken over the wetted length of the boat. Expressions for the
sectional added mass distribution are derived in Appendix A.
The so-called static derivatives are obtained directly from the expressions for the steady

state Zs' force and Ms' moment. Since both are functions of A and 7, and X\ = A(z, 1), we

have
7 2% 2 an
z 3\ 97
07 9Z¢
It St .Y
Zo_. ot * a\N o7 S
aM¢
M5 g
T oA 3z =)
oM< oaM(¢
My = —3 4 —3 A (14)
ot oA o7

The steady state Zs' force which is the negative of the lift force (Appendix A) is

Zs' = -v(k)ps' sin 7 cos 7 4 — - A2 sinTcosT-A C; sin 7/cos § (15)
Gy?
where B = deadrise angle

Cy = U/\/8b = speed coefficient

(‘.f = skin friction coefficient

The first term is the dynamic lift on the hull; the second term is the hydrostatic lift, and the
last term is the vertical component of the skin friction force, assumed to act parallel to the
keel line.

The expression for the steady state moment Ms' about the boat center of gravity
(Appendix A) is

MS' = 9(A) sin T cos T(/}l' ds’' -us' )\g)+————0'624 Rt )\2(%- )\8)

C\lz
C
f A ()\v _tan B

"~ cos f 4

cosf




where TS' = nondimensional towing force = drag
FWS' = nondimensiona; aerodynamic drag
f(k,,e;) = moment arm of towing force

f (k2» ez) = moment arm of aerodynamic force
Thz equation for Tg' (Equation (90) of Appendix A) is
AC

Tg =-Zg tan 1+ —————
S S cosfcosT

Fys (17)

The first term in Equation (16) is the hydrodynamic moment, the second term is the hydro-
static moment and the third term is the moment due to skin friction. The last two terms are
the moment due to the tow force and the aerodynamic drag.
The steady state values of A and 7 used in Equations (3) through (i4) are determined
from the following equations of planing equilibrium.
W+ ZS' =0 (18)
M{' =0 (19)
These equations are solved by an iteration process described in Appendix A.
The solution to Equations (1) and (2) are
o, t 05t
1" 2% 20 4 (20)

', !

t t
0=0,e! +6,¢e2 +... 1)

2=z ¢

where 2|, 25, * * 0,,8,, * * - are constants which depend on the initial conditions. The o
terms determine the character of the time history response of the boat to any small disturbance.

Four values of o' are obtained from the roots of the resulting characteristic equation.
Ad* +Bo +Co?2 +Do’ +E=0 (22)

where A=(Z;-m)(Mg - ly) -M;Z4
B =2Z,(Mj- ly) +(Z; -m)Mj -M;Z5 -M,Zj
C=Z,y- ly) +Z,Mj +(Z; -m)Mg - M;Zg -M;Z5 -M,Z; (23)
D=Z,M5+Z;Mg-M,Z,-M,Z;
E=Z,My-M,Z
The roots of these equations may be real or complex conjugate pairs. In either case, it is

seen from Equations (20) and (21) that if any root has a positive real part, the transient

response increases without limit, and the boat is considered unstable in the linear sense.




In general, a complex pair of roots represents an oscillatory mode, e.g., for the root pair
dg= aR'iial', the z' response is
d 't'
7’=¢ R (Cy cos oy’ t' +C, sin gy't")
where C; and C2 are real constants which are determinied by the initial conditions. The
magnitude of the imaginary part of the root al' is the nondimensional natural frequency of

the modal motion. In dimensional form the natural frequency and period are

o) = al'% rad/sec (24)
T= -2;— sec (25)
1

The effect of the real part of the root aR' may be illustrated by computing the time for a
disturbance to either halve or double itself in magnitude. Thus, if aR' is negative, the
envelope of the disturbance will be halved when

[N

Op t Opt
e R z¢ R = 1/2

It follows that the time for the disturbance motion of each mode to halve or double itself is
tl/z or ty = 0.69/0R sec (26)

Another useful measure of damping of oscillatory modes is the damping ratio £, which is
directly related to the rate of decay of disturbance oscillations.
It is given by
OR

=~ 27
\/0R§+012 L

In the vicinity of the resonant encounter frequency in waves, the damping ratio is also
inversely related to tie amplification ratio of the boat response. Values of ¢ between 0.6 and
1.0 are usually considered to give well-damped modes. Values less than about 0.4 are generally
consideied to produce underdamped modes. Although the forgoing may provide a rough
indication of the vertiLal plane dynamic characteristics of the boat, a dynamic motions analysis

is required for any detailed study.



DETERMINATION OF PORPOISING CONDITIONS

Perhaps the only systematic experimental investigation of porpoising was carried out in
1952 by Day and Haag.‘ Measurement by other investig,’ators"*s'9 have generally been
incidental to a broader program primarily concerned with resistance. The experiments of Day
and Haag were carried out with 3.8-inch-beam, prismatic wood models towved by a light line
from a point slightly forward of and above the center of gravity. Deadrise angles of 0, 1C.6,
and 20.5 degrees were investigated. The load coefficients were 0.36, 0.48, and 0.72. For each
speed the boat center of gravity was gradually moved aft until the boat porpoised. The trim
at which this occurred defined the critical trim angle and provided a point on the trim angle
versus speed stability boundary. Values of the mass and moment of inertia for practically all
the models at porpoising were provided. Thus, it was possible to make a theoretical calculation
for each test condition. Small allowances for aerodynamic effects and chine corner radius
were made. These are described in Appendix B.

Calculations of each of the four stability roots for each test condition were obtained from
Equation (22). In the vicinity of porpoising, the least stable root was complex in each case,
indicating that the response to a disturbance would always be oscillatory. Figure 2 is a typical
plot of the variation of the real part of the least stable root ”Rl' with the nondimensional
longitudinal distance }‘8 of the center of gravity from the transom for three of the test speeds
with 8 = 10.6 degrees and Cp = 0.48. It is seen that the stability roots become negative
(stable) for values of }‘8 less than about 0.20 and greater than about 0.85 for the cases shown.
We note that in the stable region, corresponding to the small )‘8 range, the equilibrium trim
angles are much higher than in the stable region of the high }‘8 range. Also, the magnitude of
the stability root in the small }‘8 range is usually quite small, so that the damping of the toat
oscillations may usually be expected to be poor. Taking an example from the figure, we find
from Equation (26) that the time for a disturbance to damp to half amplitude at Cy, = 2.67
would be more than 15 seconds for a boat with a 15-fcot beam, and og,’ = -0.C1. This
would be intolerable in the presence of even very small disturbances. On the other hand, it is
seen from the same figure that moving the center of gravity forward of the upper value at

which the root becomes negative results in increasingly negative values of the stability root and,

7I7rid|ma. G., “A Systematic Study of Rough-Water Performance of Planing Boats,” Davidson Laboratory, Stevens Institute of
Technology, Hoboken, N.J., Renont 1275 (Nov 1969),

8(‘Iemcnt. E.P. and D. Blount, “Resistance Tests of Systematic Series of Planing Hull Forms,” Transactions Society of Naval
Architects and Marine Engineers, Vol. 71, pp. 491 -561 (1963).

