

Walter E. Klosinski and P. Ward Brown

Davidson Laboratory Stevens Institute of Technology Castle Point Station Hoboken, NJ 07030

Report No. CG-D-16-93

FINAL REPORT JANUARY 1993

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

Prepared for:

U.S. Coast Guard Research and Development Center 1082 Shennecossett Road Groton, Connecticut 06340-6096

J & 2 - 2 - 2

and

U.S. Department Of Transportation United States Coast Guard Office of Engineering, Logistics, and Development Washington, DC 20593-0001

> 6

2

AD-A270 653

ΝΟΤΙΟΕ

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

The contents of this report reflect the views of the Coast Guard Research & Development Center. This report does not constitute a standard, specification, or regulation.

d. L. mothemo

D. L. Motherway Technical Director, Acting United States Coast Guard Research & Development Center 1082 Shennecossett Road Groton, CT 06340-6096

Technical Report Documentation Page

		Technik	La nepul Ducum	entation age					
1. Report No.	2. Government Acces	ision No.	3. Recipient's Catalog	No.					
CG-D-16-93									
4. Title and Subtitle			5. Report Date						
Resistance and Seakeeping Model	Tests of Two U.S. Co	bast Guard	6 Performing Organiz	ration Code					
Notional Designs of 110 FT and 1	20 FT WPB Hulls		0. renorming Organiz						
7 Author(s)	<u> </u>	·····	8. Performing Organiz	ration Report No.					
Walter E. Klosinski and P. Ward	Brown		R&DC 07/91						
9. Performing Organization Name and Add	ress	· · · ·	10. Work Unit No. (TR.	AIS)					
Davidson Laboratory			11. Contract or Grant	No					
Stevens Institute of Technology			DTCG23-85-C	-20060					
Hoboken, NJ 07030			13. Type of Benort and Period Covered						
12. Sponsoring Agency Name and Address		<u> </u>	- Final Beport						
	Department of 1	ransportation							
U.S. Coast Guard	U.S. Coast Guard		14. Sponsoring Agenc	cy Code					
1082 Shannecossett Road	Office of Engine	ering, Logistics, nt							
Groton, Connecticut 06340-6096	Washington, D.(C. 20593-0001							
15 Supplementary Notes		<u></u>	<u> </u>						
13. Supplementary notes									
16. Abstract		÷							
16. Abstract The research results presented in this report are concerned with the performance and seakeeping characteristics of two Notional WPB Designs, the 110 FT WPB and the 120 FT WPB. Model tests of the two hulls were conducted in calm water, in regular waves at 10 knots, in wave heights of 12.5% and 25% of the beam and in irregular head seas having significant wave heights of 40% and 60% of the beam at speeds from 25 to 70 knots. Spectral analyses were performed on the motions and accelerations in irregular waves and the results are tabulated and plotted, including the 1/c octave RMS accelerations. Resistance data in calm water and waves were scaled to full size and the predictions are tabulated.									
planing boat motion	ons	18. Distribution Stat	ement						
planing boat perfo	ormance	Document is a	vailable to the U.S.	public through					
planing hulls	IS	springfield, V	ecnnical information Irginia 22161	Service,					
19. Security Classif. (of this report)	20. SECURITY CLASS	IF. (of this page)	21. No. of Pages	22. Price					
UNCLASSIFIED	UNCLASSIFIED		-						
Form DOT F 1700.7 (8/72)	Reproduction of	form and com	pleted page is auth	norized					
	;;	· ·							

METRIC CONVERSION FACTORS

Approximate Conversions from Metric Measures

asure	Symbol		Ē	Ē	= 1	2 ê		n ²	vd ²	Ē				6	9				11 02	υ	pţ	ē	ູ້ ເ ເ	ר ב ב	ζ ρλ			٩				
Metric Me	To Find		inches	inches	feet	miles		square inches	souare vards	souare miles	acres			ounces	spunod	short tons			fluid ounces	cups	pints	quarts	gallons	cubic feet	cubic yards			Fahrenheit	temperature	212°F	200	80 100°C
sions from	Multiply By	iTH	0.04	0.4	0.0 •	0.6	A	0 16	12	4.0	2.5		NEIGHIJ	0.035	N 7	1.1		ME	0.03	0.125	2.1	1.06	0.26	35	1.3		IRE (EXACT)	9/5 (then	add 32)	98.6	0, 1, 120, 160	370 1 60 1
oximate Convers	When You Know	LENG	millimeters	centimeters	meters	kilometers	ARE	square centimeters	souare meters	souare kilometers	hectares(10,000 m^2)		MASS	grams	kilograms	tonnes (1000 kg)		NOLU	milliliters	liters	líters	liters	liters	cubic meters	cubic meters		TEMPERATU	Celsius	temperature	32	-40°F, 0, 40, 80	-40°C -20 0 20
Appr	Symbol		шш	C	E	e ĝ		cm ²	Ě	km ²	ha			σ.	6×.	-			lm I	-	-	-	- '	ີε໌	, E			ပိ		ł		
55 53		6 5 		8		4 1 	191			•			2) 	6		8	2		9		9 			3 	כן וווווו		ແມ [] []]]]]	
8 , , , , , , , , , , , , , , , , , , ,	8	")' ')' 	יין זיין 7	' ' 	ויןי	')') 	e ۱٬۱	•]•	իր	''] 	ייייי 5		. .	 .1.	ויןי 4	, j. j	' 'I	•]•}	ייןי פ		'l'I		ייןיין ני	' ' 2	14		ŀγ	1' ' 1	I, İ,	inct	' ' nes	
Sures 6	Symbol 8	')' ')' 	יי) ד ד	ES	ε	Ę	' '}' 6	ers cm ²	ш ²	m ²	ינייןי געק ג	eu	' ! ''	 .1.	יןין 4 ס.		' 'I	•]•]•	ייןי פ ד	Ē	' ' E	-	ייןיי 	1' ' 2 - `	יץי - י	ויין ביי ביי	E	1' ' 	יןיו גי	 inct	'l' nes	
Aetric Measures	To Find Symbol 8	יייייייייייייייייייייייייייייייייייייי	centimeters cm 2	centimeters cm	meters m	kilometers km	(¦')' 6	souare centimeters cm ²	souare meters m ²	source meters m ²	square kilometers km ² u	hectares ha	·[''''		grams g	kilograms kg			mittitters m	mittiliters mt	milliliters mi	liters I	liters I	liters 1 2	liters ¹	cubic meters m ³		XACT)	Celsius °C	temperature on the second)*!'	
rsions to Metric Measures	Multiply By To Find Symbol	LENGTH	+ 2.5 centimeters cm 2	30 centimeters cm	0.9 meters m	1.6 kilometers km	AREA	6.5 souare centimeters cm ²	0.09 souare meters m ²	0.8 source meters m ²	2.6 square kilometers km ² (n	0.4 hectares ha	TAACS (WEIGHT)		28 grams g	0.45 kilograms kg		VOLUME	5 milliters ml 6 -	15 milliliters ml	30 milliliters ml	0.24 liters 1	0.47 liters 1	0.95 liters 1 8	3.8 liters ¹	0.03 cubic meters m ³			s/o /atter Celsius °C	subtracting temperature of the subtracting temperature of the subtracting temperature of the subtraction of	'!' nes	
oximate Conversions to Metric Measures	When You Know Multiply By To Find Symbol	LENGTH	inches # 2.5 centimeters cm 2	feet 30 centimeters cm	yards 0.9 meters m -E	miles 1.6 kilometers km	AREA	souare inches	square feet 0.09 square meters m ²	souare vards 0.8 souare meters m ²	square miles 2.6 square kilometers km ² ch	acres 0.4 hectares ha	MACC (WEIGHT)		ounces 28 grams g	pounds 0.45 kilograms kg		NOLUME	teaspoons 5 milliters m ¹	tablespoons 15 milliliters ml	fluid ounces 30 milliliters ml	cups 0.24 liters 1	pints 0.47 liters 1	quarts 0.95 liters 1 N	gattons 3.8 liters 1	cubic feet 0.03 cubic meters m ³	cubic yards 0.76 cubic meters III		Fahrenheit s/o/atter Celsius °C	temperature subtracting temperature 3	2.54 (exactiv).	

iv

•

TABLE OF CONTENTS

•

NOMENCLATURE		• •	•	• •	•	•	• •	•	•	•	•	•	•	•	•	vii
INTRODUCTION	• • • •	• •	•	• •	•	•		•	•		•	•	•	•	•	1
MODEL AND IN	STRUMENTATI	ON.	•	• •	•	•	• •	•	•	•	•	•	•	•	•	1
TEST FACILIT	Υ	• •	•	• •	•	•		•	•	•	•	•	•	•	•	2
MODEL TESTS		• •	•	• •	•	•		•	•	•	•	•	•	•	•	3
Calm Wate	er	•••		• •	•	•		•	•	•	•	•	•	•	•	3
Irregular	• Waves .		•	• •	•	•		•	•	•	•	•	•	•	•	3
Regular V	laves	•••	•	• •	•	•		•	•	•	•	•	•	•	•	4
DATA PROCESS	SING	• •	•	• •	•	•		•	•	•	•	•	•	•	•	4
RESULTS .		• •	•	•••	•	•		•	•	•	•	•	•	•	•	6
Calm Wate	er Tests .	• •	•	• •	•	•		•	•	•	•	•	•	•	•	7
Irregular	• Wave Tests	• •	•	• •	•	•		•	•	•	•	•	•	•	•	8
Regular W	lave Tests	• •	•	• •	•	•		•	•	•	•	•	•	•	•	10
DISCUSSION		•••	•	• •	•	•		•	•	•	•	•	•	•	•	10
CONCLUDING F	REMARKS .	•••	•	• •	•	•		•	•	•	•	•	•	•	•	12
REFERENCES		• •		• •	•	•		•	•		•	•	•	•	•	12
				Т	ABLE	S										
TABLE 1	HULL CHARAC	TERIST	TICS		•	•	• •	•	•	•		•	•	•	•	13
TABLE 2	CALM WATER	TEST (DIREC	TORY	· .	•		•	•	•	•		•	•	•	14
TABLE 3	CALM WATER	FULL-S	SIZE	RESU	ILTS	•		•	•	•		•	•	•	•	15
TABLE 4	REGULAR WAV	E TEST		ECTO	RY	•		•	•	•	•	•		•	•	18
TABLE 5	110 FT & 12	O FT V	VPB I	N RE	GULA	R WA	VES	•	•	•	•	•	•	•	•	19
TABLE 6	WPB HULLS R	ough v	VATER	TES	T DI	RECT	ORY	•	•	•	•	•	•	•	•	21
TABLE 7	WPB ROUGH W	ATER S	STATI	STIC	s.	•		•	•	•	•	•	•	•	•	22
TABLE 8	ACCELERATIO	N VAR		SPE	CTRA	L DE	INSIT	ry -	110	FT	WPE	3	•	•	•	26
TABLE 9	ACCELERATIO	N VAR		SPE	CTRA	l de	NSIT	FY –	120	FT	WPE	3	•	•	•	32
TABLE 10	1/3-OCTAVE	RMS AC	CELE	RATI	ON -	110	FT	WPB	•	•	•	•	•	•	•	38
TABLE 11	1/3-OCTAVE	RMS AC	XELE	RATI	:ON -	120	FT	WPB	•	•	•	•	•	•	•	44
TABLE 12	PITCH VARIA	NCE SF	PECTR	AL D	ENSI	TY -	110) FT	WPB	•	•	•	•	•	•	50
TABLE 13	PITCH VARIA	NCE SF	PECTR	AL C	ENSI	TY -	120) FT	WPB	•	•	•	•	•	•	51
TABLE 14	HEAVE VARIA	NCE SF	PECTR	AL D	ENSI	TY –	110) FT	WPB	•	•	•	•	•	•	52
TABLE 15	HEAVE VARIA	NCE SP	PECTR	AL D	ENSI	ΤΥ -	120) FT	WPB	•	•	•	•	•	•	53
TABLE 16	WAVE VARIAN	CE SPE	ECTRA	L DE	INSIT	Y -	110	FT 1	WPB	•	•	•		•	•	54
TABLE 17	WAVE VARIAN	CE SPI	ECTRA	L DE		Y -	120	FT I	WPB							55

F	I	G	JF	RE	S

FIGURE 1	MODEL HULLS	•	•	•	56
FIGURE 2	DRAG BALANCE AND PITCH PIVOT BOX, INSTRUMENTED 120 FT	WPB		•	57
FIGURE 3	WPB PROFILES	•	•	•	58
FIGURE 4	110 FT WPB BODY LINES	•	•	•	59
FIGURE 5	120 FT WPB BODY LINES	•	•	•	60
FIGURE 6	LOCATIONS OF VERTICAL ACCELEROMETERS	•	•	•	61
FIGURE 7	110 FT WPB TEST WAVE SPECTRA	•	•	•	62
FIGURE 8	120 FT WPB TEST WAVE SPECTRA	•	•	•	63
FIGURE 9	UNDERWATER VIEW OF 110 FT WPB AT 35 KNOTS	•	•	•	64
FIGURE 10	UNDERWATER VIEW OF 120 FT WPB AT 35 KNOTS	•	•	•	65
FIGURE 11	WPB CALM WATER PERFORMANCE		•	•	66
FIGURE 12	SIGNIFICANT ACCELERATIONS - 110 FT WPB, 9.9 FT WAVES	•	•	•	67
FIGURE 13	SIGNIFICANT ACCELERATIONS - 110 FT WPB, 14.8 FT WAVES				68
FIGURE 14	SIGNIFICANT ACCELERATIONS - 120 FT WPB, 8.5 FT WAVES	•	•	•	69
FIGURE 15	SIGNIFICANT ACCELERATIONS - 120 FT WPB, 12.7 FT WAVES	•			70
FIGURE 16	HEAVE RESPONSE IN REGULAR WAVES AT 10 KNOTS	•	•		71
FIGURE 17	PITCH AMPLITUDE RESPONSE IN REGULAR WAVES AT 10 KNOTS	•		•	72
FIGURE 18	RESISTANCE IN REGULAR WAVES AT 10 KNOTS	•	•	•	73
	APPENDICES				
APPENDIX A	PLOTS OF ACCELERATION SPECTRAL DENSITY - 110 FT WPB.	•		•	A1
APPENDIX B	PLOTS OF ACCELERATION SPECTRAL DENSITY - 120 FT WPB.	•	•	•	B 1
APPENDIX C	PLOTS OF 1/3-OCTAVE RMS ACCELERATIONS - 110 FT WPB .	•	•	•	C1
APPENDIX D	PLOTS OF 1/3-OCTAVE RMS ACCELERATIONS - 120 FT WPB .	•	•	•	D1
APPENDIX E	PLOTS OF PITCH VARIANCE SPECTRAL DENSITY - 110 FT WPB	•	•	•	E1
APPENDIX F	PLOTS OF PITCH VARIANCE SPECTRAL DENSITY - 120 FT WPB	•	•	•	F1
APPENDIX G	PLOTS OF HEAVE VARIANCE SPECTRAL DENSITY - 110 FT WPB	•	•	•	G1
APPENDIX H	PLOTS OF HEAVE VARIANCE SPECTRAL DENSITY - 120 FT WPB	•			H1
APPENDIX I	PLOTS OF WAVE VARIANCE SPECTRAL DENSITY - 110 FT WPB	•	•	•	I1
APPENDIX J	PLOTS OF WAVE VARIANCE SPECTRAL DENSITY - 120 FT WPB				J1

		Accesion For
	R-2548	NTIS CRA&I
		UTIC TAB
		Justification
	NOMENCLATURE	Ry
		Dist ibution/
Ap	projected planing bottom area, sq.ft	Availability Codes
b	beam over chines, ft	Avail and for
CD	drag coefficient based on beam squared, R/qb ²	Dist Special
CG	center of gravity	
C r	ATTC frictional resistance coefficient	H-1
Cf	frictional resistance coefficient based on bea	am squared, Cr(S/b ²)
CP	center of pressure, intersection of the result	tant hydrodynamic
	force vector with the keel baseline	
CR	resistance coefficient, R/wb ³	-
Ст	total resistance coefficient, R/qS	QUALITY INSPECTED 2
Cv	velocity coefficient, V/√(gb)	, , ,,,
Ca	load coefficient, Δ/wb^3	
d	transom draft, depth of keel at transom below	still water level, ft
Fnv	volume Froude Number, $V/\sqrt{(g\nabla^{1/3})} = C_V/C_{\Delta}^{1/6}$	
f	frequency, Hz	
fe	frequency of encounter, Hz	
f√(b/g)	non-dimensional frequency	
9	acceleration due to gravity, 32.17 fps ²	
H1/3	significant wave height, 4 x RMS wave elevation	on, ft
k	radius of gyration, ft	
L/b	length-beam ratio	
LBP	length between perpendiculars, ft	
LCG	longitudinal position of the center of gravity	y (CG),
	measured from the transom parallel to the I	keel, ft
LCP	longitudinal position of the hydrodynamic cen	ter of pressure (CP),
	measured from the transom parallel to the I	k ee l, ft
LOA	length overall, ft	
Lc	chine wetted length, ft	
lk	keel wetted length, ft	
Lm	mean wetted length, $(\ell_k + \ell_c)/2$	
ℓ ∎/b	mean wetted length-beam ratio	
n	vertical acceleration or load factor, g units	
p	waterplane coefficient	
q	dynamic pressure, $\frac{1}{2} \rho V^2$	

.

R	resistance, lb
Raw	added resistance in waves, 1b
RMS	process root-mean-square
RMSn	RMS acceleration, g units
RMSe	RMS pitch, degrees
Rn	Reynolds Number
S	wetted area, sq.ft
S/b²	non-dimensional wetted area
t	time, seconds
t√(g/b)	non-dimensional time
V	velocity, fps
Vĸ	speed, knots
W	specific weight of water, 62.28 lb/cu.ft fresh water at 71.5°F,
	64.00 lb/cu.ft salt water at 59°F
β	deadrise angle, degrees
۵	displacement, lb
θ	pitch angle excursion, degrees
ę	density of water, w/g
τ	trim angle of keel, degrees
V	volumetric displacement, Δ/w , cu.ft

Area loading	$A_p/\nabla^{2/3} = p(L/b)/Ca^{2/3}$
Slenderness ratio	$L/\nabla^{1/3} = (L/b)/Ca^{1/3}$
Speed-length ratio	$V_k/\sqrt{L} = 3.36 C_V/\sqrt{(L/b)}$

Subscripts

S	denotes	full-size o	or ship scale
m	denotes	model scale	2

Sign Convention

The trim is positive in the bow up sense and is zero when the afterbody keel is horizontal.

The pitch is positive in the bow up sense and is zero when the afterbody keel is horizontal.

The heave is the height of the tow point above the still water surface, is positive vertically upward, and is zero when the tow point is at the still water level.

The draft is the depth of the keel at transom below the still water surface, is positive vertically downward, and is zero when the keel at transom is at the still water level.

The drag is a horizontal force vector, positive aft in the bow-to-stern sense, and is zero when the boat is at rest.

The velocity is a horizontal vector, positive forward in the stern-to-bow sense, and is zero when the boat is at rest.

The vertical acceleration is a vertical vector, positive upward, and is zero when the boat is at rest.