9Davldson. K.S.M. and A. Suarez, "“Tesis of Twenty Related Models of V-Bottom Motor Boats - EMB Series 5G,” David Taylor
Model Basin Report R47 (1949),

B SR



therefore, considerably higher damping for this mode. For example, for the same speed and
)‘8 = 1.5, we find °R1' = (.3, and the time for a disturbance to damp to half amplitude is of
the order of only one-half second. Since the calculated value of 0 1' at this condition is about
0.5, the damping ratic from Equaiion (27) is found to be approximately 0.50; whereas, for the
previous condition it was only about 0.02.

An alternative plot to Figure 2 showing the variation of the calculated °R1' with trim
angle, for a complete range of test speeds, with g = 0 degrees and Cp = 0.72, is shown in
Figure 3. This plot is typical of those used to determine the critical trim angle as a function
of the speed coefficient. Where two trim angles at zero root crossing are shown, the smaller
trim angles are taken. The porpoising boundaries thus determined are discussed in the next

section.

COMPARISONS WITH EXPERIMENTS ON PRISMATIC HULLS

Figure 4 shows the variation, with the speed coefficient Cy;, of the critical trim angle of
a prismatic planing configuration, with a deadrise angle of zero degrees, for three values of

4 The curves were

load coefficien.. The points in the figure represent the experimental data.
obtained from the present theory. It is seen that the theory agrees reasonably well with the
experiments for C4 = 0.36 and 0.72. For the intermediate load coefficient Cp = 0.48, the
theory gives intermediate values of critical trim angle; whereas, the data for this condition are
close to those obtained at C = 0.36.

Figure § is a similar set of graphs for the prismatic hull with a deadrise angle of 10.6
degrees. Here, the agreement between the theory and the experimental results over the whole
speed range is quite good for C, = 0.48 and 0.72. However, for C5 = 0.36, the theory tends
to underpredict the critical trim angle about 1 degrec at the higher speeds. Part of this
discrepancy is due to the fact that the chine became unwetted at the transom, and the theory
does not account for this.* The discrepancy tends to be greatest at the high=si speeds ar.d for
the lowest loading conditions. The region where the whole chine is out of the water is indi-
cated approximately by the dashed portion of the curve.

Figure 6 is a similar comparison for a hull with deadrise angle of 20.5 degrees. Here the
theoretical curve tends to fall slightly lower than the data, at the lower specds, and underpre-
dicts the critical trim angle by about one degree at the higher speeds. In this case the chine
became unwetted sooner than for the boat with a 10.6 degree deadrise angle. The approxi-

mate region of occurrence is indicated by the dashed portion of the curves. An attempt was

*The theory is being modified to include these effects.



made to determine the effect of modifying the magnitude of the lower limit of integration
in part of the added mass integral as discussed in Appendix A. This had the effect of further
improving the predictions as shown by the broken curves in Figure 6. This slight alteration to
the theory had practically no effect on the predicted porpoising boundaries for the hulls having
0 and 10.6-degree deadrise angles.

Day and Haag found that by plotting the measured trim angle against (Cu)/Z)l/2 or
\/TZZ/(‘V. the separate curves for each load coefficient collapsed into a narrow band. This
result was also founa from the theoretical calculations. Figures 7 through 9 show comparisons
between the experimental data and the calculations plotted in this manner. Except as noted
earlier, it is seen that the overall agreement between the theory and the data is reasonably good
for all of the deadrise conditions investigated.

For each critical trim angle 7., the corresponding critical position of the boat center of
gravity )\gc, must satisfy the steady state equilibrium equations. Thus the degrce of agreement
between the measured and predicted magnitude of )‘gc is, in part at least, a measure of the
accuracy of the steady state equations, Figure 10 shows a comparison with theory of the
measured variation of )\gc with speed coefficient for each of the conditions investigated by
Day and Haag. It is seen that the best overall agreement was obtained for the hull with zero
deadrise angle. For the deadrise angles of 10.6 and 20.5 degrees, the calculations were about
10 to 15 percent lower than the measurements.

This result seems to be consistent with the tendency of the steady state Equations (18)
and (19) to underestimate the steady trim angle, thus requiring a more aft position of the
center of gravity to obtain a given trim angle. Comparison with the steady state trim data in

10 exhibits the same tend-

Reterence 7 of a similar formulation recently proposed by Brown
ency to approximately the same degree. However, the empirical formulation presented by
Savitslvcy5 docs not show this tendency and gives, on the average, better agreement with
measured steady state trim angles. As will be seen later, the use of this formulation generally
gives larger values of )‘g for a given value of 7.*

Another intcresting feature of Figure 10 is that the effect of load coefficient appears to
be small. This is mainly due to the fact that the more highly loaded configurations of the
Day and Haag models had smaller radii of gvration. As will be secn later, the theory shows
that these two effects are generally compensatory in their effect on the critical center of

gravity position. It is also worth mentioning that the theoretical values of the location of the

ml)lovm, P.W., “An Experimental and Theoretical Study of Planing Surfaces with Trim Flaps.™ Davidson Laboratory, Stevens

Institute of Technology, Hoboken, N.J., Report 1463 (Apr 1971).

*The reasons for this discrepancy are being investigated.
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hydrodynamic center of pressure and center of gravity were within S percent of each other in
nearly all cases. As one nitight expect, this was the case throughout the stable operating range
as well.

Figure 11 is a plot of the theoretical nondimensional mean wetted length of the boat at
porpoising against speed coefficient for the various conditions investigated. Unfortunately,
Day and Haag did not measure the wettcd length of their models, so no direct comparison
with the data is possible. Average values of observed wetted lengths of the spray sheet at the
chine, which did not vary much with speed, are shown for a rough comparison. As one might
expect the spray sheet length relative tc the mean wetted length becomes smaller with increas-
ing deadrise angle.5

For a typical configuration, Figures 12 and 13 show the separate effect of nondimensiona.
loading C4 and radius of gyration ky/b on the magnitude of the critical trim angle T, as
determined from the theory. It is seen that 7. becomes smaller with both increasing radius of
gyration and load coefficient. However, the effect is not large -- especially for small values of
Cip-* 1t will be recalled that the higher the loading the smaller was the radius of gyration for
the models investigated by Day and Haag. This effect also contributed, to some extent, to
collapse of their data for different load conditions. A similar effect, though more pronounced,
may be shown to hold with respect to the critical nondimensional value of the longitudinal
centei of gravity position and mean wetted length. Figures 14 through 16 show that the value
o)} )\gc and A . increases with both increasing Cp and increasing k)./b. Here these effects
account almost entirely for the tendency of the )\gc versus Cy curves (Figure 10) and the
A versus Cy curves (Figure 11) to collapse into a narrow band for the various loadings
shown.

Although, the calculated values of )\gc tend to be low, Figures 14 and 15 nevertheless
illustrate some interesting trends. It is seen that the value of )‘gc has an increasing tendency
to reach a limit with increasing deadrise angle and decreasing load coefficient. Also the value of
)‘gc becomes smaller with decreasing nondimensional radius of gyration and increasing deadrise
angle. It thus appears that high deadrise angle, low loading, and a small radius of gyration permit
a more aft location of the critical center of gravity. Furthermore, it appears that the tendency
for the curve to turn down at the higher deadrise angles may explain the observation by Stolz® and
others that “deadrise surfaces which are not deep into the porpoising range often regain stability
at higher speeds.”

7

Relatively recently Fridsma’ reported a rather limited amount of experimental data on

the porpoising of prismatic hulls with deadrise anugles of 10, 20, and 30 decgrees and with

*Theory and experiment thow, however, that natural frequency of oscillatory motion decreases significantly with increasing
moment of inertia.
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various load coefficients, Experiments for the 20 degree deadrise case were carried out with
models of length-to-beam ratio of 4, 5, and 6 so that different values of ky/b were obtained
for the same Cp in some cases. Figures (17a) and (17b) show a comparison of measured
values of critical trim angle made by Fridsma with those computed from the theory. The
theoretical curves are basically cross plots of curves such as those in Figure 12 for various load
cocfficients. They provide a convenient method of indicating the effect of variations in ky/b,
separately from C, and Cp on the magnitude of 7. 1t may be scen from the figure that the
theory predicts 7, quite well in most cases but that there are insufficient data to verify the
variation with ky/b predicted by the theory.,

The calculated values of )\gc and )\mc in these cases were about 28 and 15 percent lower,
respectively, than the measured values., The former is more than twice the difference computed
for the Day and Haag experiments, As noted earlier, this was felt to be due mainly to the
fact that the steady state equations tend to underpredict steady state trim angle. Values of
)\gc were then recalculated for each of the theoretical values of i from the following steady

state cquations, adapted from Reference S.

A
R (28)
(5.21 Cy2/A%) +2.39

)\p =075\ -

where )\mc is defined by the following equations

7. 10.0120 8 M2 + 00055 A, S/2/cy )

Cio
N 0.60
Crp = Cpo - 0.0065 6 C\

and )\p is the nondimensional distance of the center of pressure forward of the transom. The
assumption that the center of pressure and center of gravity are coincident was found from

the theory to be valid to withir a few percent in nearly all cases. The use of the above
equations resulted in better agreement with the experimental values when the theoretical values
of 7. were substituted. Table 1 shows a comparison of )\gc thus obtained with the measured
values. Also shown are comparisons with the measured mean wetted lengths, 1t is seen that

the calculated values are within a few percent of the measurements in necarly all cases.

COMPARISONS WITH EXPERIMENTS ON NONPRISMATIC HULLS

Although the theory and data presented thus far are for prismatic hull forms, they show
trends which are close to those observed on a variety of nonprismatic models. Two principle
sets of data®? ase available for comparison. The DTME Series 62 models of Clement and
Blount® are purc monohedran hulls with a transom-to-beam ratio between 0.64 and 0.80 and

constant aft deadrise angle of 12.5 degrees. Those of Davidson and Suarez? have a low chine




TABLE 1 — COMPARISON BETWEEN CALCULATED AND MEASURED
VALUES OF Agc AND Apye, USING COMPUTED CRITICAL TRIM
ANGLE AND METHOD OF REFERENCE 5 FOR MEASURED
PORPOISING CONDITIONS OF REFERENCE 7

Deadrise Load Speed Agc Calculated | A Calcula’ed
g Coefficient Coefficient X Measured  Measured
deg Ca Cy gc mc
10 0.912 3.83 0.86 0.94
0.608 3.00 0.90 0.99
0.304 3.33 093 1.06
0.304 2.00 0.94 1.00
20 0.608 3.89 1.07 1.17
0.608 2.73 1.03 0.97
0.304 2.66 1.00 .12
0.304 2.98 1.02 1.00
30 0.609 2.73 1.02 0.95
0.912 3.85 1.07 1.00

line and warped bottom with a transom-to-beam ratio of 0.88 and a mean deadrise angle
between 4.0 and 7.3 degrees. In view of the approximate nature of the comparison it was
felt that existing calculations for the 10.6-degree deadrise configurations would give a suffi-
ciently good representation of the trends measured in the previously mentioned data.

The porpoising boundary described by Clement and Blount was presented as a plot of

CLb/)\gc versus the volumetric Froude number FV where

o 2
Cup = 2CalCy

Fg = Uiy 913 = cycp)l/6

It is seen that the critical trim angle does not appear anywhere, and the porpoising boundary
is expressed mainly in terms of the critical position of the center of gravity. This method of
plotting was an apparent atteinpt to collapse the measured values of )\gc for tlie wide range of
load coefficients investigated. Figure 18 shows a comparison of the theoretical :alculati ns
with the Series 62 data. The theoretical curves are constructed from the calculated curves of
Figure 10 for 8 = 10.6 degress and Cp = 0.36, 0.48, and 0.72. The C, values are in the
approximate range of most of the data. The values of CLb/)‘gc given in Reference 8 were
nondimensionalized with respect to the beam at the center of gravity, while those shown in
Figure 18 have been based on the mean of the maximum beam and the beam at the transom
in order to provide a more realistic comparison with the constant beam case. It is seen that

the theoretical curve follows the same trend as the data but is about 10 to 15 percent higher.
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This is mainly a reflection of the difference between predicted and measured values of ’\gc
shown in Figure 10. It may be seen that the pcints for different loading conditions will fall
on separate lines and that the trend with loading for each model is close to that given by the
theory; e.g., compare Conditions 3, 4, and 5 with the trends shown in Figure 15.

It is easy to show that the measured effect of radius of gyration exhibits the same trends
as that shown by the theory; see Figure 14. Although the radius of gyration ky/b of the
models was not measured, it is reasonable to assume that it was increasingly larger for the
models with larger length-to-mean-beam ratio LP/BPA' By comparing the trends of the data
for different models with approximately the same load coefficient (Conditions 1 with 3 and $
with 6) we see that the value of ’\53 follows the trends with ky/b predicted by the theory.

Clement and Blount found that the stope of a straight line through the data points was
about -2.5. This implies that, for a given value of Cp

)‘gc TV CV
since Cp =2 CA/Cvz. From Figure 10 it is seen that the previously described equation would
fit the theory and experimental data for the prismauc hulls quite well. Although the equation
may be a good apprcximation for the data shown, it is seen from the theoretical curves of
Figures 14 and 15 for ky/b constant that it is not safe to assume that this is true in all cases.