INTRODUCTION

The Davidson Laboratory is conducting a series of planing boat studies in support of the U.S. Coast Guard's pursuit of R&D projects which will enable it to evaluate advanced marine vehicles and advanced technologies which enhance the effectiveness of ship resources. The experimental results obtained at the Davidson Laboratory are intended to contribute to a relevant technical data base for the evaluation of vessels which are in service and for designs which are being considered for service.

The objective of this research is to obtain basic hydrodynamic information about planing hulls through the use of captive model tests. This information is required for the study of the transverse stability, yaw/roll stability, course keeping, maneuvering and control of planing hulls, and for the study of seakeeping, and the loss of speed in a seaway, of planing hulls.

The research results presented in this report are concerned with the performance and seakeeping characteristics of two Notional WPB Designs - the 110 ft WPB and the 120 ft WPB. Tests were conducted at speeds up to 65 knots in calm water, regular waves, and in irregular head seas up to sea state 5.

MODEL AND INSTRUMENTATION

Two 1/18 scale models of the 110 ft WPB and the 120 ft WPB were fabricated (see Figure 1). The WPB profiles are presented on Figure 3. Figures 4 and 5 present the body lines of each hull. The model hulls were made of fiberglass and epoxy to USCG specifications. Internal body frames and cut-out decks were included to make the models rigid but lightweight. A lower deck, made of marine plywood, was installed inside each model and extended for about a third of each model's length. These decks were used for attaching weights, instrumentation, and the apparatus which attached the models to the overhead towing carriage.

Each model was towed through a pitch pivot box, which had its axis located at the intersection of the thrust line with the LCG. Thus the towpoint was at the LCG at a height of 6.38 ft above the baseline. Here, as throughout this report, values are given in terms of full-size equivalents. Above the pivot box a drag balance was mounted and attached to twin vertical heave poles supported by a standard free-to-heave apparatus. The models were towed

at constant speed along the center line of the tank at zero roll and yaw with freedom to pitch and heave. The photographs in Figure 2 show the 120 ft WPB model and its instrumentation, which was also used for the 110 ft WPB model tests. Five accelerometers were mounted in each model as shown on Figure 6. An inclinometer mounted in the model measured the trim in calm water and a linear differential transformer attached to the heave poles was used to measure the heave. The pitch excursions in waves were measured by a rotary differential transformer. Thin mylar strips were fastened to both chines of the 110 ft WPB and to the lower chine of the 120 ft WPB to ensure sharp edges on the scaled models. The spray rail built into the 120 ft WPB at the upper chine was V-shaped in cross-section, which resulted in a sharp edge, and therefore no mylar strip was required. The models were ballasted to the scaled values presented in Table 1.

R-2548

TEST FACILITY

Tests were conducted in the Davidson Laboratory Tank 3 which is 313 ft long, 12 ft wide and 5.5 ft deep. A monorail above the water extends down the tank's length. A towing carriage rides on this rail and is attached to the model below it through the heave poles. The carriage is towed by a steel cable driven by an electric motor at one end of the tank. The model is accelerated up to the required constant speed, and data are acquired in the data trap. The signals are transmitted by overhead cables to shore-based signal conditioning equipment and thence to an on-line computer for processing and storage.

Calm water underwater photographs are taken using a water-tight camera box and a large underwater mirror. A color video camera was mounted ahead and to port of the model being tested. All runs were monitored on a shore based monitor, and a video recording was made of each run.

The Tank 3 wavemaker is an articulated double flap wet-back type in which the upper and lower flaps are powered by hydraulic cylinders. A dedicated computer generates the signals which control the movements of each of the hydraulic actuators.

The specified sea states had significant wave heights of 40 and 60 percent of each hull's maximum beam at the upper chine. These waves were generated and measured by a stationary wave-wire prior to tests with the

model. When the specified waves were obtained their parametric settings were locked in the computer. A moving wave strut was mounted forward and to port of the model to monitor the waves encountered during model tests. The full size spectra of the generated sea states, together with the corresponding idealized Pierson-Moskowitz spectra, are presented on Figures 7 and 8.

MODEL TESTS

Calm Water

The 110 ft WPB was tested at speeds corresponding to 10, 20, 25, 29.4, 32, 35, 40, 50, 60 and 70 knots. The 120 ft WPB was tested at speeds of 10, 20, 25, 30, 32.6, 35.1, 40, 50, 60 and 70 knots. Trim, heave, and drag were measured. The effect of thrust unloading was modeled: at each speed an upward unloading force was applied at the tow-point representing the vertical component of thrust arising from the inclination of the tnrust line. Thus the resultant force applied to the model acted along the shaft line.

The water temperature was maintained at a value of 71.5°F which was checked twice daily. Underwater photographs were taken to record the wetted areas. These photographs were subsequently measured to determine the wetted lengths at keel and chine. Figures 9 and 10 present underwater photographs of the 110 ft and 120 ft WPB hulls at a speed of 35 knots.

Table 2 summarizes the calm water tests. No air tare tests were performed.

Irregular Waves

The ballast of each model was adjusted to obtain the specified radius of gyration in pitch equal to 25 percent of the model's LBP.

The models were tested at the half-load condition noted in Table 1 at three values of speed coefficient, Cv, equal to 1.5, 3.0 and 4.0, and in two Pierson-Moskowitz seas having significant wave heights of 40 and 60 percent of the maximum beam at chine. Pitch, heave, drag, and five vertical accelerations (see Figure 6) were measured.

R-2548

Runs were made at the following matrix of test conditions:

Model designation	<u>110 ft WPB</u>	120 ft WPB
Speed, knots	25.04, 50.08, 66.78	23.22, 46.44, 61.91
Significant wa∨e height, ft	9.87, 14.80	8.48, 12.72
Modal period, seconds	8.70, 10.65	8.06, 9.87

The model was accelerated to a steady speed and then data were acquired in the 150 ft data trap. Additional runs were made in different sections of the seaway, by inserting a known time offset into the wavemaker computer, until a minimum of 70 waves had been encountered at each test condition. The statistics were then calculated for this group of combined runs. Table 6 summarizes the irregular wave test conditions.

Regular Waves

Regular wave tests were performed at the cruising speed of 10 knots in wave heights of 12.5 and 25 percent of the maximum chine beam and at wave-length to hull-length ratios of 0.75, 1.0, 1.25, 1.5, 2.0, 2.5, 3, 4, 5 and 6. To determine the amplitude of the response, the RMS of each channel was calculated. Table 4 summarizes the regular wave test conditions.

DATA PROCESSING

The instrumentation was calibrated by applying known displacements to the motion transducers and wave strut, known loads to the force balance, and gravity multiples to the accelerometers. All calibrations were linear and a "least-squares" technique was used to determine the calibration rates, which were checked daily.

The primary measured quantities in the calm water tests included the drag, trim, and CG heave, and in the rough water tests included the drag, pitch, CG heave, and five accelerations. The heave is defined as the height of the tow point above the still water surface. The transom draft was calculated in the calm water tests from the observed heave and the position of the tow point relative to the keel at the transom.

R-2548

A quantity known as the "static keel wetted length" (SKWL) was calculated from the trim and the transom draft. The SKWL is defined by the intersection of the still water surface with the keel profile in the running condition and does not allow for the wave rise at the keel. The SKWL, and its use, is more fully described later in the section on Calm Water Results.

The velocities were computed from the time taken to travel through the data trap which was 50 ft long for the calm water tests and 150 ft long for the rough water tests. During data collection all data channels were scanned at a rate of 250 Hz and the results stored in the computer for appropriate processing.

At tankside, wetted areas were estimated by a computer program so that the full size ship resistance could be calculated, for the purpose of determining thrust unloading. However the actual wetted areas were later calculated from the underwater photographs taken during the calm water tests, inserted into the program, and used to compute ship resistance. A zero roughness allowance was used in the computations.

For the irregular wave tests the mean values described above were computed, and in addition a peak-trough analysis was carried out for the pitch, heave, and the five accelerations. The peak-trough analysis computes for each signal the mean and rms, the number of oscillations, the average of the peaks and troughs, the average of the 1/3-highest and the 1/10-highest peaks and troughs, and the extreme values of the peaks and troughs. All data were scaled to full size units.

Wave height statistics generated from time-series data sometimes involve an analysis procedure which identifies wave crests and troughs as the maximum and minimum values of wave height occurring between zero crossings, or between crossings of a reference data level. This is not the procedure customarily employed at the Davidson Laboratory. The procedure used in this study identifies all maxima and minima regardless of magnitude, thereby avoiding a bias that would otherwise be introduced into the statistics. In his analysis of the motion maxima, Fridsma¹ employs the two-parameter Longuet-Higgins distribution and one of these parameters is the proportion of negative maxima (or maxima less than the reference level). If the zero-crossing criteria were used to identify maxima, this proportion would necessarily be zero, a clear perversion of the data. Spectral analyses were performed on the five accelerations, and the pitch and heave data.

R-2548

Additionally 1/3-octave RMS analyses were performed on the five accelerations for those who wish to assess the habitability of the designs.

R-2548

Regular wave data were processed by using the RMS values to compute the pitch, heave, and wave amplitudes. The non-dimensional heave response was obtained by dividing the heave amplitude by the wave amplitude, similarly the pitch amplitude was divided by the wave slope. In addition the pitch amplitude was divided by the wave amplitude.

RESULTS

The results of the tests are presented in dimensional form, both model and full-size, and in non-dimensional form. The non-dimensional form adopted for planing boats uses the maximum beam at the chine as the reference length and is based on the NACA planing coefficients². These coefficients are defined in the Nomenclature section and include the beam loading coefficient, C_{Δ} , the resistance coefficient, C_{R} , and the speed coefficient, C_{V} .

The concept of load-on-water, or briefly load, was introduced by the NACA in recognition of the fact that the load-on-water is only equal to the displacement when the planing craft is at rest. When the craft is under way it is unloaded by the vertical component of the thrust so that the load is less than the displacement.

These coefficients form the basis for other normalizations. For example, a drag coefficient based on the velocity and the square of the beam is used in reporting and analyzing planing data. Since the drag and resistance are identical it follows that:

$$C_D = R/qb^2 = 2 C_R/Cv^2$$

which may in turn be related to the total resistance coefficient based on the wetted area S:

$$CT = R/qS = C_D (b^2/S)$$

The total resistance coefficient is used in expanding the model resistance to full-size:

$$C_{TS} = C_{TM} - C_{FM} + C_{FS}$$

where the subscript s refers to the full-size ship, and m refers to the model. The ATTC frictional resistance coefficient, C_{f} , is a function of the Reynolds Number based on the mean wetted length and the speed.

A few alternate coefficients have been introduced which are readily expressible in terms of the NACA coefficients. Typical of these are the volume Froude Number and the Slenderness ratio. A complete list of the non-dimensional coefficients is included in the Nomenclature, together with the conversion to some common equivalents such as speed-length ratio.

Calm Water Tests

The calm water results are presented in Table 3: the expanded full-size results are given in Table 3.1, the non-dimensional results are in Table 3.2, and the original model results are given in Table 3.3.

The column headings in Table 3.3 are abbreviated. The tabulated quantities include: Run number, Speed, Keel trim, Heave of the towpoint, Draft of the keel at transom, Wetted lengths at keel and chine as read from the underwater photographs, SKWL, Drag which is synonymous with resistance, and Load on water.

Resistance expansion of planing boats requires a knowledge of the wetted area which is calculated from the keel and chine wetted lengths observed in the underwater photographs. In rough water, however, it is not possible to use underwater photography and some other means has to be used to find the mean wetted area. This is the function of the static keel wetted length, because the SKWL can be calculated from the mean trim and transom draft in both calm and rough water. The dynamic wetted lengths at keel and chine from the underwater photographs are correlated with the static keel wetted length to provide the means for estimating the wetted area in rough water. This also serves to fair the wetted length data and for consistency the faired wetted lengths are used in both calm and rough water expansions.

R-2548

The static keel wetted length is defined by the intersection of the still water surface with the keel profile in the running condition, and is computed from the observed trim, the transom draft, and the known geometry of the keel. The SKWL is shown in Sketch A:

Sketch A

The measured wetted lengths given in Table 3.3 were correlated with the static keel wetted length (SKWL) and the resulting faired values are those shown in Table 3.1. A comparison of the measured and faired wetted lengths in the two tables shows them to be practically identical.

The faired values of keel and chine wetted length, together with the girths of each WPB were used to compute the wetted areas given in Table 3.1. This wetted area was used to calculate the full-size drag or resistance tabulated in Table 3.1. The resistance-weight ratio is plotted as a function of volume Froude Number on Figure 11.

The non-dimensional values of speed coefficient, volume Froude Number, mean wetted length-beam ratio, model and full-size Reynolds Number, model and full-size frictional resistance coefficients normalized on beam squared, wetted area, and model and full-size drag coefficients are presented in Table 3.2.

Irregular Wave Tests

All wave test data tables and plots are given in full size units. A peak-trough analysis and a spectral analysis were performed on each group of runs tested at the same speed and sea state. The results of the peak-trough analysis are presented in Table 7.

Mean values of the pitch, i.e. trim, the heave-beam ratio, and the total rough water resistance coefficients both model and full size, are given in the top half of Table 7.1 together with the added resistance in waves. Since the rough water tests were conducted without thrust unloading, some special calm water tests without unloading were necessary in order to determine the added resistance in waves. The calm water and rough water model data without unloading were expanded to full scale and the differences used to compute the coefficients of the added resistance in waves.

The tabulated statistical quantities include the pitch, heave-beam ratio and the outputs from the five accelerometers. The RMS values are given in the lower half of Table 7.1. Average values of the crests and troughs are tabulated in Table 7.2. The 1/3-highest statistics are presented in Table 7.3 and the 1/10-highest statistics in Table 7.4. The 1/3-highest or significant values of the bow and CG accelerations, Accelerometers #5 and #2 respectively, for the two planing craft are plotted versus speed on Figures 12 through 15.

The full-size spectral estimates of the five accelerations on the 110 ft WPB and the 120 ft WPB are tabulated in Tables 8 and 9 respectively. The center frequency of each pass band is tabulated in the left hand column, and the variance density in each pass band is given in subsequent columns for the five accelerometers from bow to transom, see Figure 6.

The maximum frequency of the analysis is chosen so that there is no contribution to the variance from frequencies above the maximum. The numerical value of the maximum center frequency is somewhat arbitrary being a function of the scanning rate and the scale ratio: the maximum frequency is 7.3657 Hz. In addition rather narrow bandwidths are selected to improve the accuracy of subsequent transformations. The frequency scale is divided into 30 intervals resulting in bandwidths of 0.2455 Hz. This detailed analysis facilitates the transformation into the 1/3-octave presentation and into the graphical presentations in the Appendices. For example, in Table 8.1 at the center frequency of 0.49 Hz the variance density in the pass band for the #5 accelerometer is 0.6245 g^2/Hz . Multiplying hv the bandwidth of 0.2455 Hz, the contribution to the variance in this band is 0.1533 g^2 . Proceeding in this manner the detailed spectra can be transformed into broader and more practical bandwidths and into the 1/3-octave format.

The 1/3-octave rms accelerations are tabulated in Tables 10 and 11 for the 110 ft and the 120 ft WPB respectively. The center frequencies of these 1/3-octave bandwidths are those specified in International Standard ISO 2631³ and in MIL-STD-1472A, and they are tabulated in the left hand column. The rms acceleration in each 1/3-octave pass band is given in the subsequent columns for the five accelerometers. It may be noted that the rms is simply the square root of the variance.

R-2548

Pitch spectral estimates are presented in Tables 12 and 13 for the two hulls; heave spectral estimates are presented in Tables 14 and 15; and encountered wave spectral estimates are presented in Tables 16 and 17.

Because of their bulk, the plots of the spectral analysis and 1/3-octave analysis are presented in appendices. In the graphical presentation of the spectra the encountered frequency bandwidths were changed in the manner described above. Appendices A and B present plots of the spectral estimates of the accelerations of the 110 ft and 120 ft WPB, in bandwidths of 0.25 Hz. Appendices C and D are log-log plots of the 1/3-octave rms accelerations³. Appendices E and F are plots of the pitch spectral estimates, Appendices G and H are plots of the heave spectral estimates, and Appendices I and J are plots of the encountered wave spectral estimates all in bandwidths of 0.1 Hz.

Regular Wave Tests

The regular wave results at 10 knots are presented in non-dimensional form for wave heights corresponding to 12.5 and 25 percent of the beam in Table 5. Tabulated values include the Run number, Wave length, Frequency of encounter, Heave amplitude response, Pitch amplitude response, the Pitch amplitude-wave amplitude ratio, and the Resistance coefficient of the model. The motion responses and the model resistance coefficient as functions of frequency of encounter are shown on Figures 16, 17 and 18.

DISCUSSION

The calm water performance shown on Figure 11 in terms of the non-dimensional resistance-weight ratio, (which is the same as the drag-displacement ratio), is similar to that which would be predicted for planing hulls having a slenderness ratio of 7.

The accelerations at the bow (accelerometer #5) and at the CG (accelerometer #2) for the 110 ft WPB in irregular waves of significant height equal to 40 percent and 60 percent of the beam, as shown on Figures 12 and 13 respectively, show the typical increase in acceleration with speed and with forward location in the hull. The corresponding data for the 120 ft WPB on Figures 14 and 15 show similar trends, but the accelerations are somewhat lower due to the higher beam loading of this hull.

Detailed spectral analyses for all the accelerometers from bow (#5) to stern (#1) are presented in Appendices A and B for the full scale 110 ft and 120 ft WPB respectively. These form a most extensive data base and merit For example Figures A2.1 to A2.5 show considerable study. how the acceleration variance changes from bow to stern for the 110 ft hull in 40% beam significant wave height at a speed coefficient of 3. The corresponding pitch, heave, and wave spectra are shown on Figures E1.2, G1.2 and I1.2. It will be noticed in this example that whereas the motions and waves show dominant frequencies at about 0.4 Hz with little frequency content above 0.8 Hz, the accelerations show dominant frequencies at 0.6 Hz with significant contributions out to 4.0 Hz and beyond. The work entailed in correlating all this irregular wave data is outside the scope of this study.

The pitch and heave motions at the cruising speed of 10 knots in small regular waves are simpler to analyze. The heave response as a function of frequency of encounter is shown on Figure 16 and is essentially linear and exhibits little resonance. The pitch response is similarly shown on Figure 17, with maximum response occurring when the wave length is twice the hull length. However the 110 ft hull shows some evidence of non-linear pitch response in wave lengths from three-quarters to twice the hull length. The resistance in regular waves is shown on Figure 18, with the maximum added resistance occurring in wave lengths 1.5 times the hull length, which tends to correlate with the maximum pitch response. At the 10 knot cruising speed, the added resistance of the 110 ft hull varies approximately linearly with wave height, whereas that of the 120 ft seems to correlate with the square of the wave height.

CONCLUDING REMARKS

This study provides an extensive data base for validating the predicted performance of the two notional WPB designs identified as the 110 ft and the 120 ft hulls. Tabular and graphical presentations of the calm water performance and the seakeeping characteristics in regular and irregular waves are included.

It is recommended that these data be analyzed and incorporated into current planing boat performance and seakeeping prediction methodologies.