9

The data of Davidson and Suarez” are most conveniently compared in the form of a

porpoising boundary presented by Agnelln.ll

This is shown in Figure 19 as a plot of measured
values of the critical trim angle &, against 2/(CLb/7\gc). Included also are the data points for the
Series 62 hulls. These were recently obtained by the author from Mr. Blount and are not
quite the same as those shown in the plot of Reference 11. Shown for comparison with the
trends predicted by theory are straight lines drawn through points obtained from the calculated
curves of Figures 5 and 10 for the case of § = 10.6 degrees and Cp = 0.36, 0.48, and 0.72.
Although many of the points do not fall on the lines, it is clear that the trends are predicted.
More detailed comparisons with the individual models must await further extension of the

theory to include more general-type hull configurations.

CONCLUSIONS

A theoretical method has been derived for predicting the conditions leading to porpcising
in the surge, pitch, and heave degrees of freedom of prismatic hulls with arbitrary deadrise
angle. Comparisons of the theory with the porpoising boundaries measured on towed models

! iA;:,nclh. J.C., “Fvaluation of the Trim of a Planing Boat at Inception of Porpising,” presented at Spring Meeting cf Society
of Naval Architects and Marine Engineers, Lake Buena Visla, Fla. (Apr 1973),
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with freedom only in pitch and heave showed reasonably good agreement. Since no porpoising
data with all three degrees of freedom are available, it was not possible to check the theory for
this case. However, from a comparison of the relative magnitudes of the coefficients in the
surge equation it appears that this effect is small. In any case this may readily be investigated
in more detail with the three degree of freedom stability equations in Appendix A,

The stability roots ¢btained from the characteristic equation provide estimates of the
dynamic behaviour, such as oscillation natural frequencies and damping characteristics of the
boat in the stable region.

Although the theory was developed for prismatic huli forms, it appears to be suitable as
a guide in estimating the porpoising limits and dynamic characteristics of more conventional-
type planing hulls, as well as the effects of variations in several of the parameters. It is felt
that by an extension of the analytical methods used in the present analysis even closer agree-
ment with data on prismatic hulls and conventional boats could be achieved, and a tool suitable

for investigating the effects of detailed design modifications could be obtained.
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APPENDIX A
DERIVATION OF PORPOISING STABILITY EQUATIONS

It is assumed that the planing craft has a prismatic hull of constant deadrise, is moving at
constant speed parallel to a calm water surface, and is free to perform small perturbation
motions in pitch, heave, and surge about its steady equilibrium attitude. Since the theory is
concerned mainly with the high-speed, low-aspect ratio condition, it is assumed that the craft
may be treated as a slender body with an empirical three-dimensional correction, and unsteady
effects are small. The kind of analysis to be used was first used in 1924 by Munk!2 and later

by Jones!3

in connection with the analysis of airships and slender wings, respectively. More
recently this method has been generalized by Bryson14 for completely submerged slender-
finned missiles. It has also been applied to the problem of pure translational impact of sea-

planes on a calm water surface by MayolS and others. 16517

FORCES DUE TO PERTURBATIONS IN
VELOCITY AND ACCELERATION

The flow over the hull is assumed to occur in transverse planes which are fixed in space
and oriented normal to the keel; see Figure 20. The momentum of each layer of water trans-
verse to the keel is nfds. where u is the two-dimensional added mass of the section of the hull
at point s, interacting with the section of the flow plane of length ds, and §’ is the component
of the velocity of the body normal to the keel at that point. The coordinate s is measured
from the foremost immersed station along the keel. The normal force on the section ds of

the hull is the time rate of change of the momentum of the layer of water ds at s.

leud{. M.M.. “The Aerodynamic Forces on Airship Huils,” Nationai Advisory Committee for Acronautics Report 184 (i924).

IJJOMl. R.T., “Properties of Low-Aspect-Ratio Wings at Speeds Below and Above 1he Speeds of Sound,” National Advisory
Committee for Aeronautics Repor? 235 (i946).

H!!ryson, A.E., Jr1., “Stability Dertvative. r a Siender Missile with Application to a Wing-Body Vertical Trail Configuration,™
Journal of Acronauticai Sciences, Vol . No. §, pp. 297 - 308 (1953).

lsM:yo W.L., “Anaiysis and Modification of Theory for Impact of Seaplanes on Water,” Nationai Advisory Committee for
Aeronautics Report 80 (i 945).

16Milwm.ky. B.. “A Generalized Theoretical and Experimental Investigation of the Motions and Hydrodynamic Loads
T xperienced by V-Bottom Seaplanes During Step-Landing Impacts,” National Advisory Corumittee for Aeronautics
TN 1516 (1948).

”Schnnzer. E., “Theory and Procedure for Determining Loads and Motions in Chine-Immersed Hydrodynamic Impacts of
Prismatic Bodies," National Advisory Committee for Aeronautics Report i 152 (1953).
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aFp = 5 () ds (29)

Both u and { will in general be functions of the longitudinal position coordinate x and time t.

The time derivative is therefore

d_ .3 . 2
E{“Ua*'b—t- (30)

where U is the steady state speed.

The normal hydrodynamic force over the entire hull is obtained by integrating Equatior.
(29) along the wetted length of the hull I, and multiplying by a correction factor ¢(X) to
account for the three-dimensionality of the flow.

r .
Fp =60/ g e (31)

where A is the mean wetted length divided by the beam. A plot of ¢(A) obtained empirically
Ly Pabst!8 is shown on Figurc 21. The integral may be expressed as the sum of a velocity

term and an acceleration term.

%, % daf
Fp =¢(\) [f {%tﬁds +f ug%ds] (32)
(o] (o]

The fongitudinal and heave perturbation velocities and accelcrations arc, respectively,
denoted by u, u, z, Z. The pitch angle perturbations are 6 6. From Figures 1 and 20 we

obtain the following relationships:

g’sz=-c051 (33)
%§=—sin1 (34)
5—t=usinr+ic051-é(a-s) (35)
F=0 (36)

where 7 is the equilibrium trim angle of the boat, and a is the value of s at the tranverse flow-
plane through the boat center of gravity. From these equations and Equation (30) we have to

the first order in the perturbations

lshbst. W., “Landing Impact of Seaplastes,” National Advisory Committee for Acronautics TM 624 (1931).
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§:=Usinr+usinr+icosr-(§(a-s) 37)

f=2Uécosr+ﬁsinr+icosr-é(a-s) (38)
do_¢du_ ¢ 0
I S’a; Q‘as cot r 39)

Oni substituting these equations into Equation (32), dropping the ~.cond order perturba-

tion terms, and integrating, we obtain

Fp = Fps + AFp (40)

where

Fps = o\ i UZsintcosr (41)

AFR=(2Fpg/U)(u+zcot 7+ 6 Qg/sin )

Q Q
. k - [Tk
+¢(M!({x sin 7+ Z o5 TE/[‘ pdc-. 0 [ p(a-s)ds 42)
| 0 Yo

The term Hg is the value of the sectional added mass at the stern and Ig =1 -a. The first
term Fpq is the steady state hydrodynamic normal force. while the remaining terms A Fpy are
the linearized force contributions from surge, pitch, and heave perturbations in velocity and
acceleration. The factor 2 multiplying the z and 8 terms in Equation (42) arises from the fact
that the sectional added mass is not only a function of position on the hull but also of depth.
This is i.presented by the contribution of d¢/dt of Equation (35) to du/dt in Equation (39).
The hydrodynamic moment is obtained by integrating the product of the stripwise force

in Equation {29) and the moment arm from the center of gravity a - s.
Mp = ¢(A % d (ubra (43)
D-‘ﬂ()o (a-S)dl“ S

With the aid of Equations (31 through 39) we f.nd from Equation (43), after dropping sccond

order terms in the perturbations

Mp = Mpg + AMp (44)
where
24 Qk
Mpg = w(A) U< sin 7 cos 7 [/ pds - qus] (45)
0




2Mp,
U

o .
-9o(MN)2U cos r[pngz +/ u(a-s)ds|6
[o]

L
k
+ oM\ (u sin 7 + 7 cos 1')'/ u(a - s}ds
[o]

AMp = (u+7cotr)

- %
- \o()\)Q/ u(a - s)2 ds (46)

(o)

The first term Mps is the steady state hydrodynamic moment about the center of gravity of
the boat. The remaining terms A MD are the linearized coniributions of the surge, pitch, and

heave perturbations in velocity and acceleration.

VELOCITY AND ACCELERATION STABILITY DERIVATIVES

The vertical and horizontal compoenents of the force stability derivatives with respect to
the velocity and acceleration perturbations are the ccefficients of the perturbation terms in
the vertical and horizontal components of the perturbation force AFp in Equation (42),

We write these equations in nondimensional form* by dividing through bx 1/2 pU2b2. Thus

the vertical component of the perturbation force equation becomes with Z positive down

AZp =-2Fpg cosT(u' +2 cost+ é')\g/sin 7)

M . [
- oM sin 1 cos 7+ 7 cos? ty‘ p'ds' + 0"/ u (' - s')ds {47)

(o] [o]
where

Fps = »(\) us' sin 7 cos 7

A T gD

I g
M= #/2 pb?
0'=0b/U | ete. (48)

*Nondimensional quantitics are represented by 2 prime symbol.
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Likewise the horizontal component with X positive forward becomes

AXD' = AZD' tan 1 (49)

The corresponding nondimensional stability derivatives for the moment equation are obtained

in an analogous manner from the nondimensional form of Equation (46) as

AMD' = ZMDS' (u' + i' cot T)

A
k Q
- ¢(A) 2 cos r[us' )‘82 1:/‘ p' @ -s") ds']@'

(o]

A
+ Q) (0 sin 7 + Z' cos 1.9/‘ p'(a' -s)ds

0
M
- w(k)?f W@ -sh? as’ (50)
(o)
where A
k
Mps' = ¢(Ry. W@ - ds’ (51)
(o)

Typical notation for the nondimensional stability derivatives are shown as follows

A

! k ! 1

Zé'=—2FDS )\3 cot 7 Z-z- = -\ cos? r/ u ds
(o]
X,/ =2,/ tan 7 X;)=Z/ tanr
A
Mg =- «p()x{/ u' (a' =52 ds' M," = 2Mpg’
[y]
19
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SECTIONAL ADDED MASS DISTRIBUTION

The next step is to find an expression for the distribution of the boat sectional added
mass ¢ as a function of s. A general theoretical expression for this quantity is not avuilable,
even for prismatic hulls with constant deadrise. However, relatively simple approximate
expressions for added mass have been used successfully in the past in the analysis of hydrody-
namic impact of prismatic bodies.16:17 For the sections of that portion of the body with the
~hines above the water surface, the sectional added mass was estimated by the following
equation

§= p"‘ ()2 (52)

where

f(g) = 7 il (53)

B = deadrise angle in radians

This expression is based on the work of Wagner.19 The quantity ¢ f(8) is the radius of the
semicircular cylinder representing the added mass of the section. For the sections of the hull

with the chine submerged, the following expression was used.

2
w= L5 (1@ tan B2 + BE b -5, (54)

where B is a function of the anigle of deadrise, and b is the bcat beam. The first term is the
contribution of the V-shaped bottom alone at the instant of chine imm_rsion. This is obtained
from Equation (52) by putting § = {. = b/2 tan ﬁ The second term is an estimate of the
cffect of chine depth as suggested by Schnitzer!” and is based on the theory of Bobylt:ff20
for infinite immersion. The Bobyleff function B is shown in Figure 22

The expressions for u given by Equations (52) and (54) will b» used in Equations (40)
and (44) to determince the normal force Fy and moment Mp,. However, it is first necessary to
define the range of keel length over which each contribution to g is valid. 1t is clear that no
single location, such as suggested by Equations (52) and (54), exists at which the effect of
chine immersion starts, since the flow is much more complex than these equations suggest.
This is especially true in the vicinity of chine immersion. However, a practical colution to
this problem has been made possible by making the theory for the steady part of the normal

force and moment consistent with the large amount of existing steady state data.

l9W|gncr. H., "“The Phenomena of Impact and Planing on Water,” National Advisory Commiittee for Aeronautics Translation
1366, ZAMM Bd 12, Heft 4, pp. 193 - 215 (Aug 1932).

20l.amb. H. “Hydrodynamics,” Sixth Edition, Cambridge University Press, England (1932).
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By assuming that the planing hull normal force at high speeds was made up of the sum
of low-aspect-ratio wing lift and a cross flow drag term, Shuford?! arrived at the basic form
of an expression which he was able to fit very well to data obtained by many investigators.

These data cover a range of trim angles between 2 and 30 degrees, wetted lengths from
one to seven beams, and deadrise angles betvieen O and 50 degrees. His expression for the

normal force is given hy

__l 2 TA . 0
FDS 2pU 5[2(1 TA) sin 7 cos 7 (1 -sin f)

+ CD,c sin2 1 cos®  cos B] (55)

where
Cp . = cross flow drag coefficient
S = planform area of the wetted portion of the hull or Ab2

A = aspect ratio of §, i.e.

A=b2/S= I/ (56}

The values of Cp; . and the dependency on deadrise angle were obtained by a fit to the data.

The cross flow drag coefficients were fourd to have the values shown in Table 221

TABLE 2 — CROSS FLOW DRA( COEFFICIENT2!