REFERENCES

- Fridsma, G.: "A Systematic Study of the Rough-Water Performance of Planing Boats"
 Davidson Laboratory Report 1495, March 1971.
- Shoemaker, J.M. and Parkinson, J.B.: "A Complete Test of a Model of a Flying Boat Hull--NACA Model No. 11" NACA TN 464, July 1933.
- International Standards Organisation: "Guide for the Evaluation of Human Exposure to Whole Body Vibrations" ISO 2631, First Edition 1974-07-1

TABLE i

HULL CHARACTERISTICS

110 ft WPB at Half Load

Displacement	119.0 <i>L</i> -tons	44.45 lb
LOG forward of AP	37.2 ft	24.8 in
VOG above baseline	8.9 ft	5.93 in
Maximum beam at upper chine	24.69 ft	16.46 in
Propeller shaft angle, degrees	15.0	15.0
Pich radius of gyration, percent LBP	25.0	25.0
LOA	110.0 ft	73.33 in
LBP	104.0 ft	69.33 in

120 ft WPB at Half Load

135.0 <i>L</i> -tons	50.43 lb
42.9 ft	26.8 in
7.66 ft	5.11 in
21.20 ft	14.13 in
10.0	10.0
25.0	25.0
118.79 ft	79.20 in
110.0 ft	73.33 in
	135.0 <i>L</i> -tons 42.9 ft 7.66 ft 21.20 ft 10.0 25.0 118.79 ft 110.0 ft

TABLE 2

CALM WATER TEST DIRECTORY

110 ft	WPB	120 ft W	PB
V, knots	Run	V, knots	Run
0	104	0	124
10	111	10	135
20	118	20	1 36
25	112	25	137
29.4	119	30	1 38
32	120	32.6	1 39
35	113	35.1	140
40	121	40	141
50	114	50	1:42
60	115	60	143
70	116	70	144

.

.

-

TABLE 3.1

CALM WATER FULL-SIZE RESULTS WITH THRUST UNLOADING (Salt water at 59°F)

RUN	SPEED	KEEL TRIM	HEAVE ¹	WETTED KEEL	LENGTH ² CHINE	WETTED AREA	DRAG	<u>DRAG</u> WEIGHT
	knots	deg	ft	ft	ft	sq.ft	lb	RATIO
			110	ft WPB -	119 L -to	ons		
104	0.0	-1.2	1.56	-	-	-	-	-
111	10.0	-1.0	1.38	104	61	2,141	5,400	0.020
118	20.0		1.34	99	5 5	2,027	20,700	0.078
112	25.0	1.3	1.74	98	52	1,980	24,200	0.091
119	29.4	1.2	2.38	96	50	1,938	26,600	0.100
120	32.0	1.3	2.52	95	49	1,915	29,100	0.109
113	35.0	1.6	2.72	93	46	1,856	32,700	0.123
121	40.0	2.0	3 .09	88	3 9	1,699	36,500	0.137
114	50.0	2.1	3 .81	74	19	1,242	40,500	0.152
115	60.0	1.6	4.16	73	19	1,229	45,300	0.170
116	70.0	1.2	4.34	76	7	1,303	52,900	0.198
			120	ft WPB ~	135 L-to	ons		
124	0.0	0.0	1.41	-	-	-	-	-
135	10.0	0.2	1.23	109	81	2,138	4,400	0.015
136	20.0	1.9	1.05	106	74	2,038	21,300	0.070
137	25.0	2.3	1.36	104	71	1,996	25,600	0.085
138	30.0	2.1	2.04	103	69	1,960	28,500	0.094
139	32.6	2.2	2.10	103	68	1,950	31,300	0.104
140	35.1	2.2	2.26	102	68	1,937	32,300	0.107
141	40.0	2.6	2.48	100	64	1,876	36,700	0.121
142	50.0	3.2	3.22	89	47	1,561	41,600	0.138
143	60.0	3.1	3.74	82	37	1,362	47,000	0.155
144	70.0	2.7	4.05	80	34	1,302	52,000	0.172

Notes: 1. Height of towpoint above still water.

2. Faired values, see p. 8, cf. Table 3.3.

TABLE 3.2

CALM WATER NON-DIMENSIONAL RESULTS

•

run	ςv	Fn _∇	TRIM	℄ℊ∕℩	Rem	Res	°c _{₽m}	C _{Fs}	s⁄b²	CDm	с _{Ds}
					x10 ⁻⁶	x10 ⁻⁸	x10 ³	x10 ³		x10 ³	x10 ³
				11	o rt WPB	, C _Δ = 0.	.27673				
104	0	0	-1.20	-	-	-	-	-	-	-	-
111	0.60	0.74	-0.95	3.34	1.77	1.09	13.91	7.19	3.512	37.78	31.06
118	1.20	1.49	1.11	3.06	3.31	2.04	11 .7 7	6.25	3.325	35.44	29.92
112	1.50	1.86	1.31	3.04	4.02	2.48	11.11	5.95	3.249	27.51	22.34
119	1.76	2.18	1.20	2.96	4.61	2.84	10.62	5.72	3.179	22.70	17.80
120	1.92	2.37	1.34	2.92	4.96	3.05	10.37	5.60	3.142	21.18	16.41
113	2.10	2.60	1.60	2.83	5.24	3.22	9.95	5.38	3.045	20.01	15.44
121	2.40	2.97	2.03	2.57	5.45	3.36	9.05	4.90	2 .78 7	17.35	13.21
114	3.00	3.72	2.10	1.89	5.01	3.09	6.71	3.62	2 .03 8	12.43	9.34
115	3.59	4.45	1.64	1.87	5.94	3 .6 6	6.45	3.51	2.016	10.24	7.30
116	4.19	5.19	1.24	1 .98	7.31	4.50	6.60	3.62	2.137	9.26	6.21
				12	o ft WPB	, c _Δ = 0	.49590				
124	0	0	0.02	-	-	-	•	-	-	-	-
135	0.64	0.73	0.18	4.49	2.04	1.26	18.36	9.55	4.758	43.26	34.45
136	1.29	1.45	1.94	4,22	3.84	2.36	15.62	8.35	4.532	48.89	41.62
137	1.62	1.82	2.25	4.14	4.72	2.90	14.78	7.96	4,442	38.81	31.99
178	1.94	2.18	2.11	4.06	5.53	3.41	14.12	7.66	4.361	31.34	24.88
139	2.11	2.37	2.16	4.04	5.98	3.68	13.87	7.54	4.339	29.48	23.16
140	2.27	2.55	2.15	4.00	6.39	3.98	13.62	7.43	4.310	26.79	20.59
141	2.59	2.90	2,59	3.87	7.05	4.34	12.98	7.10	4.174	23.86	17.98
142	3.23	3.63	3.24	3.22	7.30	4.50	10.73	5.88	3.473	17.92	13.07
143	3.88	4.36	3.06	2.82	7.69	4.73	9.29	5.10	3.030	14.43	10.24
144	4.52	5.08	2.73	2.70	8.58	5.28	8.72	4.81	2 .89 7	12.26	8.35

TABLE 3.3

CALM WATER MODEL RESULTS WITH THRUST UNLOADING (Fresn Water 71.5°F)

RUN	SPEED	KEEL TRIM	HEAVE 1	DRAFT TRANSON	WETTED KEEL	LENGTH CHINE	SKWL	DRAG	LOAD
	fps	deg	in	in	in	in	in	16	
			110	ft WPB,	44.5 1	b			
104	0	-1.20	1.04	2.62	-	-	67.49	-	44.5
111	3.98	-0.95	0.92	2.85	69	41	67.40	1.09	44.3
118	7.97	1.11	0.89	3.29	65	43	64.99	4.10	43.7
112	9.96	1.31	1.16	3.58	64	34	64.03	4.97	43.3
119	11.71	1.20	1.59	3.11	64	33	63.24	5.67	43.0
120	12.74	1.34	1.63	3.08	64	32	62.82	6.26	43.1
113	13.93	1.60	1.81	2.37	62	31	ó1.72	7.07	42.9
121	15.93	2.03	2.06	2.99	57	26	58.93	8.02	42.7
114	19.95	2.10	2.54	2.55	50	21	51.40	9.01	42.5
115	23.86	1.64	2.17	2.15	49	15	51.20	10.62	42.4
116	27.82	1.24	2.89	1.83	51	10	52.37	13.05	42.1

120 ft WPB, 50.4 1b

124	0	0.02	0.94	3.01	-	-	71.31	-	50.4
135	3.98	0.18	0.82	3.21	73	-	71.32	0.92	50.3
136	7.97	1.94	0.70	4.21	71	50	69.40	4.17	49.7
137	9.97	2.25	0.91	4.15	70	48	68.48	5.18	49.5
138	11.94	2.11	1.36	3.63	69	46	67.68	6.00	49.4
139	12.98	2.16	1.40	3.61	69	44	67.46	6.67	49.4
140	13.96	2.15	1.51	3.50	68	44	67.18	7.01	49.3
141	15.93	2.59	1.65	3.58	67	41	65.88	8.13	49.0
142	19.89	3.24	2.15	3.41	58	32	59.52	9.52	48.8
143	23.89	3.06	3.10	2.97	55	27	55,66	11.06	48.7
144	27.84	2.73	2.70	2.60	5 5	23	54.51	12.76	48.4

¹Height cf towpoint above still water: towpoint located at LCG and 6.38 ft above baselines

TABLE 4

REGULAR WAVE TEST DIRECTORY

	110 ft	: WPB	120 ft	WPB
WAVE LENGTH	WAVE H	HEIGHT	WAVE H	IEIGHT
HULL LENGTH	0.125b	0.250b	0.125b	0.2506
0.75	234	257	328	343
1.0	249	258	329	344
1.25	239	259	330	345
1.5	250	261	331	346
2.0	251	262	332	347
2.5	252	263	333	348
3.0	253	264	334	349
4.0	254	265	335	350
5.0	255	266	336	351
6.0	256	267	337	352

TABLE 5.1 110 FT WPB IN REGULAR WAVES Speed = 10 knots

		FREQUENCY	HEAVE	PITCH	PITCH	
	WAVE LENGTH	OF	AMPLITUDE	AMPLITUDE	AMPLITUDE	C _R
RUN	HULL LENGTH	ENCOUNTER	WAVE	WAVE	WAVE	"m
			AMPLITUDE	SLOPE	AMPLITUDE	
	ft/ft	f _e √b/g	ft/ft	deg/deg	deg/ft	
		3.09 ft Nomi	nal Wave Hei	ght - 12.5%	Beam	
234	0.75	0.402	0.242	0.144	0.660	0.0096
249	1.00	0.333	0.587	0.503	1.74	0.0119
239	1.25	0.286	0.782	0.916	2.53	0.0118
250	1.50	0.251	0.775	1.08	2.49	0.0101
251	2.00	0.208	0.889	1.18	2.04	0.0086
252	2.50	0.179	1.00	1.16	1.61	0.0078
253	3.00	0.158	1.00	1.11	1.28	0.0075
254	4.00	0,128	1.07	1.09	0.947	0.0072
255	5.00	0.108	1.10	1.07	0.743	0.0071
256	6.00	0.093	1.11	1.03	0.596	0.0069
		6.18 ft Nom	inal Wave He	ight - 25 % E	Beam	
2 57	0.75	0.402	0.270	0.190	0.858	0.0149
258	1.00	0.333	0.534	0.411	1.41	0.0194
259	1.25	0.286	0.714	0.693	1.90	0.0212
261	1.50	0.251	0.803	0.972	2.23	0.0189
262	2.00	0.208	0.871	1.17	2.02	0.0121
263	2.50	0.179	0.932	1.12	1.55	0.0097
264	3.00	0.158	0.993	1.10	1.26	0.0084
265	4.00	0.128	1.06	1.09	0.941	0.0075
266	5.00	0.108	1.06	1.07	0.742	0.0073
267	6.00	0.093	1.07	1.02	0.591	0.0071

TABLE 5.2120 FT WPB IN REGULAR WAVESSpeed = 10 knots

		FREQUENCY	HEAVE	PITCH	PITCH	
	WAVE LENGTH	OF	AMPLITUDE	AMPLITUDE	AMPLITUDE	C _R
RUN	HULL LENGTH	ENCOUNTER	WAVE	WAVE	WAVE	''m
			AMPLITUDE	SLOPE	AMPLITUDE	
	ft/ft	f _e √b/g	ft/ft	deg/deg	deg/ft	
		2.65 ft Nomin	nal Wave Hei	ght - 12.5%	Beam	
328	0.75	0.364	0.237	0.132	0.573	.0141
329	1.00	0.299	0.417	0.450	1.47	.0164
330	1.25	0.256	0.536	0.813	2.13	.0172
331	1.50	0,225	0.657	0.990	2.16	.0159
332	2.00	0.185	0.852	1.07	1.74	.0132
333	2.50	0.159	0.949	1.08	1.42	.0118
334	3.00	0.140	1.00	1.07	1.16	.0113
335	4.00	0.113	1.02	1.06	0.863	.0108
336	5.00	0.095	1.07	1.06	0.694	.0106
337	6.00	0.082	1.08	1.07	0.585	.0107
		5.30 ft Nom	inal Wave He	ight - 25 % E	Beam	
343	0.75	0.364	0.160	0.120	0.517	.0205
344	1.00	0.299	0.462	0.447	1.45	.0280
345	1.25	0.256	0.605	0.814	2.19	.0306
346	1.50	0.225	0.642	1.03	2.24	.0248
347	2.00	0.185	0.811	1.06	1.74	.0181
348	2.50	0.159	0.911	1.07	1.40	.0146
349	3.00	0.140	0.961	1.07	1.17	.0128
350	4.00	0.113	0.984	1.04	0.851	.0112
351	5.00	0.095	1.01	1.02	0.668	.0109
352	6.00	0.082	1.01	1.02	0.554	.0112

TABLE 6

WPB HULLS ROUGH WATER RUN DIRECTORY

								Number
								of Wave
cv	Fn⊽			RUI	NS			Encounters
		ſ	ITO IL WE	ν ^B , ^C Δ =	0.2767	-		
		Signii	ficant Wa	ave Heig	nt - 40%	Beam		
• •	1 96		222	222				75
1.5	1.00	221	222	223				75
3.0	3.72	224	225	226	227			73
4.0	4.96	228	229	230	231	232		78
		Signif	ficant Wa	ave Heig	nt - 60 %	Beam		
1.5	1.86	171	190	191	192			75
3.0	3.72	172	193	194	195	199		68
4.0	4.96	173	200	201	202	219	220	77
			120 ft WI	PB, C _Δ =	0.5032			
		Signi	ficant Wa	ave Heig	ht - 40 %	Beam		
1.5	1.68	290	291					70
3.0	3.36	292	293	294				86
4.0	4.48	2 95	296	297	298			106
		Signi	ficant Wa	ave Heig	ht - 60 %	Beam		
1.5	1.68	299	301	302				82
3.0	3.36	311	312	313	314			95
4.0	4.48	315	316	317	319			84

.

TABLE 7.1 WPB ROUGH WATER MEAN AND RMS VALUES

Mean Values

RUN GROUP	WAVE HEIGHT BEAM	сv	TR IM deg	HEAVE	° _{Rm}	C _{Rs}	$^{C}R_{aw}$
			1	110 ft WF	РВ		
221	0.4	1.5	1.98	0.077	0.0380	0.0309	0.0061
224	0.4	3.0	2.84	0.174	0.0715	0.0569	0.0235
228	0.4	4.0	2.82	0.224	0.0898	0.0703	0.0200
171	0.6	1.5	3.33	0.082	0.0387	0.0321	0.0073
172	0.6	3.0	4.29	0.191	0.0745	0.0605	0.0272
173	0.6	4.0	4.47	0.267	0.0897	0.0738	0.0236
			1	120 ft WI	PB		
290	0.4	1.5	2.76	0.064	0.0588	0.0506	0.0125
292	0.4	3.0	3.31	0.139	0.1074	0.0832	0.0161
295	0.4	4.0	3.54	0.193	0.1353	0.1066	0.0299
299	0.6	1.5	3.03	0.065	0.0611	0.0529	0.0148
311	0.6	3.0	3.46	0.160	0.1143	0.0927	0.0256
315	0.6	ū.0	3.82	0.204	0.1460	0.1189	0.0422

RMS Values

RUN	WAVE HEIGHT	Cur	PITCH	HEAVE		ACCE	LERATIO	N, g	
GROUP	BEAM	v	deg	BEAM	#1	#2	#3	#4	#5
			1	110 ft WI	РВ				
221	0.4	1.5	3.01	0.111	0.276	0.331	0.372	0.521	0.753
224	0.4	3.0	2.66	0.132	0.593	0.694	0.732	0.949	1.297
228	0.4	4.0	2.07	0.156	0.324	0.396	0.954	0.577	0.740
172	0.6	3.0	3.64	0.197	0.793	0.914	0.878	1.115	1.391
173	0.6	4.0	3.27	0.193	1.156	1.302	1.230	1.492	1.867
				120 ft WI	PB				
290	0.4	1.5	2.76	0.106	0.259		0.359	0.474	0.597
292	0.4	3.0	1.96	0.094	0.394	0.479	0.569	0.740	0.892
295	0.4	4.0	1.92	0.098	0.570	0.713	0.774	0.968	1.130
299	0.6	1.5	3.46	0.156	0.308	0.360	0.425	0.555	0.676
311	0.6	3.0	2.76	0.174	0.608	0.682	0.731	0.912	1.111
315	0.6	4 .0	2.66	0.167	0.842	0.959	0.959	1.174	1.412

TABLE 7.2 WPB ROUGH WATER AVERAGE CRESTS AND TROUGHS

RUN	WAVE HEIGHT	C.,	PITCH	HEAVE		ACC	ELERATI	ON, g	
GROUP	BEAM	- V	deg	BEAM	#1	#2	#3	#4	#5
				CRESTS					
				110 ft W1	PB				
221 224 228 171 172 173	0.4 0.4 0.6 0.6 0.6	1.5 3.0 4.0 1.5 3.0 4.0	2.77 3.16 2.84 4.16 4.12 3.13	0.138 0.145 0.124 0.176 0.220 0.208	0.43 0.93 1.19 0.50 1.26 1.67	0.47 1.05 1.13 0.62 1.43 1.61	0.61 1.33 1.40 0.78 1.61 1.82	0.77 1.54 1.20 0.97 1.74 1.61	1.25 2.18 1.80 1.34 2.40 2.27
				120 ft W	PB				
290 292 295 299 311 315	0.4 0.4 0.6 0.6 0.6	1.5 3.0 4.0 1.5 3.0 4.0	3.23 2.15 2.26 4.02 2.47 2.96	0.138 0.115 0.105 0.175 0.202 0.202	0.51 0.72 1.08 0.56 1.46 1.28	0.88 1.27 0.71 1.29 1.73	0.64 1.10 1.26 0.85 1.42 1.71	0.81 1.35 1.38 1.12 1.76 1.88	1.17 1.69 1.77 1.53 2.28 2.36
				TROUGHS					
				110 ft W	PB				
221 224 228 171 172 173	0.4 0.4 0.6 0.6 0.6	1.5 3.0 4.0 1.5 3.0 4.0	-2.70 -2.01 -1.17 -4.19 -1.93 -1.12	-0.125 -0.138 -0.149 -0.158 -0.218 -0.232	-0.43 -0.40 -0.57 -0.41 -0.49 -0.48	-0.34 -0.34 -0.49 -0.35 -0.40 -0.48	-0.51 -0.27 -0.48 -0.37 -0.28 -0.32	-0.59 -0.57 -0.76 -0.56 -0.71 -0.79	-0.87 -0.98 -1.15 -0.90 -1.00 -0.95
				120 ft W	PB				
290 292 295 299 311 315	0.4 0.4 0.6 0.6 0.6	1.5 3.0 4.0 1.5 3.0 4.0	-3.40 -2.78 -2.64 -4.23 -3.51 -2.81	-0.127 -0.107 -0.112 -0.159 -0.194 -0.206	-0.60 -0.68 -0.68 -0.61 -0.49 -0.85	-0.65 -0.54 -0.47 -0.48 -0.59	-0.60 -0.67 -0.70 -0.64 -0.61 -0.52	-0.60 -0.65 -0.70 -0.71 -0.63 -0.69	-0.97 -1.03 -0.98 -0.96 -0.98 -1.02