Section shape........cccccvvevveieeiieieieviriiee e, CD.c
V-bottom, constant deadrise .................... 1.33
V-bottom, horizontal chine flare.............. 1.33 +0.0147 §°
V-bottom, vertical chine strips................. 1.60 + 0.0147 §°

We will now define the various contributions u, to the sectional added mass along the
hull by the following equations, which are somewhat less restrictive than Equations (52) and
(59). /

an i'(B)2 2 tan? 1 0<s<s, 57
H, = %I i'(ﬁ)2 Sc12 tan? r Sep <s< (58)
%Bbtan‘r(s-sc:) Sea <s< R (59)

]

2|!'ihul'ord. C.L., )1, “A Theoretical and Experimental Study of Planing Surfaces Including Effects of Cross Section and Plan
Form,"” National Advisory Committec for Acronautics Report 1355, (1957).
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where we have made the substitution
§=stanrt (60)

The sectional added mass u at any section is simply the sum of the contributions at that section.
The principle difference from Equations (52) and (54) is that Sei and Sc2 have not been
assumed to be known in advance. Equations (57) and (58) are the contributions from the
bottom of the hull to the chine. The quantity Scl is the value of s at the point where the
chine is effectively immersed. Equation (59) is the contribution corresponding to the secon i
term in Equation (54), and s, is the value of s at which this begins to grow.

From Equations (57 thrcugh 59) we readily find that

He = %lr (1(B) s,y tan 1)2 +-§- Bb tan 7 (& - S:2) (61)
A" pm 2 2 p (& - 5:)°
ﬂds = -2— (f(ﬁ) SC] tan 1) (Qk -jscl) + 5 Bbtanrt ‘——2——— (62)
(o]
Substituting Equation (61) into Equation (41) gives
_pU? 2

FDS == [e(B) m(f(B) 5. tan T)“sin T cos T

+ 9(\) Bb sin 7 (8 -s,5)] (63)

This equation becomes identical with the formulation of Shuford in Equation (55) provided

_ A ol
At 1+X | +A et
pT 2 _ p1rb2 .
=~ (f(B) s, tan 1) Eae (1 -sin B) (65)
(\)B = Cpy . cos? 7 cos B (66)
Qk = SC2 = Ab (67)

The three-dimensional correction factor of Equation (64) has a trend similar to the result
obtained by Pabst as shown by Figure 21. Also the variation of B with deadrise angle is seen
to be proportional to cos § in Figure 22.

If we substitute Equations (64) through (67) into Equation (63) and nondimensionalize,

we obtain
o= A or | - si
DS = T+ N —z-smrcosr( - sin f8)
+CDC)\sin21coszrcosB (68)
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Likewise if we substitute Equations (61) through (67) into Equation (45) and divide by

1/2 p U2 b3 we obtain the nondimensional dynamic moment about the center of gravity

Mps' = l i X g-sin 7 cos 7 (1 - sin B)()\k _;— A 7\8)
+ CD,c sin2 7 cos? 7 cos B (—g— )\g) A | (69)
where Acl = Scl/b
Mg = s/
7\8 = Qg/b
N = 4/b

DETERMINATION OF A ;. X 5. A

cl

Because of wave rise on impact, the effective depth of the V-bottom is greaier than the
depth relative to the calm water free surface. Wagner19 found that before chine immersion,
the effective depth was greater by a factor of /2. Therefore the effective radius ¢ of the

semicircular cylinder of water representing u(s) is taken as

_® ftanrt -
c=Fs — 5 (70)
Combining with Equation (57) gives
- Mo 26)2 tan? B
u(s)—pzc [(l == —6—2_ for s <s an

The factor in brackets represents the effect of deadrise angle on the sectional added mass.
Shuford found that this did not correlate well with data for angles of deadrise greater than
25 degrees. He therefore substituted the function (1 - sin §) which correlated well with data
to § = 50 degrees. Making this substitution in Equation (71) and substituting into Equation

(65) we find the following expression for ¢

c=\/7(%> fors = s, (72)

This equation is seen to be independent of deadrise angle. On substituti..~ into Equation (70),

we obtain

=‘/._3-.ta"3b=7\,b (73)

s
cl tan 7 ¢
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An expression for the mean wetted length-to-beam ratio A has been obtained by Brown!0

from extensive photographic observations as

A=050 +A)+0.03 (74)

where A, the ratio of the wetted length of chine to beam, is

A, = A - (0.57 + 0.001 B)(tan B/(2 tan 1) - 0.006 B) (75)

provided A 2 1. The last term in Equation (74) is an allowance for stagnation line curvature,

We then find from the previous equations that

A5 = 0.5(0.57 + 0.001 p)(tan /(2 tan 1) - 9.006 ) - 0.03 (76)

since according to Equation (67)

(D D W (77)

Equations (73), (76), and (77) completely define the ranges of the sectional added mass
distributions in terms of 8, A, and 7. Both A and 7 are obtained from the steady state equili-
brium conditions to be discussed in a later section.

It is noted that the value of A, as defined by Equations (59) and (76) is smaller than
A = A, which corresponds to the lower limit of integration at which {= {c in the representa-
tion of the second term of the added mass in Equation (54). Although it appears more

10

reasonable to use A, - )\C for the lower limit of integration, the best fit to the data"" requires

that we use the A, of Equation (76). In the numerical analysis, the effect of using A, - A,

in place of A_, was found to be insignificant except for the 20-degree-deadrise case.

Calculations of 7_ using A, - A_ are shown by the broken curves in Figure 6 where it is seen

to produce a small improvement in the fit to the data.

ADDED MASS FUNCTIONS

The added mass functions used ir. evaluating the stability derivatives may now be
expressed in terms of the hull geometry and the integration limits )‘cl v Ac2s and A, .

The nondimensional sectional added mass at the stern, including the three-dimensional
effects is readily obtained from Equations (61) and (64) through (67) as

e 1/ = 2(P + Q) (78)
where
T A .
P—Z m(l -smB)
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C
Q=—l21'£)\sinrcosrcosﬁ

The nondimensional added mass in heave is, from Equation (62)

A
¢(XJ B ds' = 2Pxy + QA : (79)
(o]
where
2
X4 = )‘k -gkcl

The nondimensional first moment of the added mass with respect to the point s = 0 is readily
obtained with the aid of Equations (57) through (59) as

Xk t ! ’ Q
¢(\) H'sds = 2{Px,y X3 (80)
[o]
where
2 2
NS A
=TT
3 3 2 2
SN AT NS -
X3 = ) N P A2

The nondimensional second moment of the added mass with respect to the point s = 0 is

xk r 2 ' Q '

w(\) Hseds =2(Pxs +Tx6 (81

0
3 3 3
where = )‘Cl + )‘k S )‘CI

Xs =73 3

4 4 3 3
MR (N - \
Xe = ) - 3 c2

REMAINING FORCE AND MOMENT CONTRIBUTIONS

To completely speciiy the forces and moments on a planing craft, it is necessary to add
to Equations (40) and (44) the contributions due to perturbations in pitch and heave displace-
ment, buoyancy, skin friction, thrusters, acrodynamic factors, and towing forces and moments.
Although the thrusters may have a significant effect on the equilibrium trim and wetted length,

their effect on the stability derivatives is probably not very large. In any event these effects
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22,23 and will not be considered further

may be esfimated by means of existing techniques,
here. However, the effect of a towing force and moment will be included in order to facilitate
comparison with towed model data.