TABLE 7.3WPB ROUGH WATER AVERAGE 1/3 LARGEST CRESTS AND TROUGHS

RUN	WAVE HEIGHT	Cu	PITCH	HEAVE		ACCE	ELERATIO	DN, g	
GROUP	BEAM	- V	deg	BEAM	#1	#2	#3	#4	#5
				CRESTS					
			1	10 ft WI	PB				
221 224 228 171 172 173	0.4 0.4 0.6 0.6 0.6	1.5 3.0 4.0 1.5 3.0 4.0	6.17 5.56 5.16 7.66 7.94 6.34	0.241 0.285 0.238 0.345 0.395 0.362	0.69 1.94 2.95 0.84 2.98 4.20	0.85 2.15 2.88 1.22 3.14 4.28	1.17 2.59 3.21 1.48 3.28 4.33	1.67 3.35 3.61 2.02 4.25 5.04	2.58 4.80 5.07 2.60 5.52 6.43
				120 ft W	PB				
290 292 295 299 311 315	0.4 0.4 0.6 0.6 0.6	1.5 3.0 4.0 1.5 3.0 4.0	6.38 3.59 4.14 7.04 5.01 4.94	0.241 0.206 0.210 0.346 0.378 0.335	0.70 1.21 2.05 0.77 3.11 3.01	1.55 2.45 1.18 2.38 3.48	1.09 1.95 2.68 1.62 2.80 3.59	1.50 2.58 3.16 2.23 3.69 4.30	2.08 3.25 3.87 2.85 4.76 5.29
				TROUGHS					
				110 ft W	PB				
221 224 228 171 172 173	0.4 0.4 0.6 0.6 0.6	1.5 3.0 4.0 1.5 3.0 4.0	-5.20 -4.81 -4.31 -7.32 -6.22 -4.99	-0.136 -0.143 -0.154 -0.186 -0.228 -0.223	-0.69 -0.91 -1.09 -0.76 -1.02 -1.20	-0.73 -0.97 -1.11 -0.85 -1.13 -1.24	-0.83 -0.95 -1.07 -0.85 -1.04 -1.10	-1.00 -1.12 -1.27 -1.05 -1.28 -1.53	-1.43 -1.62 -1.84 -1.41 -1.69 -1.90
				120 ft W	IPB				
290 292 295 299 311 315	0.4 0.4 0.6 0.6 0.6	1.5 3.0 4.0 1.5 3.0 4.0	-5.40 -4.56 -4.26 -7.00 -5.53 -5.49	-0.203 -0.170 -0.216 -0.282 -0.301 -0.298	-0.85 -1.01 -1.05 -0.93 -1.41 -1.78	-1.02 -1.06 -0.90 -1.07 -1.40	-0.91 -1.03 -1.08 -0.97 -1.09 -1.28	-1.02 -1.09 -1.18 -1.14 -1.16 -1.41	-1.41 -1.44 -1.51 -1.45 -1.52 -1.89

.

•

TABLE 7.4WPB ROUGH WATER AVERAGE 1/10 LARGEST CRESTS AND TROUGHS

RUN	WAVE HEIGHT	Cv	PITCH	HEAVE		ACCE	ELERATIO	ON, g	
GROUP	BEAM	•	deg	BEAM	#1	#2	#3	#4	#5
				CRESTS					
			1	10 ft W	РВ				
221 224 228 171 172 173	0.4 0.4 0.6 0.6 0.6	1.5 3.0 4.0 1.5 3.0 4.0	8.63 7.40 6.67 9.54 11.63 8.68	0.345 0.420 0.337 0.464 0.603 0.446	0.99 4.15 5.54 1.38 6.27 7.70	1.45 4.41 5.38 1.89 6.45 8.37	2.17 4.73 5.62 2.27 6.22 7.97	3.24 5.48 6.14 3.47 7.63 9.06	4.69 8.00 8.59 4.45 8.94 11.15
				120 ft W	PB				
290 292 295 299 311 315	0.4 0.4 0.6 0.6 0.6	1.5 3.0 4.0 1.5 3.0 4.0	9.12 4.52 5.74 10.12 6.82 7.15	0.365 0.285 0.301 0.482 0.539 0.453	0.84 2.00 3.71 1.00 6.00 6.01	2.60 4.37 2.00 3.95 5.85	1.86 2.96 4.23 2.76 4.40 5.36	2.50 3.99 5.10 3.70 5.74 6.44	3.40 4.94 6.05 4.63 7.26 7.88
				TROUGHS					
				110 ft W	PB				
221 224 228 171 172 173	0.4 0.4 0.6 0.6 0.6	1.5 3.0 4.0 1.5 3.0 4.0	-6.52 -5.88 -5.29 -9.13 -7.88 -6.99	-0.262 -0.272 -0.281 -0.344 -0.448 -0.413	-0.88 -1.14 -1.23 -0.94 -1.20 -1.40	-0.94 -1.14 -1.25 -1.03 -1.33 -1.46	-0.98 -1.07 -1.21 -0.99 -1.24 -1.28	-1.14 -1.21 -1.58 -1.17 -1.61 -2.25	-1.65 -1.88 -2.52 -1.56 -2.26 -2.56
				120 ft W	PB				
290 292 295 299 311 315	0.4 0.4 0.6 0.6	1.5 3.0 4.0 1.5 3.0	-6.72 -5.67 -4.79 -8.63 -6.32 -6.15	-0.267 -0.219 -0.203 -0.376 -0.372 -0.362	-1.01 -1.30 -1.32 -1.19 -2.03 -2.57	-1.15 -1.23 -1.11 -1.22 -2.06	-1.06 -1.14 -1.19 -1.10 -1.20 -1.73	-1.22 -1.20 -1.38 -1.26 -1.28 -1.79	-1.64 -1.55 -1.76 -1.59 -1.64 -2.50

TABLE 8.1 ACCELERATION VARIANCE SPECTRAL DENSITY 110 ft WPB Significant Wave Height 40% Beam $C_V = 1.5$

Runs 221, 222, 223

Accelerometer	#5	#4	#3	#2	#1			
Frequency Hz	Spectral Estimates g²/Hz							
0.00	0.2803E+00	0.1603E+00	0.9355E-01	0.8029E-01	0.6075E-01			
0.25	0.6149E+00	0.3366E+00	0.1844E+00	0.1540E+00	0.1157E+00			
0.49	0.6254E+00	0.3250E+00	0.1635E+00	0.1310E+00	0.9712E-01			
0.74	0.2400E+00	0.1147E+00	0.4802E-01	0.3338E-01	0.2081E-01			
0.98	0.1210E+00	0.5618E-01	0.2122E-01	0.1216E-01	0.3518E-02			
1.23	0.8626E-01	0.4010E-01	0.1555E-01	0.9122E-02	0.2779E-02			
1.47	0.6036E-01	0.2805E-01	0.1111E-01	0.6758E-02	0.2072E-02			
1.72	0.4585E-01	0.2114E-01	0.8461E-02	0.5199E-02	0.1390E-02			
1.97	0.3597E-01	0.1672E-01	0.7011E-02	0.4498E-02	0.1280E-02			
2.21	0.2734E-01	0.1265E-01	0.5265E-02	0.3436E-02	0.8365E-03			
2.46	0.2265E-01	0.1050E-01	0.4433E-02	0.3023E-02	0.7895E-03			
2.70	0.1735E-01	0.7926E-02	0.3319E-02	0.2357E-02	0.4906E-03			
2.95	0.1444E-01	0.6671E-02	0.2819E-02	0.2115E-02	0.4617E-03			
3.19	0.1114E-01	0.5099E-02	0.2152E-02	0.1611E-02	0.2786E-03			
3.44	0.9687E-02	0.4508E-02	0.1941E-02	0.1348E-02	0.3042E-03			
3.68	0.7686E-02	0.3534E-02	0.1493E-02	0.9816E-03	0.1845E-03			
3.93	0.6699E-02	0.3132E-02	0.1361E-02	0.9236E-03	0.2101E-03			
4.17	0.5265E-02	0.2441E-02	0.1068E-02	0.7076E-03	0.1277E-03			
4.42	0.4722E-02	0.2218E-02	0.1008E-02	0.6856E-03	0.1547E-03			
4.67	0.3824E-02	0.1730E-02	0.7937E-03	0.5304E-03	0.9358E-04			
4.91	0.3450E-02	0.1600E-02	0.7558E-03	0.5171E-03	0.1194E-03			
5.16	0.2689E-02	0.1252E-02	0.5974E-03	0.3943E-03	0.7332E-04			
5.40	0.2435E-02	0.1171E-02	0.5768E-03	0.3884E-03	0.9797E-04			
5.65	0.1930E-02	0.9025E-03	0.4584E-03	0.2918E-03	0.6278E-04			
5.89	0.1771E-02	0.8778E-03	0.4565E-03	0.2804E-03	0.8361E-04			
6.14	0.1348E-02	0.6434E-03	0.3435E-03	0.1945E-03	0.4620E-04			
6.38	0.1222E-02	0.5985E-03	0.3323E-03	0.1932E-03	0.5972E-04			
6.63	0.9150E-03	0.4155E-03	0.2514E-03	0.1323E-03	0.3763E-04			
6.88	0.8682E-03	0.4053E-03	0.2446E-03	0.1301E-03	0.4787E-04			
7.12	0.6654E-03	0.2637E-03	0.1751E-03	0.7803E-04	0.2553E-04			
7.37	0.5860E-03	0.2790E-03	0.1681E-03	0.7638E-04	0.2989E-04			

TABLE 8.2 ACCELERATION VARIANCE SPECTRAL DENSITY 110 ft WPB Significant Wave Height 40% Beam $C_V = 3.0$

Runs 224, 225, 226, 227

.

Accelerometer	#5	#4	#3	#2	#1		
Frequency Hz	Spectral Estimates g²/Hz						
0.00	0.3506E+00	0.2266E+00	0.1517E+00	0.1386E+00	0.1013E+00		
0.25	0.1160E+01	0.7190E+00	0.4578E+00	0.4066E+00	0.2964E+00		
0.49	0.1622E+01	0.9688E+00	0.5870E+00	0.5067E+00	0.3611E+00		
0.74	0.9718E+00	0.5366E+00	0.2921E+00	0.2385E+00	0.1578E+00		
0.98	0.5610E+00	0.2858E+00	0.1426E+00	0.1126E+00	0.7237E-01		
1.23	0.4074E+00	0.2057E+00	0.1051E+00	0.8524E-01	0.5805E-01		
1.47	0.3016E+00	0.1499E+00	0.7848E-01	0.6748E-01	0.5086E-01		
1.72	0.2332E+00	0.1134E+00	0.6005E-01	0.5490E-01	0.4415E-01		
1.97	0.2035E+00	0.9843E-01	0.5308E-01	0.5091E-01	0.4192E-01		
2.21	0.1509E+00	0.7180E-01	0.4172E-01	0.4363E-01	0.3796E-01		
2.46	0.1304E+00	0.6142E-01	0.3663E-01	0.4013E-01	0.3459E-01		
2.70	0.1133E+00	0.5192E-01	0.3039E-01	0.3531E-01	0.3069E-01		
2.95	0.9423E-01	0.4334E-01	0.2612E-01	0.3277E-01	0.2736E-01		
3.19	0.7899E-01	0.3661E-01	0.2285E-01	0.3069E-01	0.2404E-01		
3.44	0.6825E-01	0.3123E-01	0.1948E-01	0.2608E-01	0.2124E-01		
3.68	0.5896E-01	0.2615E-01	0.1622E-01	0.2119E-01	0.1856E-01		
3.93	0.5331E-01	0.2335E-01	0.1458E-01	0.1887E-01	0.1673E-01		
4.17	0.4403E-01	0.1863E-01	0.1192E-01	0.1603E-01	0.1459E-01		
4.42	0.3947E-01	0.1646 E-0 1	0.1040E-01	0.1367E-01	0.1277E-01		
4.67	0.3240E-01	0.1315E~01	0.8551E-02	0.1140E-01	0.1095E-01		
4.91	0.2929E-01	0.1195E-01	0.7790E-02	0.1027E-01	0.9678E-02		
5.16	0.2560E-01	0.1013E-01	0.6576E-02	0.8726E-02	0.8209E-02		
5.40	0.2168E-01	0.8475E-02	0.5720E-02	0.7484E-02	0.7065E-02		
5.65	0.1836E-01	0.7162E-02	0.5100E-02	0.6451E-02	0.5987E-02		
5.89	0.1662E-01	0.6624E-02	0.4844E-02	0.5763E-02	0.5251E-02		
6.14	0.1374E-01	0 .5269E-0 2	0.4086E-02	0.4844E-02	0.4484E-02		
6.38	0.1221E-01	0.4720E-02	0.3798E-02	0.4263E-02	0.3995E-02		
6.63	0.9943E-02	0.3730E-02	0.3348E-02	0.3625E-02	0.3456E-02		
6.88	0.9071E-02	0.3472E-02	0.3311E-02	0.3450E-02	0.3034E-02		
7.12	0.7574E-02	0.2743E-02	0.2987E-02	0.2977E-02	0.2411E-02		
7.37	0.6928E-02	0.2553E-02	0.2858E-02	0.2694E-02	0.1852E-02		
TABLE 8.3 ACCELERATION VARIANCE SPECTRAL DENSITY 110 ft WPB Significant Wave Height 40% Beam C_V = 4.0

Runs 228, 229, 230, 231, 232

Accelerometer	#5	#4	#3	#2	#1		
Frequency Hz	Spectral Estimates g²/Hz						
0.00	0.2578E+00	0.1676E+00	0.1107E+00	0.9509E-01	0.6842E-01		
0.25	0.1245E+01	0.7995E+00	0.5277E+00	0.4576E+00	0.3376E+00		
0.49	0.1991E+01	0.1267E+01	0.8444E+00	0.7460E+00	0.5798E+00		
0.74	0.1311E+01	0.7695E+00	0.4868E+00	0.4330E+00	0.3596E+00		
0.98	0.1046E+01	0.5548E+00	0.3171E+00	0.2717E+00	0.2228E+00		
1.23	0.8762E+00	0.4374E+00	0.2398E+00	0.2101E+00	0.1883E+00		
1.47	0.6398E+00	0.3105E+00	0.1753E+00	0.1654E+00	0.1643E+00		
1.72	0.4886E+00	0.2470E+00	0.1536E+00	0.1526E+00	0.1489E+00		
1.97	0.3584E+00	0.1798E+00	0.1165E+00	0.1227E+00	0.1224E+00		
2.21	0.3239E+00	0.1564E+00	0.1012E+00	0.1117E+00	0.1118E+00		
2.46	0.2863E+00	0.1374E+00	0.8659E-01	0.9591E-01	0.8858E-01		
2.70	0.2174E+00	0.1034E+00	0.6912E-01	0.8259E-01	0.7765E-01		
2.95	0.1988E+00	0.9154E-01	0.6033E-01	0.7471E-01	0.7026E-01		
3.19	0.1925E+00	0.8443E-01	0.5224E-01	0.6567E-01	0.6064E-01		
3.44	0.1654E+00	0.7221E-01	0.4500E-01	0.5822E-01	0.5155E-01		
3.68	0.1294E+00	0.5580E-01	0.369 3E-0 1	0.5003E-01	0.4628E-01		
3.93	0.1139E+00	0.4611E-01	0.2972E-01	0.4096E-01	0.4132E-01		
4.17	0.1127E+00	0.4502E-01	0.2827E-01	0.3726E-01	0.3763E-01		
4.42	0.1073E+00	0.4248E-01	0.2537E-01	0.3193E-01	0.3207E-01		
4.67	0.9289E-01	0.3477E-01	0.1999E-01	0.2551E-01	0.2702E-01		
4.91	0.7876E-01	0.2879E-01	0.1829E-01	0.2447E-01	0.2614E-01		
5.16	0.6669E-01	0.2492E-01	0.1684E-01	0.2206E-01	0.2240E-01		
5.40	0.6349E-01	0.2347E-01	0.1519E-01	0.1910E-01	0.1928E-01		
5.65	0.5171E-01	0.1810E-01	0.1293E-01	0.1702E-01	0.1750E-01		
5.89	0.4103E-01	0.1429E-01	0.1235E-01	0.1562E-01	0.1620E-01		
6.14	0.3323E-01	0.1184E-01	0.1202E-01	0.1436E-01	0.1465E-01		
6.38	0.3241E-01	0.1094E-01	0.1018E-01	0.1185E-01	0.1260E-01		
6.63	0.3099E-01	0.1008E-01	0.9299E-02	0.1056E-01	0.1135E-01		
6.88	0.2822E-01	0 .8809E- 02	0.8813E-02	0 .9756E-0 2	0.1016E-01		
7.12	0.2430E-01	0.7504E-02	0.8661E-02	0.8776E-02	0.8604E-02		
7.37	0.2391E-01	0.6888E-02	0.7228E-02	0.6801E-02	0.6928E-02		

TABLE 8.4 ACCELERATION VARIANCE SPECTRAL DENSITY 110 ft WPB Significant Wave Height 60% Beam $C_V = 1.5$