The contributions due to perturbations in pitch and heave displacement may readily be
obtained from the complete expressions for the steady state force and mement. The additional

terms required to complete these expressions are described as follows.

BUOYANCY FORCE AND MOMENT

We will consider only the cases for speed cocfficient Cy, greater than 0.5, where the water
breaks clear of the transom, thus fully ventilating the backside of the boat to the atmosphere.
For this case the hydrostatic force may be assumed to act normal io the keel. The followinz

expression was found to fit the data reasonably well. 10,24
Fps' = & A2 sin 7/Cy? (82)

where «x is an empirical correction factor which accounts for ventilation effects on the static
pressure. On the basis of preliminary analysis of planing boat test data, a value of x of 0.7
was tentatively suggested by Hsu.24 However, from recent extensive experiments with a 10-
degree deadrise prismatic planing hull, Brovwn!0 obtained the best agreement with the data by
putting

Kk =0.624 (83)

and assuming that it acts at one third of the mean wetted length from the stern. Since the
present analysis deals with prisnsatic hulls Equation (83) will be used in the following. The

moment about the center of gravity is clearly
{ F ’ >\ k
Mps = Fps'\3- 2 {84)

SKIN FRICTION

The contribution due to skin friction is assumed to act tangential to the bottom and mid-
way between the keel and chine lines. It is given in terms of the mean wetted area by
SavitskyS

2:lhdlcr. 1.B., “The Prediction o Power Performance on Planing Craft,” Transactions Society of Naval Archltects and Marine
Engineeis, Vol. 74, pp. 563 - 610 (1966).

23Ribner. H.S., “Propellers in Yaw,” National Advisory Committee for Acronautics Report 820 (1949).

2‘I'Isu. C.C., “On the Motions of High Speed Planing Craft,” Hydronautics Report 603-1 (Mzy 1967).
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FFS' = A Cg/cos B (85)

where the friction coefficient C; is given by

0242 [c (U)\b)]
T o[\

as a function of Reynolds number. The moment about the center of gravity is clearly

0 ] tan 8
Mes = - Frs ("v -2 ) (86)

TOWING AND AERODYNAMIC FORCES

Terms similar to the above Equation (86) may be written for the towing and aerodynamic
force and moment contributions. These are assumed here to act in a line parallel to the steady
part of the straight line motion.* The moments about the center of gravity, due to the tow

force TS' and wind force Fws', respectively, are
Mpg' =-Tg' f(k;, €)) 87)
Mws = Fws f(ky, €5) (88)
where

f(ky,, en) = ()‘kn - )\v) cos 7+ ()\‘m - )‘g) sinr
L P

el = nondimensionai coordinates of the towpoint with respect to
keel at the stern; see Figure 23

)‘kz' )‘e2 = coordinates of the resultant windforce

A = perpendicular distance from the keel to the center of gravity

STEADY STATE EQUILIBRIUM

The steady state trim angle 7 and mean wetted length Ab are readily determined from the
steady state forcc and moment equations. The force equation is resolved into a vertical (lift)
component and a horizontal (drag) component. The lift equation is readily obtained by setting
the boat weight W equal to the sum of the vertical component of the various force contribu-

tions defined earlier. Thus in nondimensional form we have

W' L2 ZS' = (FDS' + FBS') COsS T - FFS' sint (89)

*This is a good assuniption for the model experiments discussed later,
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where ZS' is the nondimensional hydrodynamic lift, positive down. Similarly the nondimen-
sional tow force FTS' 1§ set equal to the drag or horizontal component of the force contribu-
tions.

Tg' = - Xg' = (Fpg' + Fg') sin 7+ Fgg' cos 7 + Fyd
= - Z' tan 1 + Fpg'/cos 7 + Fyg' = Dy’ (90)
where DS' is the nondimensicnal drag of the boat. The moment equation is obtained by
summing the components
Mg = Mpg' + Mpg' + Mg’ + Mg’ + Myg' = 0 91)
where the component moments are given with respect to the center of gravity.

If we substitute Equations (68), (82), and (85) intc Equation (89) we obtain finally for
the steady state lift equaticn

W=-24-= 'l_i—)-\ -gsinrcos2 T (1 -sinﬁ)+CD’c)\sin2 T cos> 1 cos B
+ -0—'9-22-‘1)\2 sin 7 cos 7 - A C; sin 7/cos § (92)
Ce,
\Y

If we multiply this equation by 1 + A we obtain the fellowing form of Equation (92) as a

cubic equation in A.

DM +(C+D+E)A2+(B+C-E-W)A-W =0 (93)
where B =-;-r-sin1'cos2 (I -sinf)
C =CD,c sin 1 cos3 T cos f

D = 0.624 sin 7 cos 1'/CV2
E =-Csin t/cos § (94)

Substituting Equations (69), (77), (84), (86), (87), (88), and (90) into Equation (91)
yields

' in 2v{l -si A ) A A
Mg =% sin T(I - ;m ) (A + h(r) - A)) + Cp _ (sin 212 cos ﬁ(?._ )‘8)7{
0.624 sin < .5 (k ) Cy ( tan a)
t —————— A==\ ) - —= Al - ——
3 8 v 4
CV2 COSﬁ
, Y ' '
*ilg tan T - oo cos B Fys | flk), ¢)) + Fyg f(ky, €5) = 0 (95)
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where

2
h(r) =N -3 A (96)

Equations (93) and (95) must be solved for X and r by an iterative procedure in which
successive values of T are assumed. Equation (93) is solved for A for each assumed value of
1. Successive pairs of A and 7 thus determined are substituted into Equation (95 until its

magnitude becoms equal to zero within some prespecified amount. In the present analysis
this was taken as 0.002/Cy/2.