Runs 171, 190, 191, 192

Accelerometer	#5	#4	#3	#2	#1		
Frequency Hz	Spectral Estimates g²/Hz						
0.00	0.3522E+00	0.2356E+00	0.1407E+00	0.1409E+00	0.1019E+00		
0.25	0.6639E+00	0.4474E+00	0.2496E+00	0.2408E+00	0.1720E+00		
0.49	0.6217E+00	0.4120E+00	0.2127E+00	0.1957E+00	0.1384E+00		
0.74	0.2300E+00	0.1423E+00	0.6255E-01	0.5037E-01	0.3252E-01		
0.98	0.1212E+00	0.7302E-01	0.2717E-01	0.1793E-01	0.7250E-02		
1.23	0.8669E-01	0.5364E-01	0.1979E-01	0.1298E-01	0.5080E-02		
1.47	0.5777E-01	0.3764E-01	0.1438E-01	0.1015E-01	0.4134E-02		
1.72	0.4447E-01	0.2954E-01	0.1130E-01	0.8341E-02	0.3302E-02		
1.97	0.3595E-01	0.2426E-01	0.9504E-02	0.7447E-02	0.3205E-02		
2.21	0.2631E-01	0.1785E-01	0.6871E-02	0.5534E-02	0.2234E-02		
2.46	0.1919E-01	0.1301E-01	0.4961E-02	0.4290E-02	0.1655E-02		
2.70	0.1392E-01	0.9353E-02	0.3419E-02	0.3295E-02	0.9866E-03		
2.95	0.1202E-01	0.7667E-02	0.2824E-02	0.3660E-02	0.8185E-03		
3.19	0.9822E-02	0.6086E-02	0.2210E-02	0.3665E-02	0.6917E-03		
3.44	0.7594E-02	0.4957E-02	0.1911E-02	0.3414E-02	0 .8896E-03		
3.68	0.5146E-02	0.3566E-02	0.1390E-02	0.2687E-02	0.7131E-03		
3.93	0.4288E-02	0.3142E-02	0.1272E-02	0.1800E-02	0.5906E-03		
4.17	0.34128-02	0.2563E-02	0.1044E-02	0 .9952E- 03	0.31 47E-03		
4.42	0.3092E-02	0.2274E-02	0.9873E-03	0.8566E-03	0.2465E-03		
4.67	0.2439E-02	0.1709E-02	0.7863E-03	0.6975E-03	0.1027E-03		
4.91	0.2144E-02	0.1533E-02	0.7269E-03	0.6236E-03	0.1212E-03		
5.16	0.1582E-02	0.1180E-02	0.5298E-03	0.3835E-03	0.6792E-04		
5.40	0.1382E-02	0.1153E-02	0.5168E-03	0.3397E-03	0.1035E-03		
5.65	0.9992E-03	0.9121E-03	0.3978E-03	0.2932E-03	0.4766E-04		
5.89	0.9307E-03	0.8443E-03	0.4072E-03	0.3727E-03	0.7471E-04		
6.14	0.6818E-03	0.570 3E- 03	0.2915E-03	0.2832E-03	0.2787E-04		
6.38	0.6624E-03	0.5531E-03	0.2865E-03	0.2802E-03	0.5300E-04		
6.63	0.4948E-03	0.4245E-03	0.2726E-03	0.2388E-03	0.2504E-04		
6.88	0.4363E-03	0.4158E-03	0.3688E-03	0.2660E-03	0.5895E-04		
7.12	0.2795E-03	0.2590E-03	0.3312E-03	0.1696E-03	0.3866E-04		
7.37	0.2480E-03	0.2523E-03	0.3304E-03	0.1681E-03	0.5575E-04		

TABLE 8.5 ACCELERATION VARIANCE SPECTRAL DENSITY 110 ft WPB Significant Wave Height 60% Beam $C_V = 3.0$

Runs 172, 193, 194, 195, 199

Accelerometer	#5	#4	#3	#2	#1			
Frequency Hz		Spectral Estimates g²/Hz						
0.00	0.5525E+00	0.4334E+00	0.2935E+00	0.3151E+00	0.2258E+00			
0.25	0.1332E+01	0.1012E+01	0.6637E+00	0.7087E+0J	0.5123E+00			
0.49	0.1568E+01	0.1116E+01	0.6921E+00	0.7312E+00	0.5447E+00			
0.74	0.9357E+00	C.5811E+00	0.3115E+00	0.3148E+00	0.2474E+00			
0.98	0.6225E+00	0.3745E+00	0.1914E+00	0.1882E+00	0.1410E+00			
1.23	0.4504E+00	0.2827E+00	0.1539E+00	0.1581E+00	0.1144E+00			
1.47	0.3657E+00	0.2255E+00	0.1221E+00	0.1276E+00	0.9451E-01			
1.72	0.3057E+00	0.1837E+00	0.1007E+00	0.1089E+00	0.8494E-01			
1.97	0.2631E+00	0.1594E+00	0.9076E-01	0.1030E+00	0.8108E-01			
2.21	0.2133E+00	0.1292E+00	0.7500E-01	0.8971E-01	0.7046E-01			
2.46	0.1875E+00	0.1109E+00	0.6425E-01	0.8013E-01	0.6446E-01			
2.70	0.1692E+00	0.9527E-01	0.5380E-01	0.6919E-01	0.5740E-01			
2.95	0.1420E+00	0.7978E-01	0.4637E-01	0.6309E-01	0.5189E-01			
3.19	0.1204E+00	0.6883E-01	0.4168E-01	0.5959E-01	0.4517E-01			
3.44	0.1014E+00	0.5917E-01	0.3734E-01	0.5572E-01	0.4123E-01			
3.68	0.8343E-01	0.4892E-01	0.3163E-01	0.4813E-01	0 .3581E-01			
3.93	0.7051E-01	0.4302E-01	0.2878E-01	0.4362E-01	0.3289E-01			
4.17	0.6181E-01	0.3859E-01	0.2691E-01	0.4032E-01	0.3034E-01			
4.42	0.5625E-01	0.3436E-01	0.2391E-01	0.3641E-01	0.2819E-01			
4.67	0.5137E-01	0.3034E-01	0.2074E-01	0.3209E-01	0.2518E-01			
4.91	0.4487E-01	0.2718E-01	0.1953E-01	0.2944E-01	0.231 9E-01			
5.16	0.3919E-01	0.2317E-01	0.1696E-01	0.2508E-01	0.2020E-01			
5.40	0.4000E-01	0.2293E-01	0.1580E-01	0.2231E-01	0.1840E-01			
5.65	0.3675E-01	0.2019E-01	0.1350E-01	0.1867E-01	0.:605E-01			
5.89	0.3201E-01	0.1810E-01	0.1326E-01	0.1721E-01	0.1424E-01			
6.14	0.2535E-01	0.1437E-01	0.1154E-01	0.1495E-01	0.1245E-01			
6.38	0.2498E-01	0.1397E-01	0.1056E-01	0.1321E-01	0.1135E-01			
6.63	0.2204E-01	0.1197E-01	0.9019E-02	0.1085E-01	0.9905E-02			
6.88	0.1891E-01	0.1061E-01	0.9227E-02	0.1007E-01	0.9215E-02			
7.12	0.1580E-01	0.8914E-02	0.9274E-02	0.9165E-02	0.7946E-02			
7.37	0.1603E-01	0.8845E-02	0.8480E-02	0.7554E-02	0.6610E-02			

TABLE 8.6 ACCELERATION VARIANCE SPECTRAL DENSITY 110 ft WPB Significant Wave Height 60% Beam $C_V = 4.0$

Runs 173, 200, 201, 202, 219, 220

Accelerometer	#5	#4	#3	#2	#1				
Frequency Hz	Spectral Estimates								
			5						
0.00	0.4302E+00	0.3387E+00	0.2489E+00	0.2623E+00	0.1975E+00				
0.25	0.1423E+01	0.1158E+01	0.8363E+00	0.8848E+00	0.6559E+00				
0.49	0.2045E+01	0.1622E+01	0.1151E+01	0.1225E+0ì	0.9272E+00				
0.74	0.1500E+01	0.1042E+01	0.6674E+00	0.6934E+00	0.5341E+00				
0.98	0.1213E+01	0.7565E+00	0.4444E+00	0.4503E+00	0.3626E+00				
1.23	0.9275E+00	0.5785E+00	0.3679E+00	0.3971E+00	0.3519E+00				
1.47	0.7946E+00	0.4784E+00	0.3045E+00	0.3403E+00	0.3081E+00				
1.72	0.6750E+00	0.3953E+00	0.2539E+00	0.2939E+00	0.2642E+00				
1.97	0.5933E+00	0.3352E+00	0.2141E+00	0.2576E+00	0.2324E+00				
2.21	0.5447E+CO	0.2989E+00	0.1887E+00	0.2323E+00	0.2043E+00				
2.46	0.4948E+00	0.2725E+00	0.1716E+00	0.2157E+00	0.1836E+00				
2.70	0.4412E+00	0.2399E+00	0.1505E+00	0.1964E+00	0.1609E+00				
2.95	0.4200E+00	0.2185E+00	0.1298E+00	0.1736E+00	0.1379E+00				
3.19	0.3767E+00	0.1940E+00	0.1165E+00	0.1634E+00	0.1249E+00				
3.44	0.3158E+00	0.1609E+00	0.9909E-01	0.1466E+00	0.1137E+00				
3.68	0.2938E+00	0.1459E+00	0.8593E-01	0.1273E+00	0.9668E-01				
3.93	0.2668E+00	0.1364E+00	0.8152E-01	0.1183E+00	0.8665E-01				
4.17	0.2242E+00	0.1153E+00	0.7240E-01	0.1067E+00	0.7930E-01				
4.42	0.1937E+00	0.9951E-01	0.6473E-01	0.9518E-01	0.6926E-01				
4.67	0.1658E+00	0.8451E-01	0.5672E-01	0.8530E-01	0.6269E-01				
4.91	0.1461E+00	0.7623E-01	0.5344E-01	0.7857E-01	0.5616E-01				
5.16	0.1279E+00	0.6712E-01	0.4812E-01	0.6906E-01	0.4856E-01				
5.40	0.1141E+00	0.6045E-01	0.4489E-01	0.6197E-01	0.4221E-01				
5.65	0.9716E-01	0.5100E-01	0.3970E-01	0.5385E-01	0.3708E-01				
5.89	0.8567E-01	0.4542E-01	0.3673E-01	0.4759E-01	0.3 0E-01				
6.14	0.7897E-01	0.4056E-01	0.3335E-01	0.4162E-01	0.2961E-01				
6.38	0.6957E-01	0.3595E-01	0.3041E-01	0.3642E-01	0.2535E-01				
6.63	0.6223E-01	0.3112E-01	0.2743E-01	0.3177E-01	0.2190E-01				
6.88	0.5550E-01	0.2726E-01	0.2600E-01	0.2823E-01	0.1869E-01				
7.12	0.4763E-01	0.2274E-01	0.2367E-01	0.2334E-01	0.1516E-01				
7.37	0.4373E-01	0.2077E-01	0.2205E-01	0.1962E-01	0.1197E-01				

TABLE 9.1 ACCELERATION VARIANCE SPECTRAL DENSITY 120 ft WPB Significant Wave Height 40% Beam $C_V = 1.5$

•

-

.

Runs 290, 291

Accelerometer	#5	#4	#3	#2	#1		
Frequency Hz	Spectral Estimates g²/Hz						
0.00	0.1720E+00	0.1302E+00	0.8107E-01		0.4850E-01		
0.25	0.3902E+00	0.2891E+00	0.1715E+00		0.1021E+00		
0.49	0.3801E+00	0.2750E+00	0.1535E+00		0.8855E-01		
0.74	0.1306E+00	0.9025E-01	0.4415E-01		0.1638E-01		
0.98	0.6039E-01	0.4075E-01	0.1860E-01		0.5572E-03		
1.23	0.4286E-01	0.2880E-01	0.1331E-01		0.6561E-03		
1.47	0.3344E-01	0.2222E-01	0.1043E-01		0.5326E-03		
1.72	0.2374E-01	0.1556E-01	0.7175E-02		0.1849E-03		
1.97	0.1685E-01	0.1104E-01	0.5228E→02		0.3113E-03		
2.21	0.1199E-01	0.7827E-02	0.3732E-02		0.7927E-04		
2.46	0.9642E-02	0.6445E-02	0.3142E-02		0.2118E-03		
2.70	0.7165E-02	0. 4667E- 02	0.2264E-02		0.4575E-04		
2.95	0.6042E-02	0.4005E-02	0.1981E-02		0.1495E-03		
3.19	0.4318E-02	0.2844E-02	0.1410E-02		0.3443E-04		
3.44	0.3531E-02	0.2356E-02	0.1216E-02		0.1119E-03		
3.68	0.2483E-02	0.1590E-02	0.8136E-03		0.2494E-04		
3.93	0.2109E-02	0.1393E-02	0.7476E-03		0.8747E-04		
4.17	0.1456E-02	0.9125E-03	0.4990E-03		0.1589E-04		
4.42	0.1280E-02	0.8562E-03	0.4797E-03		0.5860E-04		
4.67	0.8636E-03	0.5422E-03	0.3112E-03		0.7447E-05		
4.91	0.8385E-03	0.5633E-03	0.3269E-03		0.4252E-04		
5.16	0.6012E-03	0.3779E-03	0.2256E-03		-0.5044E-05		
5.40	0.6121E-03	0.4214E-03	0.2545E-03		0.2750E-04		
5.65	0.4159E-03	0.2495E-03	0.1606E-03		-0.2139E-05		
5.89	0.4209E-03	0.2849E-03	0.1765E-03		0.3019E-04		
6.14	0.2668E-03	0.1585E-03	0.1041E-03		0.2177E-05		
6.38	0.2760E-03	0.2047E-03	0.1294E-03		0.2065E-04		
6.63	0.2023E-03	0.1111E-03	0.8128E-04		0.6948E-06		
6.88	0.2432E-03	0.1531E-03	0.1097E-03		0.3338E-04		
7.12	0.1892E-03	0.5203E-04	0.6390E-04		0.3533E-04		
7.37	0.1616E-03	0.9440E-04	0.7137E-04		0.5713E-04		

TABLE 9.2 ACCELERATION VARIANCE SPECTRAL DENSITY 120 ft WPB Significant Wave Height 40% Beam $C_V = 3.0$

Runs 292, 293, 294

Accelerometer	#5	#4	#3	#2	#1			
Frequency Hz	Spectral Estimates g²/Hz							
0.00	0.9449E-01	0.7761E-01	0.5679E-01	0.5279E-01	0.4219E-01			
0.25	0.4365E+00	0.3453E+00	0.2332E+00	0.1973E+00	0.1516E+00			
0.49	0.7857E+00	0.6030E+00	0.3801E+00	0.2934E+00	0.2138E+00			
0.74	0.5385E+00	0.3969E+00	0.2272E+00	0.1502E+00	0.9632E-01			
0.98	0.2768E+00	0.1984E+00	0.1050E+00	0.5813E-01	0.2721E-01			
1.23	0.1991E+00	0.1411E+00	0.7395E-01	0.3940E-01	0.1678E-01			
1.47	0.1563E+00	0.1087E+00	0.5613E-01	0.2959E-01	0.1374E-01			
1.72	0.1128E+00	0.7744E-01	0.4018E-01	0.2196E-01	0.1128E-01			
1.97	0.9443E-01	0.6376E-01	0.3225E-01	0.1711E-01	0.9575E-02			
2.21	0.7424E-01	0.4918E-01	0.2406E-01	0.1257E-01	0.8020E-02			
2.46	0.5568E-01	0.3628E-01	0.1738E-01	0.9209E-02	0.7034E-02			
2.70	0.4534E-01	0.2922E-01	0.1344E-01	0.6735E-02	0.5592E-02			
2.95	0.3733E-01	0.2407E-01	0.1109E-01	0.5813E-02	0.5026E-02			
3.19	0.3085E-01	0.1973E-01	0.8893E-02	0. 4325E- 02	0.3884E-02			
3.44	0.2444E-01	0.1575E-01	0.7310E-02	0.3844E-02	0.3359E-02			
3.68	0.1835E-01	0.1173E-01	0.5410E-02	0.2770E-02	0.2487E-02			
3.93	0.1552E-01	0.1006E-01	0.4756E-02	0.2523E-02	0.2060E-02			
4.17	0.1168E-01	0.7679E-02	0.3758E-02	0.2123E-02	0.1513E-02			
4.42	0.9315E-02	0.6256E-02	0.3211E-02	0.1948E-02	0.11 79E-0 2			
4.67	0.6994E-02	0.4711E-02	0.2504E-02	0.1624E-02	0.8090E-03			
4.91	0.5507E-02	0.3871E-02	0.2200E-02	0.1521E-02	0.6468E-03			
5.16	0.4296E-02	0.3050E-02	0.1817E-02	0.1368E-02	0.4032E-03			
5.40	0.3357E-02	0.2500E-02	0.1590E-02	0.1368E-02	0.3249E-03			
5.65	0.2526E-02	0.1874E-02	0.1232E-02	0.1122E-02	0.1668E-03			
5.89	0.2114E-02	0.1622E-02	0.1109E-02	0.1083E-02	0.1465E-03			
6.14	0.1824E-02	0.1342E-02	0.9044E-03	0.9995E-03	0.7615E-04			
6.38	0.1726E . 02	0.1258E-02	0.8147E-03	0.9747E-03	0.1018E-03			
6.63	0.1552E-02	0.1042E-02	0.6295E-03	0.9035E-03	0.8148E-04			
6.88	0.1646E-02	0.1005E-02	0.5205E-03	0.9034E-03	0.1333E-03			
7.12	0.2004E-02	0.1083E-02	0.4067E-03	0.8703E-03	0.1768E-03			
7.37	0.1774E-02	0.1079E-02	0.3626E-03	0.8957E-03	0.2912E-03			

TABLE 9.3 ACCELERATION VARIANCE SPECTRAL DENSITY 120 ft WPB Significant Wave Height 40% Beam $C_V = 4.0$

.