STATIC STABILITY DERIVATIVES

As noted earlier the force and moment stability derivatives with resnect to the heave and
pitch velocity and acceleration perturbations are readily obtained from Equations (47) and (50).
There only remains the task of obtainirig the derivatives with respect to the heave and pitch
angle displacement perturbations. These are readily obtained with the aid of the expressions
for ZS' and Ms' in Equations (92) and (95). Since. for a given deadrise and speed, they are
functions only of A(z', ) and 7 we have for the derivatives with respect to the heave and

pitch perturbations

32 925
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ax' _9Xs a3
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aMo S Q\T (99)
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30 v | 9N a7 S
where all rotations are with respect to the center of gravity;z’' = z/b and z equals perturbation

in heave displacement, positive down. From FEquations (90), (92). and (95) we rzadily find




9Z¢ 2
S . ¢
——=—Gsmr(osr> -Hsm21c0531

oA 1+ A
- 2Jsin 7 cos T A+ Cysin t/cos B (103)
97
S - )\ 3 5 2
3T G TS (cos> 7 - 2 sin® 7 cos T)
-HAX(2sinT cost -3 cos? t sin3 7)
- 122 cos 27+ C¢ A cos r/cos B (104)
3Xo 9Z¢ aF 3z’
§ 9 s 1 9%
L=t o ST Ty T (165)
3X 0Z¢ Y Foo tant  0Z¢ Z.o
—a—§-=—a-§-tanr+ > + i =~ astan1+—§— 106)
T di cos? T So8, T T cost T

— =G —— = +
™ GsinTcosT (l 3 (A + h(7} )\g) T N

+H sin? rcost T (A —)\g) +Jsin AN - 2)\8)'

C ( ) (az ' C )

f (tanf S f

——— - 4+ | —— - 2

+ 4 )\V ™ tan 7 T f(kl, l) (107)

M’ .
s Lo [cos 27(h + h(r) - A +(0.157 - 0.00025 B) a0 5]

tan 7
A P 2 A
+H)\<3-)\g>>mgr cos 27+ A (-5-)\8> cos T

972 /4% Centan T
+(—a-—s- tan 7 + 3 J )f(kl,el)

T C0521"cos[3cosr
' ka [ '
= ZS tan T -m‘; b Fws g(klg el) = Fws g(kz, CZ) (108)

where

glky. ) = Mg ~ A)sinT - Aep - )‘g) cos 7

G = n(l -sin B)/2
H= CD.c cos f

] = 0.624/Cy* (109)
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Also with the aid of Equaztions (76) and (77) and Figure 20 it is easy to show that

a1

9z’ sinr , (110)
A -2

9-5=-(" g, )+(057+000| g e (i1

ar tan 7 4 sin® 1

STABILITY EGUATIONS

The total nondimensional force and moment equations may now be written as

aX'  aX

mu-TS +XS +AXD +'5-+ae +ATS (112)
; az' az'
mz =W +ZS+AZ.D 37 80 (113)
oM’ oM’
[yo M9+AMD+8_-+80 (114)
where
m' = —2_ = nondimensional mass of the boat
=P b3
‘)’
I'= —=—— = nondimensional pitch moment of inertia about the
3P0 center of gravity
ATy
ATg' = ——— = perturbation in tow force
% p U2 b2
From the static equilibrium Equations (89) through (%1) we require that
TS' + XS’ =0
W +ZS =0
MS' =0 (115

If the body is free to surge then ATg' is zero. If the body is restrained in surge u’ and '
are zero, and the pitch and heave motions are uncoupled from surge.

Assuming that the body is free to surge, the stability equations at the equilibrium flying
conditions are obtained by putiing ATS' equal to zero and substituting Equations (47), (49),
(50), and (115) into Equations (112} through {114). This leads to the following equations

3l




, where the primes have been omitted for convenience.
(X -m) i+ X,u+ X7+ Xyz + X,z + X6 + XG0 + Xg8 =0
Zu+Zu+(Z;-m)i+Zz+Zz+Z50+250 +Zg6=0
Mgh + Myu + MyZ + Myz + Myz + (Mg - 1)8 + M3 + Mg0 = 0

where the force derivatives are

Z;=-¢(\)sin 7 cos Ju' ds' X;=Z, tan 7
Z,= -2¢(k)us' sin 7 cos? 1 X,=Z, tanr
Z; = -p(\) cos? Ju' ds’ Xy=1Z;tan 7
Z5 =l 2¢(k)us' cosd 7 X;=Z,tan
0Z.'
s A\ _
Zz=a—>‘5? XZ—ZZtanr
Zs= -gp()\)/.u'(a' -s')ds' Xg=Zgtanr
= vt 2 c— 7
Zo—-Zq:(k)us kgcos T Xy=1Zg tan 1
0Z.,) 9Z. Y
S S dA
Zog=——+—T =Zgtant +
8~ 3r * o\ a1 X el

and the moment derivatives are

M; = ¢(A) sin ‘r./u' (@' -s’)ds

M, = 2¢(A) sin 7 cos r(fu' ds' - )xg us')

%5 = ¢(A) cos t/u' (@' -s)ds'

M;=2p) cos? r(/u' ds' - kg us')

Mg g

T e——
= ——

4 an o7
Mj=- o)/ K (a' - §)2 ds’
Mj= - 2¢{)) cos r(#s' ’\82 +/#' @' -s) dS')
OMg Mg 3)

Mo* or T 3% ar
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The integrations are from 0 to A,. The evaluation of the added mass terms are readily obtained
with the aid of Equations (78) through (81). The static derivatives are given by Equations (97)
through (108). The expressions for FDS’ and MDS' are given by Equations (68) and (69).

It is seen from Equation (119) that for small trim angles the derivatives of the X-equation
are considerably smaller than those of the Z-equation. Under these conditions it is reasonable
to expect that the influence of the surge degree of freedom on the porpoising stability would
oe small enough so that the X-equation could be omitted. In any case, if the boat is being
towed at constant speed, then, as previously noted, values of u and u in Equations (117) and
(118) are zero. This effectively uncouples the surge degree of freedom, and the stability may
be deterinined from the pitch and heave equations alone. In the present investigation, all of
the data available for checking the theory were obtained by using planing boat models towed
at constant speed. For these reasons numerical calculations have been made using only the

pitch and heave stability equations.
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APPENDIX B

ESTIMATES OF EFFECT OF WINDAGE AND CHINE RADIUS
ON STABILITY DERIVATIVES

A high metal framework was attached to the models of Day and Haag.4 Its purpose was
to support a scribe for recording the motion after the boat started to porpoise. This introduced

a small aerodynamic drag and moment on the model. The following estimated values for this

drag were used in the computations

Fys = 0.0032
Ay = 1.3
Ny = 2.6

Shuford?! found that a small radius on the chine will account for a reduction in lift of
S to 10 percent - corresponding to a 1/64- and 1/16-inch radius, respectively, on a 4-inch-beam,
flat-bottom, planing surface. On the basis of chine radius measurements obtained from a
typical wood model, it was estimated that the models used by Day and Haag had about a §
percent loss in dynamic lift. The theoretical calculations were therefore modified to take this
into account. This amounted to reducing the magnitude of P and Q in Equations (78) through
(81) and G and H in Equations (103) through (108) by § percent.
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F
Fws = WIND FORCE s
T = TOWING FORCE

Figure 23 — Coordinates of Tow Point and Center of Wind Force
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