•

Runs 295, 296, 297, 298

Accelerometer	#5	#4	#3	#2	#1
Frequency		Spe	ctral Estima	tes	
Hz			g²/Hz		
0.00	0.8965E-01	0.7408E-01	0.5334E-01	0.4637E-01	0.3051E-01
0.25	0.5117E+00	0.4177E+00	0.2938E+00	0.2524E+00	0.1661E+00
0.49	0.9865E+00	0.7986E+00	0.5519E+00	0.4697E+00	0.3068E+00
0.74	0.7537E+00	0.5966E+00	0.3922E+00	0.3188E+00	0.2012E+00
0.98	0.5037E+00	0.3854E+00	0.2317E+00	0.1710E+00	0.1043E+00
1.23	0.3876E+00	0.2922E+00	0.1735E+00	0.1268E+00	0.7828E-01
1.47	0.2792E+00	0.2078E+00	0.1264E+00	0.9687E-01	0.6205E-01
1.72	0.2280E+00	0.1676E+00	0.1025E+00	0.8125E-01	0.5352E-01
1.97	0.1846E+00	0.1342E+00	0.8132E-01	0.6817E-01	0.4931E-01
2.21	0.1632E+00	0.1159E+00	0.6780E-01	0.5669E-01	0.4219E-01
2.46	0.1617E+00	0.1131E+00	0.6409E-01	0.5186E-01	0.3573E-01
2.70	0.1244E+00	0.8730E-01	0.5038E-01	0.4516E-01	0.3130E-01
2.95	0.9306E-01	0.6490E-01	0.3702E-01	0.3556E-01	0.2623E-01
3.19	0.7955E-01	0.5551E-01	0.3172E-01	0.3298E-01	0.2413E-01
3.44	0.6793E-01	0.4749E-01	0.2701E-01	0.2819E-01	0.1926E-01
3.68	0.6082E-01	0.4182E-01	0.2272E-01	0.2391E-01	0.1731E-01
3.93	0.4941E-01	0.3435E-01	0.1879E-01	0.2128E-01	0.1481E-01
4.17	0.4094E-01	0.2846E-01	0.1521E-01	0.1712E-01	0.1111E-01
4.42	0.3664E-01	0.2541E-01	0.1329E-01	0.1547E-01	0.1052E-01
4.67	0.2871E-01	0.2003E-01	0.1065E-01	0.1309E-01	0.7970E-02
4.91	0.2485E-01	0.1748E-01	0.9256E-02	0.1132E-01	0.6619E-02
5.16	0.2066E-01	0.1463E-01	0.7746E-02	0.9981E-02	0.5555E-02
5.40	0.1640E-01	0.1180E-01	0.6450E-02	0.8826E-02	0.4056E-02
5.65	0.1383E-01	0.9821E-02	0.5345E-02	0.7418E-02	0.3487E-02
5.89	0.1059E-01	0.7654E-02	0.4308E-02	0.6833E-02	0.2728E-02
6.14	0.8666E-02	0.6361E-02	0.3578E-02	0.6240E-02	0.2119E-02
5.38	0.7312E-02	0.5548E-02	0.2953E-02	0.5854E-02	0.1748E-02
6.63	0.6505E-02	0.4767E-02	0.2315E-02	0.5445E-02	0.1404E-02
6.88	0.7306E-02	0.5209E-02	0.2236E-02	0.5125E-02	0.1067E-02
7.12	0.7569E-02	0.5156E-02	0.1844E-02	0.4936E-02	0.9551E-03
7.37	0.7746E-02	0.5090E-02	0.1603E-02	0.5050E-02	0.7957E-03

TABLE 9.4 ACCELERATION VARIANCE SPECTRAL DENSITY 120 ft WPB Significant Wave Height 60% Beam $C_V = 1.5$

Runs 299, 301, 302

Accelerometer	#5	#4	#3	#2	#1			
Frequency Hz	Spectral Estimates g ² /Hz							
0.00	0.2494E+00	0.2009E+00	0.1303E+00	0.1087E+00	0.8401E-01			
0.25	0.4886E+00	0.3840E+00	0.2349E+00	0.1849E+00	0.1484E+00			
0.49	0.4426E+00	0.3389E+00	0.1946E+00	0.1414E+00	0.1166E+00			
0.74	0.1532E+00	0.1123E+00	0.5727E-01	0.3145E-01	0.2092E-01			
0.98	0.8288E-01	0.5989E-01	0.2932E-01	0.1263E-01	0.2704E-02			
1.23	0.5964E-01	0.4281E-01	0.2142E-01	0.9971E-02	0.2617E-02			
1.47	0.4922E-01	0.3500E-01	0.1765E-01	0.8331E-02	0.2181E-02			
1.72	0.3899E-01	0.2755E-01	0.1378E-01	0.6461E-02	0.1518E-02			
1.97	0.3178E-01	0.2244E-01	0.1135E-01	0.5569E-02	0.1504E-02			
2.21	0.2553E-01	0.1774E-01	0.8980E-02	0.4372E-02	0.1064E-02			
2.46	0.2164E-01	0.1507E-01	0.7643E-02	0.3852E-02	0.1088E-02			
2.70	0.1695E-01	0.1179E-01	0.5962E-02	0.3062E-02	0.7331E-03			
2.95	0.1432E-01	0.1001E-01	0.5103E-02	0.2787E-02	0.7267E-03			
3.19	0.1134E-01	0.7847E-02	0.4022E-02	0.2220E-02	0.4836E-03			
3.44	0.9627E-02	0.6699E-02	0.3479E-02	0.1969E-02	0.5018E-03			
3.68	0.7487E-02	0.5181E-02	0.2709E-02	0.1530E-02	0.3175E-03			
3.93	0.6376E-02	0.4478E-02	0.2373E-02	0.1377E-02	0.3372E-03			
4.17	0.4836E-02	0.3405E-02	0.1827E-02	0.1075E-02	0.2042E-03			
4.42	0.4071E-02	0.2952E-02	0.1610E-02	0.9833E-03	0.2313E-03			
4.67	0.3136E-02	0.2252E-02	0.1235E-02	0.7593E-03	0.1434E-03			
4.91	0.2758E-02	0.2035E-02	0.1140E-02	0.7042E-03	0.1642E-03			
5.16	0.2138E-02	0.1544E-02	0.8917E-03	0.5458E-03	0.9066E-04			
5.40	0.1891E-02	0.1419E-02	0.8314E-03	0.5457E-03	0.1208E-03			
5.65	0.1437E-02	0.1031E-02	0.6310E-03	0.4520E-03	0.7156E-04			
5.89	0.1306E-02	0.9493E-03	0.5908E-03	0.4558E-03	0.9767E-04			
6.14	0.9464E-03	0.6891E-03	0.4459E-03	0.3754E-03	0.5894E-04			
6.38	0.8315E-03	0.6750E-03	0.4318E-03	0.3911E-03	0.8582E-04			
6.63	0.6242E-03	0.4581E-03	0.3173E-03	0.3601E-03	0.5853E-04			
6.88	0.6124E-03	0.4594E-03	0.3142E-03	0.4156E-03	0.8719E-04			
7.12	0.5065E-03	0.3064E-03	0.2297E-03	0.4705E-03	0.7946E-04			
7.37	0.4340E-03	0.3083E-03	0.2053E-03	0.6955E-03	0.1252E-03			

TABLE 9.5 ACCELERATION VARIANCE SPECTRAL DENSITY 120 ft WPB Significant Wave Height 60% Beam $C_V = 3.0$

Runs 311, 312, 313, 314

Accelerometer	#5	#4	#3	#2	#1		
Frequency Hz	Spectral Estimates g ² /Hz						
0.00	0 30845+00	0 23895+00	0.18048+00	0.1755E+00	0.1387E+00		
0.25	0.83745+00	0.6367E+00	0.4630F+00	0.4359E+00	0 34175+00		
0.49	0.1103F+01	0.8155E+00	0.5580E+00	0.4920E+00	0.3743E+00		
0.74	0.6357E+00	0 44885+00	0.2742E+00	0.2060E+00	0.1388E+00		
0.98	0.3714E+00	0.25598+00	0.1460E+00	0.9647E-01	0.5201E~01		
1.23	0.28675+00	0 1975E+00	0.1156E+00	0.8077E-01	0 4550F-01		
1 47	0.21265+00	0 14465+00	0 85945-01	0.63405-01	0.3957E-01		
1.72	0 1715E+00	0.11478+00	0.033 = 01	0.52788-01	0 34745-01		
1.97	0 1439F+00	0.95265-01	0.5623E-01	0.4580E-01	0.3199E-01		
2.21	0.1212F+00	0.79065~01	0 46068-01	0.3836E-01	0.2870E-01		
2.46	0.1050E+00	0.6782E-01	0.3909E-01	0.3393E-01	0.2592E-01		
2.70	0.9013E-01	0.5722E-01	0.3165E-01	0.2808E-01	0.2172E-01		
2.95	0.7985E-01	0.5042E-01	0.2756E-01	0.2539E-01	0.1942E-01		
3.19	0.6647E-01	0.4129E-01	0.2179E-01	0.2058E-01	0.1746E-01		
3.44	0.5985E-01	0.3692E-01	0.1906E-01	0.1781E-01	0.1590E-01		
3.68	0.5164E-01	0.3173E-01	0.1599E-01	0.1515E-01	0.1418E-01		
3.93	0.4329E-01	0.2643E-01	0.1282E-01	0.1221E→01	0.1349E-01		
4.17	0.3789E-01	0.2304E-01	0.1087E-01	0.1011E-01	0.1222E-01		
4.42	0.3282E-01	0.2004E-01	0.9390E-02	0.8743E-02	0.1048E-01		
4.67	0.2758E-01	0.1680E-01	0.7531E-02	0.7037E-02	0.9269E-02		
4.91	0.2343E-01	0.1427E-01	0.6338E-02	0.6117E-02	0.8101E-02		
5.16	0.2039E-01	0.1230E-01	0.5365E-02	0.5057E-02	0.7015E-02		
5.40	0.1697E-01	0.1035E-01	0.4493E-02	0.4335E-02	0.7217E-02		
5.65	0.1432E-01	0.8544E-02	0.3633E-02	0.3574E-02	0.6410E-02		
5.89	0.1265E-01	0.7427E-02	0.3249E-02	0.3373E-02	0.5858E-02		
6.14	0.9954E-02	0.5778E-02	0.2473E-02	0.3271E-02	0.5629E-02		
6.38	0.8066E-02	0.4687E-02	0.1987E-02	0.3544E-02	0.5378E-02		
6.63	0.6969E-02	0.3971E-02	0.1702E-02	0.4128E-02	0.5679E-02		
6.88	0.5792E-02	0.3279E-02	0.1532E-02	0.5226E-02	0.6666E-02		
7.12	0.4796E-02	0.2453E-02	0.1167E-02	0.6533E-02	0.7103E-02		
7.37	0.4183E-02	0.2154E-02	0.1157E-02	0.7917E-02	0.7108E-02		

-

TABLE 9.6 ACCELERATION VARIANCE SPECTRAL DENSITY 120 ft WPB Significant Wave Height 60% Beam $C_V = 4.0$

Runs 315, 316, 317, 319

Accelerometer	#5	#4	#3	#2	#1			
Frequency Hz		Spectral Estimates g²/Hz						
0.00	0.2790E+00	0.2168E+00	0.1635E+00	0.1552E+00	0.1132E+00			
0.25	0.1081E+01	0.8312E+00	0.6141E+00	0.5701E+00	0.4033E+00			
0.49	0.1547E+01	0.1172E+01	0.8421E+00	0.7661E+00	0.5365E+00			
0.74	0.9539E+00	0.6936E+00	0.4574E+00	0.3874E+00	0.2718E+00			
0.98	0.6096E+00	0.4305E+00	0.2650E+00	0.2133E+00	0.1611E+00			
1.23	0.5050E+00	0.3541E+00	0.2166E+00	0.1742E+00	0.1353E+00			
1.47	0.4129E+00	0.2843E+00	0.1736E+00	0.1467E+00	0.1192E+00			
1.72	0.3128E+00	0.2096E+00	0.1258E+00	0.1140E+00	0.1031E+00			
1.97	0.2956E+00	0.1949E+00	0.1148E+00	0.1045E+00	0.9637E-01			
2.21	0.2743E+00	0.1771E+00	0.1019E+00	0.9618E-01	0.9514E-01			
2.46	0.2174E+00	0.1384E+00	0.7822E-01	0.8019E-01	0.8678E-01			
2.70	0.1789E+00	0.1128E+00	0.6282E-01	0.6923E-01	0.8227E-01			
2.95	0.1637E+00	0.1029E+00	0.5625E-01	0.6321E-01	0.7235E-01			
3.19	0.1368E+00	0.8507E-01	0.4593E-01	0.5660E-01	0.6685E-01			
3.44	0.1192E+00	0.7472E-01	0.4062E-01	0.5354E-01	0.6496E-01			
3.68	0.1057E+00	0.6658E-01	0.3600E-01	0.4952E-01	0.6053E-01			
3.93	0.9039E-01	0.5691E-01	0.3026E-01	0.4380E-01	0.5069E-01			
4.17	0.7614E-01	0.4840E-01	0.2570E-01	0.4206E-01	0.4460E-01			
4.42	0.7024E-01	0.4501E-01	0.2350E-01	0.3981E-01	0.3684E-01			
4.67	0.5962E-01	0.3839E-01	0.2002E-01	0.3724E-01	0.3169E-01			
4.91	0.5337E-01	0.3442E-01	0.1752E-01	0.3507E-01	0.2528E-01			
5.16	0.4612E-01	0.2991E-01	0.1485E-01	0.3337E-01	0.1983E-01			
5.40	0.3998E-01	0.2589E-01	0.1226E-01	0.3159E-01	0.1773E-01			
5.65	0.3366E-01	0.2176E-01	0.9973E-02	0.3273E-01	0.1807E-01			
5.89	0.3142E-01	0.2018E-01	0.8832E-02	0.3341E-01	0.1649E-01			
6.14	0.2713E-01	0.1721E-01	0.7478E-02	0.3488E-01	0.1271E-01			
6.38	0.2565E-01	0.1607E-01	0.7295E-02	0.3781E-01	0.1022E-01			
6.63	0.2636E-01	0.1633E-01	0.8560E-02	0.4387E-01	0.1008E-01			
6.88	0.3297E-01	0.2013E-01	0.1211E-01	0.5002E-01	0.1070E-01			
7.12	0.4009E-01	0.2431E-01	0.1782E-01	0.5640E-01	0.1370E-01			
7.37	0.4383E-01	0.2687E-01	0.2471E-01	0.5704E-01	0.1771E-01			

TABLE 10.11/3 OCTAVE RMS ACCELERATIONS110 ft WPBSignificant Wave Height 40% BeamCy = 1.5

Runs 221, 222, 223

Accelerometer	#5	#4	#3	#2	#1
Center					
Frequency		1/3	Octave R	MS	
Hz		ш	eters/sec	2	
0.099	0.787	0.595	0.455	0.421	0.366
0.125	1.160	0.863	0.643	0.590	0.512
0.157	1.469	1.087	0.804	0.735	0.637
0.198	1.649	1.220	0.903	0.825	0.715
0.250	1.851	1.369	1.014	0.926	0.803
0.315	2.077	1.537	1.138	1.040	0.901
0.397	2.349	1.700	1.215	1.091	0.941
0.500	2.640	1.903	1.350	1.208	1.040
0.630	2.306	1.635	1.122	0.981	0.824
0.794	1.971	1.360	0.876	0.725	0.562
1.000	1.624	1.107	0.681	0.516	0.278
1.260	1.504	1.026	0.640	0.492	0.271
1.587	1.370	0.932	0.588	0.460	0.247
2.000	1.236	0.842	0.542	0.434	0.226
2,520	1.087	0.738	0.478	0.396	0.194
3.175	0.911	0.619	0.403	0.345	0.157
4.000	0.741	0.505	0.333	0.272	0.123
5.040	0.584	0.398	0.274	0.225	0.103
6.350	0.417	0.287	0.214	0.162	0.087
8.000	0.276	0.179	0.151	0.109	0.072

٠

.

TABLE 10.2 1/3 OCTAVE RMS ACCELERATIONS 110 ft WPB Significant Wave Height 40% Beam $C_V = 3.0$

Runs 224, 225, 226, 227

b,

Accelerometer	#5	#4	#3	#2	#1
Center					
Frequency		1/3	Octave R	IMS .	
Hz		α	eters/sec	2	
0.099	0.880	0.708	0.579	0.554	0.473
0.125	1.531	1.209	0.969	0.916	0.782
0.157	2.018	1.589	1.268	1.195	1.020
0.198	2.265	1.783	1.423	1.341	1.145
0.250	2.542	2.001	1.597	1.505	1.285
0.315	2.854	2.247	1.793	1.689	1.442
0.397	3.700	2.866	2.238	2.083	1.761
0.500	4.251	3.286	2.557	2.376	2.006
0.630	4.115	3.118	2.365	2.169	1.801
0.794	3.993	2.955	2.171	1.958	1.591
1.000	3.499	2.497	1.765	1.569	1.260
1.260	3.284	2.331	1.670	1.511	1.259
1.587	3.073	2.157	1.564	1.470	1.296
2.000	2.905	2.017	1.494	1.477	1.349
2.520	2.660	1.818	1.396	1.472	1.369
3.175	2.383	1.617	1.269	1.452	1.308
4.000	2.099	1.381	1.094	1.254	1.187
5.040	1.734	1.099	0.891	1.023	0.994
6.350	1.323	0.821	0.742	0.791	0.757
8.000	1.010	0.589	0.676	0.592	0.448

TABLE 10.3 1/3 OCTAVE RMS ACCELERATIONS 110 ft WPB Significant Wave Height 40% Beam CV = 4.0

Runs 228, 229, 230, 231, 232

Accelerometer	#5	#4	#3	#2	#1
Center			_		
Frequency		1/3	Octave R	MS	
Hz		m	eters/sec	4	
0.099	0.755	0.609	0.495	0.459	0.389
0.125	1.544	1.238	1.006	0.936	0.803
0.157	2.090	1.675	1.361	1.267	1.088
0.198	2.346	1.880	1.528	1.422	1.222
0.250	2.633	2.110	1.715	1.597	1.371
0.315	2.956	2.369	1.925	1.792	1.539
0.397	4.068	3.246	2.649	2.488	2.187
0.500	4.710	3.757	3.067	2.883	2.542
0.630	4.674	3.649	2.940	2.768	2.482
0.794	4.731	3.600	2.845	2.677	2.438
1.000	4.797	3.488	2.633	2.440	2.215
1.260	4.811	3.391	2.517	2.371	2.267
1.587	4.464	3.138	2.411	2.371	2.353
2.000	4.025	2.836	2.274	2.340	2.334
2.520	3.837	2.656	2.135	2.279	2.214
3.175	3.619	2.417	1.925	2.162	2.072
4.000	3.219	2.060	1.644	1.899	1.881
5.040	2.886	1.758	1.398	1.591	1.620
6.350	2.187	1.270	1.222	1.328	1.354
8.000	1.790	0.918	1.083	0.911	0.827

TABLE 10.41/3 OCTAVE RMS ACCELERATIONS110 ft WPBSignificant Wave Height 60% BeamCV = 1.5

Runs 171, 190, 191, 192

Accelerometer	#5*	#4	#3	#2	#1
Center					
Frequency		1/3	Octave R	MS	
Hz			eters/sec	2	
0.099	0.882	0.722	0.558	0.558	0.475
0.125	1.228	1.007	0.759	0.749	0.634
0.157	1.526	1.253	0.936	0.919	0.777
0.198	1.713	1.407	1.051	1.032	0.872
0.250	1.923	1.579	1.179	1.158	0.979
0.315	2.159	1.772	1.324	1.300	1.099
0.397	2.358	1.922	1.391	1.340	1.128
0.500	2.632	2.143	1.540	1.477	1.242
0.630	2.283	1.834	1.280	1.201	0.996
0.794	1.933	1.519	0.999	0.890	0.706
1.000	1.626	1.263	0.770	0.626	0.397
1.260	1.502	1.187	0.723	0.589	0.370
1.587	1.344	1.089	0.674	0.572	0.362
2.000	1.227	1.007	0.628	0.555	0.359
2.520	1.005	0.826	0.507	0.477	0.286
3.175	0.832	0.663	0.404	0.503	0.238
4.000	0.599	0.510	0.325	0.380	0.206
5.040	0.455	0.393	0.266	0.237	0.106
6.350	0.300	0.282	0.217	0.198	0.082
8.000	0.208	0.166	0.259	0.208	0.118

* Runs 190, 191, 192 only

41

TABLE 10.5 1/3 OCTAVE RMS ACCELERATIONS 110 ft WPB Significant Wave Height 60% Beam CV = 3.0

Runs 172, 193, 194, 195, 199

Accelerometer	#5	#4	#3	#2	#1
Center					
Frequency		1/3	Octave R	MS	
Hz		a	eters/sec	2	
0.099	1.105	0.979	0.805	0.835	0.707
0.125	1.690	1.478	1.201	1.242	1.055
0.157	2.162	1.885	1.526	1.577	1.341
0.198	2.427	2.115	1.713	1.770	1.505
0.250	2.725	2.374	1.923	1.987	1.689
0.315	3.058	2.665	2.158	2.230	1.896
0.397	3.679	3.118	2.466	2.537	2.184
0.500	4.180	3.526	2.777	2.854	2.464
0.630	4.042	3.296	2.510	2.555	2.231
0.794	3.949	3.106	2.268	2.277	2.013
1.000	3.685	2.862	2.050	2.035	1.760
1.260	3.482	2.754	2.031	2.062	1.758
1.587	3.444	2.689	1.984	2.044	1.781
2.000	3.348	2.605	1.965	2.103	1.864
2.520	3.208	2.449	1.856	2.077	1.870
3.175	2.925	2.211	1.718	2.050	1.804
4.000	2.473	1.925	1.580	1.945	1.689
5.040	2.213	1.697	1.421	1.731	1.550
6.350	1.874	1.401	1.237	1.373	1.274
8.000	1.378	1.039	1.259	1.036	0.830

TABLE 10.6 1/3 OCTAVE RMS ACCELERATIONS 110 ft WPB Significant Wave Height 60% Beam $C_V = 4.0$

Runs 173, 200, 201, 202, 219, 220

Accelerometer	#5	#4	#3	#2	#1
Center					
Frequency		1/3	Octave R	MS	
Hz		a	eters/sec	2	
0.099	0.975	0.865	0.742	0.762	0.661
0.125	1.696	1.525	1.298	1.335	1.151
0.157	2.235	2.016	1.713	1.762	1.517
0.198	2.509	2.263	1.923	1.978	1.703
0.250	2.816	2.540	2.159	2.220	1.912
0.315	3.161	2.851	2.423	2.492	2.146
0.397	4.148	3.700	3.120	3.218	2.796
0.500	4.773	4.252	3.581	3.695	3.214
0.630	4.880	4.191	3.438	3.525	3.080
0.794	5.066	4.191	3.336	3.395	2.988
1.000	5.153	4.069	3.126	3.154	2.840
1.260	5.022	3.953	3.153	3.286	3.100
1.587	5.096	3.929	3.141	3.348	3.180
2.000	5.116	3.838	3.064	3.362	3.180
2.520	5.187	3.838	3.044	3.432	3.150
3.175	5.117	3.673	2.851	3.374	2.977
4.000	4.695	3.346	2.616	3.170	2.731
5.040	3.912	2.822	2.373	2.852	2.403
6.350	3.157	2.258	2.089	2.294	1.901
8.000	2.359	1.587	1.881	1.575	1.196

TABLE 11.1 1/3 OCTAVE RMS ACCELERATIONS 120 ft WPB Significant Wave Height 40% Beam Cy = 1.5

Runs 290, 291

Accelerometer	#5	#4	#3	#2	#1
Center					
Frequency		1/3	Octave RM	S	
Hz			eters/sec ²		
0.099	0.617	0.537	0.423		0.327
0.125	0.921	0.794	0.615		0.475
0.157	1.170	1.007	0.776		0.599
0.198	1.314	1.131	0.871		0.672
0.250	1.474	1.269	0.977		0.754
0.315	1.655	1.425	1.097		0.846
0.397	1.837	1.566	1.176		0.896
0.500	2.058	1.750	1.308		0.993
0.630	1.760	1.484	1.083		0.771
0.794	1.448	1.202	0.839		0.492
1.000	1.147	0.942	0.637		0.112
1.260	1.070	0.876	0.597		0.133
1.587	1.005	0.817	0.557		0.112
2.000	0.847	0.685	0.471		0.098
2.520	0.708	0.575	0.400		0.083
3.175	0.571	0.465	0.329		0.083
4.000	0.407	0.328	0.239		0.064
5.040	0.284	0.229	0.176		0.044
6.350	0.200	0.158	0.129		0.050
8.000	0.222	0.147	0.116		0.093

.

TABLE 11.2 1/3 OCTAVE RMS ACCELERATIONS 120 ft WPB Significant Wave Height 40% Beam Cy = 3.0

Runs 292, 293, 294

Accelerometer	#5	#4	#3	#2	#1
Center					
Frequency		1/3	Octave R	MS	
Hz		m	eters/sec	2	
0.099	0.457	0.414	0.354	0.342	0.305
0.125	0.917	0.817	0.675	0.625	0.550
0.157	1.238	1.101	0.905	0.832	0.730
0.198	1.389	1.236	1.015	0.934	0.819
0.250	1.559	1.387	1.140	1.048	0.919
0.315	1.750	1.557	1.279	1.177	1.032
0.397	2.540	2.229	1.776	1.568	1.343
0.500	2.959	2.592	2.058	1.808	1.543
0.630	2.968	2.572	1.991	1.683	1.395
0.794	2.955	2.533	1.910	1.542	1.222
1.000	2.457	2.079	1.512	1.124	0.767
1.260	2.308	1.939	1.402	1.023	0.673
1.587	2.180	1.813	1.304	0.954	0.665
2.000	2.002	1.643	1.165	0.849	0.643
2.520	1.741	1.405	0.968	0.697	0.607
3.175	1.475	1.183	0.801	0.573	0.537
4.000	1.115	0.899	0.622	0.459	0.405
5.040	0.745	0.624	0.473	0.404	0.244
6.350	0.512	0.427	0.335	0.371	0.129
8.000	0.473	0.363	0.263	0.408	0.205

TABLE 11.3 1/3 OCTAVE RMS ACCELERATIONS 120 ft WPB Significant Wave Height 40% Beam $C_V = 4.0$

Runs 295, 296, 297, 298

Accelerometer	#5	#4	#3	#2	#1
Center					
Frequency		1/3	Octave R	MS	
Hz		m	eters/sec	2	
0.099	0.445	0.405	0.343	0.320	0.260
0.125	0.981	0.887	0.745	0.691	0.560
0.157	1.340	1.211	1.015	0.941	0.764
0.198	1.504	1.359	1.140	1.057	0.857
0.250	1.688	1.525	1.279	1.186	0.962
0.315	1.895	1.712	1.436	1.331	1.080
0.397	2.837	2.554	2.125	1.961	1.585
0.500	3.315	2.983	2.480	2.288	1.849
0.630	3.429	3.066	2.513	2.289	1.833
0.794	3.546	3.148	2.540	2.278	1.807
1.000	3.321	2.904	2.250	1.933	1.510
1.260	3.196	2.772	2.141	1.838	1.448
1.587	2.994	2.575	2.011	1.774	1.429
2.000	2.855	2.428	1.882	1.714	1.454
2.520	2.860	2.396	1.815	1.669	1.397
3.175	2.379	1.988	1.501	1.509	1.280
4.000	2.057	1.712	1.257	1.324	1.101
5,040	1.582	1.328	0.970	1.093	0.818
6.350	1.095	0.932	0.667	0.916	0.514
8.000	1.060	0.859	0.614	0.891	0.462

.

TABLE 11.4 1/3 OCTAVE RMS ACCELERATIONS 120 ft WPB Significant Wave Height 60% Beam $C_V = 1.5$

Runs 299, 301, 302

.

Accelerometer	#5	#4	#3	#2	#1
Center					
Frequency		1/3	Octave R	MS	
Hz		n	eters/sec	2	
0.099	0.743	0.666	0.537	0.490	0.431
0.125	1.048	0.932	0.735	0.657	0.585
0.157	1.310	1.161	0.908	0.805	0.722
0.198	1.470	1.303	1.019	0.904	0.810
0.250	1.650	1.463	1.144	1.015	0.909
0.315	1.852	1.642	1.284	1.139	1.021
0.397	1.995	1.750	1.333	1.145	1.038
0.500	2.221	1.943	1.472	1.255	1.140
0.630	1.901	1.650	1.224	0.999	0.882
0.794	1.580	1.352	0.963	0.706	0.561
1.000	1.344	1.143	0.800	0.526	0.245
1.260	1.269	1.074	0.760	0.519	0.266
1.587	1.248	1.051	0.745	0.511	0.256
2.000	1.167	0.979	0.696	0.485	0.246
2.520	1.065	0.888	0.632	0.449	0.229
3.175	0.911	0.760	0.544	0.405	0.201
4.000	0.718	0.601	0.438	0.334	0.156
5.040	0.523	0.446	0.336	0.267	0.120
6.350	0.352	0.302	0.244	0.241	0.105
8.000	0.267	0,201	0.203	0.365	0.151

TABLE 11.5 1/3 OCTAVE RMS ACCELERATIONS 120 ft WPB Significant Wave Height 60% Beam CV = 3.0

Runs 311, 312, 313, 314

Accelerometer	#5	#4	#3	#2	#1
Center					
Frequency		1/3	Octave R	MS	
Hz			eters/sec	2	
0.099	0.826	0.727	0.632	0.623	0.554
0.125	1.324	1.156	0.990	0.964	0.854
0.157	1.714	1.495	1.275	1.237	1.095
0.198	1.924	1.678	1.431	1.388	1.229
0.250	2.160	1.883	1.606	1.558	1.380
0.315	2.424	2.114	1.803	1.749	1.549
0.397	3.063	2.638	2.191	2.067	1.807
0.500	3.506	3.014	2.493	2.341	2.042
0.630	3.360	2.856	2.299	2.083	1.772
0.794	3.231	2.711	2.112	1.820	1.480
1.000	2.852	2.367	1.789	1.457	1.071
1.260	2.756	2.285	1.750	1.470	1.114
1.587	2.605	2.140	1.649	1.433	1.146
2.000	2.495	2.028	1.555	1.403	1.180
2.520	2.381	1.909	1.440	1.342	1.173
3.175	2.203	1.740	1.268	1.225	1.115
4.000	1.932	1.510	1.052	1.021	1.064
5.040	1.561	1.216	0.809	0.789	0.939
6.350	1.114	0.847	0.559	0.763	0.921
8.000	0.771	0.561	0.575	0.990	1.067

TABLE 11.6 1/3 OCTAVE RMS ACCELERATIONS 120 ft WPB Significant Wave Height 60\$ Beam Cy = 4.0

Runs 315, 316, 317, 319

Accelerometer	#5	#4	#3	#2	#1
Center					
Frequency		1/3	Octave R	MS	
Hz		'n	eters/sec	2	
0.099	0.785	0.692	0.601	0.586	0.500
0.125	1.460	1.281	1.103	1.064	0.897
0.157	1.948	1.708	1.468	1.415	1.190
0.198	2.186	1.917	1.648	1.588	1.335
0.250	2.454	2.152	1.850	1.782	1.499
0.315	2.755	2.415	2.076	2.000	1.683
0.397	3.608	3.144	2.669	2.549	2.134
0.500	4.151	3.614	3.063	2.922	2.445
0.630	4.048	3.487	2.893	2.712	2.270
0.794	3.978	3.387	2.740	2.515	2.115
1.000	3.662	3.077	2.413	2.165	1.88
1.260	3.690	3.085	2.412	2.173	1.923
1.587	3.580	2.953	2.299	2.146	1.982
2.000	3.599	2.916	2.232	2.141	2.077
2.520	3.428	2.734	2.054	2.091	2.198
3.175	3.142	2.486	1.833	2.021	2.193
4.000	2.775	2.208	1.612	1.980	2.085
5.040	2.342	1.882	1.332	1.965	1.628
6.350	2.063	1.632	1.174	2.405	1.338
8.000	2.221	1.775	1.927	2.099	1.789

TABLE 12PITCH VARIANCE SPECTRAL DENSITY110 ft WPB

Colum	n					
1	Runs 221,	222, 223				
2	Runs 224,	225, 226, 22	27			
3	Runs 228,	229, 230, 23	31, 232			
4	Runs 171,	190, 191, 19	92			
5	Runs 172,	193, 194, 19	95, 199			
6	Runs 173,	200, 201, 20	02, 219, 220			
	Signi	ficant Wave	Height	Signi	ficant Wave	Height
		40 % Beam			60\$ Beam	
_	C _V =1.5	Cv=3.0	C _V =4.0	Cy=1.5	C _V =3.0	Cv=4.0
Fre-	-			-		
quency	Spe	ectral Estima	ites	Spe	ctral Estima	tes
HZ		deg-/Hz			deg*/Hz	
0.00	0.3391E+01	0.7012E+01	0.2168E+01	0-2133E+01	0.1226E+02	0.3364E+00
0.04	0.3737E+01	0.6546E+01	0.6847E+01	0.2625E+01	0.1609E+02	0.9347E+01
0.08	0.3204E+01	0.4257E+01	0.9212E+01	0.1868E+01	0.1411E+02	0.1902E+02
0.12	0.2953E+01	0.3950E+01	0.6485E+01	0.9001E+01	0.1336E+02	0.1830E+02
0.16	0.9825E+01	0.2793E+01	0.4747E+01	0.3665E+02	0.1418E+02	0.1330E+02
0.20	0.3107E+02	0.5143E+01	0.8956E+01	0.6828E+02	0.2489E+02	0.1709E+02
0.24	0.4670E+02	0.1195E+02	0.1298E+02	0.7220E+02	0.4744E+02	0.1671E+02
0.28	0.4243E+02	0.1407E+02	0.1001E+02	0.4923E+02	0.4822E+02	0.2631E+02
0.32	0.3285E+02	0.2182E+02	0.1168E+02	0.3455E+02	0.4048E+02	0.2694E+02
0.35	0.2594E+02	0.4077E+02	0.2346E+02	0.3067E+02	0.4487E+02	0.2598E+02
0.39	0.1547E+02	0.3371E+02	0.2252E+02	0.1855E+02	0.2909E+02	0.1804E+02
0.43	0.7072E+01	0.1122E+02	0.1473E+02	0.9785E+01	0.1062E+02	0.1093E+02
0.47	0.4380E+01	0.6784E+01	0.1158E+02	0.6158E+01	0.8211E+01	0.1191E+02
0.51	0.2329E+01	0.3635E+01	0.5283E+01	0.2551E+01	0.4650E+01	0.5430E+01
0.55	0.1520E+01	0.2181E+01	0.2262E+01	0.1562E+01	0.2388E+01	0.3320E+01
0.59	0.8201E+00	0.1596E+01	0.1864E+01	0.8650E+00	0.2892E+01	0.3355E+01
0.63	0.4179E+00	0.9476E+00	0.1729E+01	0.6954E+00	0.2569E+01	0.2674E+01
0.67	0.1393E+00	0.6510E+00	0.1534E+01	0.2879E+00	0.1862E+01	0.1835E+01
0.71	0.1587E+00	0.8798E+00	0.2874E+01	0.2857E+00	0.1815E+01	0.2215E+01
0.75	0.2762E-01	0.6593E+00	0.1683E+01	0.1164E+00	0.1366E+01	0.2060E+01
0.79	0.1066E+00	0.6682E+00	0.8553E+00	0.1820E+00	0.9115E+00	0.3067E+01
0.83	0.2044E+00	0.5711E+00	0.1314E+01	0.1706E+00	0.2234E+00	0.2861E+01
0.87	0.3776E+00	0.1066E+01	0.1126E+01	0.3242E+00	0.8829E+00	0.2761E+01
0.90	0.2927E+00	0.1106E+01	0.2027E+01	0.1908E+00	0.1990E+01	0.3171E+01
0.94	U.1846E+00	0.1581E+01	0.2466E+01	0.1765E+00	0.2467E+01	0.4610E+01
0.90	0.20446-01	0.1124E+01	0.3334E+01	U.1160E+00	0.1048E+01	0.5422E+01
1.02	U.00U0E-01	U.0714E+00	0.3237E+01	0.2106E+00	U.0007E+00	U.5355E+01
1.00	0.13396-01	0.4019E+00	U.1068E+01	0.1209E+00	0.8492E+00	0.4201E+01
1.10	0.13748+00	0.4000E+00	U.3000E+00	0.2462E+00	0.1079E+01	0.2105E+01
1.14	0.771900 04		U.0501E+00	0.10758+00	U.5300E+00	0.2171E+01
1.10	U./IO2E-U1	U 44748+00	U. ELT7E+01	U.1701E+00	U.4751E+00	U.21958+01

TABLE 13PITCH VARIANCE SPECTRAL DENSITY120 ft WPB

Colum	n					
1	Runs 290,	291				
2	Runs 292,	293, 294				
3	Runs 295,	296, 297, 29	8			
4	Runs 299,	301, 302				
5	Runs 311,	312, 313, 31	4			
6	Runs 315,	316, 317, 31	9			
	- •					
	Signi	ficant Wave	Height	Signi	ficant Wave	Height
		40% Beam			60 % Beam	
	Cv=1.5	Cv=3.0	Cv=4.0	Cv=1.5	Cv=3.0	Cv=4.0
Fre-	-	•	·	•	•	•
quency	r Spe	ectral Estima	tes	Spe	ctral Estima	tes
Hz		deg²/Hz			deg²/Hz	
0.00	0.2645E+01	0.4104E+00	0.1477E+01	0.3887E+01	0.3205E+01	0.1171E+01
0.04	0.2718E+01	0.5751E+00	0.2015E+01	0.3796E+01	0.4569E+01	0.2765E+01
0.08	0.2856E+01	0.6121E+00	0.1715E+01	0.3363E+01	0.4014E+01	0.5865E+01
0.12	0.2129E+01	0.6495E+00	0.1783E+01	0.6728E+01	0.2492E+01	0.5030E+01
0.16	0.5500E+01	0.6312E+00	0.1887E+01	0.2697E+02	0.3804E+01	0.2952E+01
0.20	0.1986E+02	0.9816E+00	0.1813E+01	0.5104E+02	0.8476E+01	0.3947E+01
0.24	0.3406E+02	0.3373E+01	0.1065E+01	0.5899E+02	0.1669E+02	0.7579E+01
0.28	0.3612E+02	0 .9937E+01	0.1784E+01	0.4946E+02	0.2981E+02	0.1794E+02
0.32	0.3556E+02	0.1360E+02	0.4869E+01	0.3944E+02	0.3725E+02	0.2731E+02
0.35	0.2676E+02	0.1479E+02	0.1215E+02	0.3115E+02	0.3083E+02	0.3098E+02
0.39	0.1285E+02	0.1659E+02	0.1545E+02	0.1702E+02	0.1965E+02	0.2639E+02
0.43	0.6673E+01	0.1091E+02	0.1202E+02	0.9209E+01	0.1146E+02	0.1675E+02
0.47	0.3788E+01	0.6824E+01	0.7012E+01	0.4489E+01	0.7552E+01	0.6276E+01
0.51	0.1739E+01	0.5447E+01	0.3556E+01	0.1471E+01	0.4378E+01	0.3472E+01
0.55	0.6030E+00	0.3602E+01	0.3359E+01	0.5183E+00	0.2642E+01	0.3377E+01
0.59	0.3881E+00	0.2212E+01	0.2499E+01	0.2576E+00	0.1901E+01	0.2006E+01
0.63	0.1546E+00	0.1105E+01	0.1421E+01	0.1422E+00	0.1124E+01	0.1297E+01
0.67	0.1035E+00	0.9573E+00	0.8254E+00	0.1201E+00	0.1118E+01	0.2069E+01
0.71	0.5909E-01	0.7042E+00	0.9961E+00	0.4032E-01	0.1032E+01	0.2050E+01
0.75	0.1147E+00	0.4616E+00	0.8153E+00	0.9785E-01	0.5204E+00	0.1801E+01
0.79	0.1721E+00	0.3808E+00	0.7442E+00	0.2025E+00	0.1733E+00	0.1728E+01
0.83	0.3422E+00	0.4410E+00	0.1392E+01	0.3612E+00	0.2592E+00	0.1373E+01
0.87	0.7 37E+00	0.7880E+00	0.1764E+01	0.3371E+00	0.5886E+00	0.1163E+01
0.90	0.2170E+00	0.1165E+01	0.1710E+01	0.2202E+00	0.1057E+01	0.1388E+01
0.94	0.1019E+00	0.7812E+00	0.2706E+01	0.1024E+00	0.9529E+00	0.1730E+01
0.98	0.9128E-01	0.7834E+00	0.2479E+01	0.1040E+00	0.5061E+00	0.1386E+01
1.02	0.2476E-01	0.6874E+00	0.1469E+01	0.6873E-01	0.3786E+00	0.1094E+01
1.06	0.3841E-01	0.3382E+00	0.7778E+00	0.9316E-01	0.5354E+00	0.7684E+00
1.10	0.8847E-02	0.3009E+00	0.5642E+00	0.2631E-01	0.3337E+00	0.5462E+00
1.14	0.1734E-01	0.1736E+00	0.3103E+00	0.2565E-01	0.3149E+00	0.4697E+00
1.18	-0.2008E-01	0.4166E-01	0.3256E+00	-0.3406E-02	0.3753E+00	0.5730E+00

TABLE 14HEAVE VARIANCE SPECTRAL DENSITY110 ft WPB

-

•

.

Colum	nn							
1	Runs 221,	222, 223						
2	Runs 224,	225, 226, 22	27					
3	Runs 228,	229, 230, 23	31, 232					
4	Runs 171,	190, 191, 19	2					
5	Runs 172,	193, 194, 19	5, 199					
6	Runs 173,	200, 201, 20	2, 219, 220					
	Sign:	ificant Wave	Height	Significant Wave Height				
		40 % Beam		60% Beam				
		_						
_	C _V =1.5	Cv=3.0	C _V =4.0	C _V =1.5	C _V =3.0	Cv=4.0		
Fre-				_				
quency	r Spe	ectral Estima	ites	Spe	ctral Estima	tes		
Hz		ft*/Hz			ft*/Hz			
0 00	0 12458+01	0 6157E+01	0.3555E+01	0.9985E-02	0.1069E+02	0.2894E+01		
0.04	0.1537E+01	0.5916E+01	0.8690E+01	0.6272E+00	0.1342E+02	0.1529E+02		
0.08	0.1441E+01	0.4148E+01	0.1012E+02	0.2224E+01	0.9749E+01	0.2737E+02		
0.12	0.1988E+01	0.3443E+01	0.8468E+01	0.2498E+02	0.8605E+01	0.2839E+02		
0.16	0.1133E+02	0.3221E+01	0.6165E+01	0.7026E+02	0.2113E+02	0.1468E+02		
0.20	0.3490E+02	0.7234E+01	0.1070E+02	0.9442E+02	0.6439E+02	0.1395E+02		
0.24	0.4839E+02	0.2130E+02	0.1588E+02	0.8504E+02	0.1188E+03	0.4411E+02		
0.28	0.3876E+02	0.3202E+02	0.1822E+02	0.4987E+02	0.1161E+03	0.8926E+02		
0.32	0.2484E+02	0.4812E+02	0.2411E+02	0.2661E+02	0.9494E+02	0.1014E+03		
0.35	0.1638E+02	0.6295E+02	0.4584E+02	0.1833E+02	0.8484E+02	0.1021E+03		
0.39	0.8358E+01	0.4399E+02	0.4746E+02	0.9948E+01	0.4933E+02	0.6052E+02		
0.43	0.3083E+01	0.1280E+02	0.3525E+02	0.4288E+01	0.1072E+02	0.3776E+02		
0.47	0.1582E+01	0.6513E+01	0.2582E+02	0.2317E+01	0.4326E+01	0.2806E+02		
0.51	0.7094E+00	0.5574E+01	0.1122E+02	0.6715E+00	0.5132E+01	0.1085E+02		
0.55	0.3568E+00	0.4440E+01	0.5416E+01	0.3751E+00	0.4383E+01	0.7447E+01		
0.59	0.1576E+00	0.2292E+01	0.2490E+01	0.1943E+00	0.1573E+01	0.3786E+01		
0.63	0.8733E-01	0.7383E+00	0.1608E+01	0.2575E+00	0.5972E+00	0.1805E+01		
0.67	0.3112E-01	0.1989E+00	0.1029E+01	0.1890E-01	0.1877E+00	0.5634E+00		
0.71	0.5842E-01	0.3541E+00	0.1712E+01	0.4964E-01	0.4861E+00	0.1550E+01		
0.75	0.2266E-01	0.2593E+00	0.1667E+01	-0.2022E-01	0.4414E+00	0.8545E+00		
0.79	0.3535E-01	0.2750E+00	0.1130E+01	0.4760E-01	0.5118E+00	0.1175E+01		
0.83	0.2168E-01	0.2006E+00	0.3718E+00	-0.1733E-01	0.3066E+00	0.6234E+00		
0.87	0.3700E-01	0.4527E+00	0.2960E+00	0.6371E→01	0.5532E+00	0.5366E+00		
0.90	0.1016E-01	0.4081E+00	0.1541E+00	-0.2342E-01	0.2338E+00	0.5266E-01		
0.94	0.2184E-01	0.3099E+00	0.6353E+00	0.1050E-01	0.1813E+00	0.4215E+00		
0.98	0.3392E-03	0.2456E+00	0.2467E+00	-0.2608E-01	0.1088E+00	0.2306E+00		
1.02	0.1558E-01	0.2524E+00	0.3722E+00	0.4576E-01	0.2366E+00	0.6368E+00		
1.06	0.2714E-02	0.1814E+00	0.3749E+00	-0.1503E-01	0.1284E+00	0.1939E+00		
1.10	0.1876E-01	0.1605E+00	0.3676E+00	0.3644E-01	0.2348E+00	0.2182E+00		
1.14	-0.1800E-02	-0.9995E-03	0.1125E+00	-0.2121E-01	0.1531E+00	0.1673E+00		
1.18	0.8719E-02	-0.3038E-01	0.1525E+00	0.2529E-01	0.2541E+00	0.3428E+00		

TABLE 15HEAVE VARIANCE SPECTRAL DENSITY120 ft WPB

Colu	nn							
1	Runs 290,	291						
2	Runs 292,	293, 294						
3	Runs 295,	296, 297, 29	98					
4	Runs 299,	301, 302						
5	Runs 311,	312, 313, 31	14					
6	Runs 315,	316, 317, 3	19					
	Signi	ficant Wave	Height	Significant Wave Height 60% Beam				
		40 % Beam						
	C =1 5	C = 3 0	c =ù 0	C =1 5	C.=3.0	C=# 0		
Fre-	CV-1-7	CV-3.0	CV-4.0	CV-113	ογ-310	υγ-4.0		
nuency		otral Fatima	atos	Spe	ctral Estima	tes		
Hz.	, ope	ft ² /Hz	1005	0,00	ft ² /Hz			
0.00	0.4418E+00	0.2857E+00	0.1186E+01	0.1528E+01	0.4293E+01	0.1687E+01		
0.04	0.5298E+00	0.3896E+00	0.2311E+01	0.1047E+01	0.6037E+01	0.3318E+01		
0.08	0.4597E+00	0.4976E+00	0.2839E+01	0.2128E+01	0.5591E+01	0.6326E+01		
0.12	0.9944E+00	0.7515E+00	0.3528E+01	0.1142E+02	0.4241E+01	0.6834E+01		
0.16	0.6322E+01	0.7078E+00	0.3139E+01	0.4194E+02	0.9611E+01	0.4731E+01		
0.20	0.2014E+02	0.1214E+01	0.2519E+01	0.6631E+02	0.2887E+02	0.4887E+01		
0.24	0.2928E+02	0.6510E+01	0.2124E+01	0.6037E+02	0.5304E+02	0.1699E+02		
0.28	0.2624E+02	0.1752E+02	0.3958E+01	0.3945E+02	0.7352E+02	0.4515E+02		
0.32	0.2180E+02	0.2024E+02	0.9633E+01	0.2528E+02	0.6769E+02	0.6404E+02		
0.35	0.1394E+02	0.1666E+02	0.2179E+02	0.1702E+02	0.4086E+02	0.6026E+02		
0.39	0.5297E+01	0.1570E+02	0.2292E+02	0.7534E+01	0.2387E+02	0.5057E+02		
0.43	0.2022E+01	0.9612E+01	0.1425E+02	0.3148E+01	0.1254E+02	0.2974E+02		
0.47	0.9544E+00	0.5011E+01	0.7691E+01	0.1236E+01	0.6738E+01	0.1066E+02		
0.51	0.4012E+00	0.3451E+01	0.4520E+01	0.3993E+00	0.4397E+01	0.4952E+01		
0.55	0.8361E-01	0.1980E+01	0.3841E+01	0.8828E-01	0.3080E+01	0.2561E+01		
0.59	0.2674E-01	0.1057E+01	0.2377E+01	0.1263E+00	0.1603E+01	0.9764E+00		
0.63	-0.7015E-02	0.56385+60	0.1351E+01	0.3091E-01	0.5795E+00	0.8194E+00		
0.67	0.2225E-01	0.4189E+00	0.7268E+00	0.8128E-01	0.7830E+00	0.1095E+01		
0.71	0.3723E-02	0.2595E+00	0.8488E+00	0.6600E-02	0.6590E+00	0.1032E+01		
0.75	0.1621E-01	0.1863E+00	0.4562E+00	0.5075E-01	0.2546E+00	0.8174E+00		
0.79	0.1267E-02	0.1279E+00	0.2279E+00	0.1239E-01	0.161`5E+00	0.6951E+00		
0.83	0.7459E-02	0.8811E-01	0.1472E+00	0.7357E-01	0.7488E-01	0.3473E+00		
0.87	-0.1186E-01	0.4591E-01	0.2478E+00	0.1292E-01	0.8436E-01	0.2019E+00		
0.90	-0.4964E-03	0.6096E-01	0.9413E-01	0.4757E-01	0.8680E-01	0.6341E-01		
0.94	-0.1187E-01	0.4605E-01	0.1501E+00	-0.3034E-02	0.1040E+00	0.1897E+00		
0.98	-0.6336E-03	0.4854E-01	0.6428E-01	0.4027E-01	0.6044E-01	0.2024E+00		
1.02	-0.1368E-01	0.5057E-01	0.7083E-01	0.5330E-03	0.1383E+00	0.2821E+00		
1.06	-0.3345E-02	0.4012E-01	-0.3098E-01	0.3837E-01	0.1616E+00	0.1696E+00		
1.10	-0.1115E-01	0.2203E-01	0.4854E-01	-0.3164E-02	0.1485E+00	0.1052E+00		
1.14	-0.1133E-02	0.1415E-01	0.1688E-01	0.3381E-01	0.1315E+00	0.1191E+00		
1.18	-0.1124E-01	-0.3268E-02	0.1271E+00	-0.6321E-02	0.1653E+00	0.2350E+00		

TABLE 16 WAVE VARIANCE SPECTRAL DENSITY 110 ft WPB

.

.

.

Column							
1	Runs 221,	, 222, 223					
2	Runs 224,	, 225, 226, 22	7				
3	Runs 228,	, 229, 230, 23	1, 232				
4	Runs 171,	, 190, 191, 192	2				
5	Runs 172,	, 193, 194, 195	5, 199				
6	Runs 173,	200, 201, 202	2, 219, 220				
	Sign	nificant Wave I 40 % Beam	leight	Significant Wave Height 60% Beam			
	Cv=1.5	Cv=3.0	Cv=4.0	C _V =1.5	Cv=3.0	Cv=4.0	
Fre-	0			6	atmal Eating	•	
quency	St	Dectral Estimat	tes	Spe	CUTAL ESUIDA	tes	
HZ		It-/HZ			IC-/HZ		
0.00				1.18	0.42	0.45	
0.04				1.68	0.61	1.07	
0.08	0.12			3.38	0.75	0.73	
0.12	1.49			27.21	0.00	0.44	
0.16	9.13	0.01	0.02	62.76	3.26	0.59	
0.20	16.03	1.21	0.45	84.21	24.10	5.63	
0.24	20.71	4.55	1.33	75.08	53.03	26.39	
0.28	20.36	8.54	4.20	41.58	45.03	49.03	
0.32	13.38	13.14	6.32	26.79	35.58	45.75	
0.35	7.92	17.57	9.28	23.58	36.78	41.74	
0.39	3.87	16.23	10.85	14.82	26.28	30.27	
0.43	2.08	6.50	12.08	8.83	7.29	23.97	
0.47	2.43	5.09	15.90	9.58	4.51	24.87	
0.51	2.28	6.12	9.07	6.76	7.11	11.14	
0.55	2.19	5.48	5.46	3.98	7.15	10.10	
0.59	1.80	3.94	5.76	3.65	4.37	9.99	
0.63	1.24	1.84	6.47	3.05	1.84	6.51	
0.67	0.76	1.21	6.38	1.55	1.62	5.84	
0.71	0.47	1.53	5.21	1.74	1.77	6.15	
0.75	0.38	2.00	2.84	1.38	2.42	4.59	
0.79	0.41	1.79	1.04	1.19	1.73	5.31	
0.83	0.40	2.28	0.50	0.61	1.28	3.72	
0.87	0.31	2.03	1.47	0.42	1.70	2.44	
0.90	0.28	0.86	1.45	0.09	1.58	2.47	
0.94	0.19	0.98	1.76		1.21	3.50	
0.98	0.16	1.48	1.51		1.14	3.78	
1.02	0.17	1.11	1.49		0.92	2.11	
1.06	0.18	0.56	1.24		0.41		
1.10	0.12	0.55	0.74		0.42		
1.14							

1.18

TABLE 17 WAVE VARIANCE SPECTRAL DENSITY 120 ft WPB

.

.

•

.

<u>Column</u> 1 2 3 4 5 6	Runs 290, Runs 292, Runs 295, Runs 299, Runs 311, Runs 315,	291 293, 294 296, 297, 29 301, 302 312, 313, 31 316, 317, 31	8 4 9						
	Signi	Significant Wave Height 40 \$ Beam			Significant Wave Height 60% Beam				
Fro-	Cv=1.5	Cv=3.0	CV=#•0	Cv=1.5	Cv=3.0	Cv=4.0			
quency Hz	Spe	ectral Estima ft²/Hz	tes	Spectral Estimates ft²/Hz					
0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.35 0.39 0.43 0.47 0.51 0.55 0.59 0.63 0.67 0.71 0.75 0.79 0.83 0.87 0.90	0.10 0.66 5.01 14.78 21.62 17.89 12.47 8.45 4.17 3.06 3.43 2.96 2.05 1.94 1.41 0.80 0.53 0.52 0.72 0.76 0.57 0.41	0.03 0.12 0.58 2.44 6.87 8.58 8.13 10.72 9.37 6.35 6.84 6.18 3.73 2.46 2.64 3.49 3.72 3.67 2.22 1.28 2.03	0.11 0.36 1.69 3.47 6.17 7.64 9.18 7.37 5.53 7.29 6.00 4.94 4.77 5.16 3.99 2.60 2.35 2.64 2.82	1.32 10.43 33.95 48.21 42.88 27.02 15.68 11.81 7.04 5.75 5.09 3.57 2.49 2.01 1.67 1.71 1.24 0.78 0.61 0.72 0.65 0.42	0.06 3.51 14.84 27.45 30.75 29.40 25.93 17.75 10.71 8.07 8.40 7.85 5.27 3.09 2.98 3.16 3.07 3.19 2.55 2.10 1.97	0.22 0.52 0.62 3.99 10.03 17.64 20.73 23.00 26.15 20.06 12.84 10.93 5.24 5.88 5.37 3.76 2.84 2.99 3.24 3.67 4.81			
0.98 1.02 1.06 1.10 1.14 1.18	0.24 0.31 0.26 0.23 0.23 0.19	1.30 0.89	2.35 2.77 2.26 0.85	0.16 0.05	1.28 1.09 1.46 1.34	3.71 2.75 1.77 2.13 2.61 2.05			

1 - MODEL HULLS

FIGURE

R-2548

.

DRAG BALANCE & PITCH PIVOT BOX

INSTRUMENTED 120 FT WPB

FIGURE 2

X

-SHEER 0 12' WATERLINE 1 2 UPPER CHINE 10' WATERLINE 3 8' WATERLINE 5 6 LOWER CHINE 6' WATERLINE 10 4' WATERLINE CENTERL **JNE** 2' WATERLINE 1' WATERLINE 2' BUTT 8' BUTT 10" BUTT 6' BUTT 5 BUTT

R-2548

FIGURE 4 110 FT WPB BODY LINES

FIGURE 5 120 FT WPB BODY LINES

ACCELEROMETERS
VERTICAL
OF
LOCATIONS
9
FIGURE

	WPB	FEET FWD AP	16.97	42.9 (LCG)	63.6	84.8	95.4	
	120 FT	BEAMS	0.8	2.02	3.0	4.0	4.5	
	WPB	FEET FWD AP	19.76	37.2 (LCG)	49.38	74.07	98.76	
	110 FT	BEAMS	0.8	1.5	2.0	3.0	4.0	
		ACCELEROMETER	1	2	e	4	5	

#5

ħ4

#3

#2

#1

.

.

.

61

FIGURE 7 110 FT WPB TEST WAVE SPECTRA

Frequency, Hz

FIGURE 8 120 FT WPB TEST WAVE SPECTRA

FIGURE 11 WPB CALM WATER PERFORMANCE

Significant Wave Height 9.9 ft

FIGURE 12 SIGNIFICANT ACCELERATIONS - 110 ft WPB

FIGURE 13 SIGNIFICANT ACCELERATIONS - 110 ft WPB

FIGURE 14 SIGNIFICANT ACCELERATIONS - 120 ft WPB

Significant Wave Height 12.7 ft

FIGURE 15 SIGNIFICANT ACCELERATIONS - 120 ft WPB

FIGURE 16 HEAVE AMPLITUDE RESPONSE IN REGULAR WAVES AT 10 knots

FIGURE 17 PICH AMPLITUDE RESPONSE IN REGULAR WAVES AT 10 knots

FIGURE A 1.1 ACCELERATION VARIANCE SPECTRAL DENSITY 110 ft WPB Accelerometer No. 5 Speed Coefficient (CV) 1.50 Significant Wave Height 40.0% Beam

R-2548

A-3

Acceleration Variance Speatral Density, g**2/Hz

A-10

A-15 .

Acceleration Variance Spectral Density, g**2/Hz

A-22

Acceleration Variance Spectral Density, g**2/Hz

A-28

B-4

B-8

B-10

3. Ø

Acceleration Variance Spectral Density, g**2/Hz

B-20

B-23

Acceleration Variance Spectral Lensity, g**2/Hz

Accelerometer No. 1 Speed Coefficient (CV) 3.00 Significant Wave Height 60.0% Beam

Acceleration Variance Spectral Density, g**2/Hz

· ·• -

C-2

C-6

C-12

C-21

C-23

C-24

C-26

D-4

.

D-8

D-9

D-10

D-13

D-15

D-22

D-24

D-27

D-28

D-29

8 A.

₩ -6

I-6

L

J-2

J-3

J-5

