THE PERFORMANCE OF PLANING HULLS IN TRANSITION SPEEDS

BY DOYOON KIM

UNIVERSITY OF SOUTHAMPTON

LIST OF CONTENTS

- AIM & OBJECTIVE
 - HYDRODYNAMIC PHENOMENA OF PLANING HULLS
- TOWING TANK TEST
 - RESULTS
- COMPUTATIONAL FLUID DYNAMICS ANALYSIS
 - RESULTS
- COMPARISONS
- TRADE-OFF PHENOMENA BETWEEN BUOYANCY & HYDRODYNAMIC LIFT
- CONCLUSIONS

AIM & OBJECTIVE

- INVESTIGATE TRADE-OFF PHENOMENA OF PLANING HULLS IN TRANSITION SPEEDS
 - Resistance, pitch and heave motions
 - TRADE-OFF between HYDROSTATIC & HYDRODYNAMIC support
- IMPROVE EXISTING NUMERICAL MODEL TO ESTIMATE PERFORMANCE OF PLANING HULLS
 - Better prediction of hull motions in intermediate speed regions
- Hull used for the present work
 - Simplified & averaged version of high speed planing craft: removed step and spray rails
 - Racing craft with surface piercing propeller
 - Design max. speed: over 70 knots
 - Prismatic section shape

HALF-BREADTH PLAN

Hydrodynamic phenomena of planing hulls

C_V	Manoeuvring mode	Note
$\simeq 0$	Displacement mode - Entire lift is by buoyant force	Hydrostatic state
~ 0.50	Hydrodynamic effects visualised - Immersed bow: trims up due to the development of the transverse wave	
	system - Negative hydrodynamic lift	
0.50 ~ 1.50	Positive contribution to lift by hy- drodynamic effects - Only slightly separated flow from the forward part of chine - Significant side wetting with im-	Measured resistance is considerably larger than that predicted by Savitsky's planing performance predic-
	mersed bow - At $C_V \simeq 1.0$ total planing lift is approximately equal to hypothetical buoyant force	tion method
	- Above $C_V > 1.0$ positive dynamic reaction increases rapidly	~ .
$1.50 \sim 2.00$	Sufficiently large dynamic lift force observed - Hump trim: maximum trim occurs - Separation of the flow from the hard chine Significant rise of COF, positive	Good agreement be- tween measured result and Savitsky's method
2.00 ~	Bow may immerse again but little effect to total drag	Savitsky's method pro- vides realistic results
1.50 ~ 2.00 2.00 ~	approximately equal to hypothetical buoyant force - Above $C_V > 1.0$ positive dynamic reaction increases rapidly Sufficiently large dynamic lift force observed - Hump trim: maximum trim occurs - Separation of the flow from the hard chine Significant rise of COF, positive trim and emergence of the bow Bow may immerse again but little effect to total drag - Trim decreases again	Good agreement b tween measured resu and Savitsky's method Savitsky's method pr vides realistic results

$$\begin{split} C_{L0} &= \tau^{1.1} \left[0.0120 \,\lambda^{1/2} + \frac{0.0055 \,\lambda^{5/2}}{C_V{}^2} \right] \\ C_{L\beta} &= C_{L0} - 0.0065 \,\beta \,C_{L0}{}^{0.60} \\ C_p &= \frac{l_p}{\lambda \,B} = 0.75 - \frac{1}{5.21 \,\frac{C_V{}^2}{\lambda^2} + 2.39} \end{split}$$

TOWING TANK TEST

- OBJECTIVE: Primary means to investigate the performance of planing hulls
- Conducted in Solent towing tank in Southampton Solent University for three days
- Model
 - LOA 2.0 metre
 - Displacement 24.5 kg
 - GRP sandwich structure
- Measured: Speeds, Heave, Pitch, Resistance, Sideforce and Pressure on the hull
- Speed range: 1.0 m/s to 4.2 m/s
 (Froude Number 0.26 to 1.12)
- Speed interval: 0.4 m/s

TOWING TANK TEST

- Pressure measurement
 - 34 pressure tappings
 - 3 major regions: based on existing experimental data
 - 5 at transom
 - 14 at stern region
 - 15 at bow region
 - Pressure transducers (range: 0~5kPa)

Results: Total resistance

- Total resistance
 - Slightly higher resistance
 - assumed due to existance of pressure tappings and hydroelasticity of the hull model, i.e. hydroaging

Results: Heave (negative dynamic sinkage)

- Heave
 - Positive / negative sinkage lie in the range of uncertainty in measurement

Results: Trim

- Trim (or pitch)
 - Underestimation of trim in transition speeds
 - Assumed due to hydroelasticity and pressure tappings

- **OBJECTIVE:** Achieve sufficient amount of data of pressure acting on the hull
- Investigate reliability of CFD analysis with comparison of hull motion data from towing tank^Ztest Position(Z) (m) -0.15821 -0.12424 -0.090275

D ANALYSIS

-0.056309

-0.022343

0.011623

Mesh generation

- Trimmer mesh with anisotropic density control
- Three grid conditions set: 0.5, 1.0 and 2.0 million
 - Parameter refinement ratio V2
- y+ setting: equivalent to 60 in three speeds respectively

Physics setting

- Speed conditions: three distinct modes of planing hull's motions, i.e.
 - Lowest dynamic sinkage in displacement mode
 - Initiate planing in semi-displacement mode
 - Maximum trim angle in planing mode

Physics setting

- Turbulent model : κ–ω Shear Stress Transport (SST)
- 2 DOF pitch & heave, unsteady transient simulation
- Dynamic Fluid Body Interaction (DFBI) module applied
- Multi-phase volume of fluid method
- Each speed case was set in experimental trim & heave condition
 - For faster convergence

Physics setting

- Constant flow speeds
- Courant number below 1.0
 - Although CD-adapco suggests free from Courant number in implicit transient simulation
- Ramp function applied
 - Fixed motions for initial 0.5 second
 - Fully released after 5 seconds
 - Generally stabilised after 10 physical time-steps

(a) 1.86 m/s

(b) 3.00 m/s

Results: y+ report

Higher y+ value compared to the expected (up to 80)Still within reliable range of y+Highly depends on flow speeds on local hull surfaces

Results: total pressure

Cv ≈ 1.0:

Hydrostatic characteristics

Negligible hydrodynamic effect

Cv ≈ 1.5:

Stagnation line detected

Hydrodynamic effect initiating

Cv ≈ 2.0:

Obvious hydrodynamic effect 'Hump' region immerse

Wave elevation in 1.86 m/s

• Well developed wave system

Wave elevation in 3.00 m/s

• Hydrodynamic effects visualised

Wave elevation in 4.16 m/s

• Violent separation & spray generation

- Reasonable expression of wake generation could be observed
- Well agreed with existing numerical model by Faltinsen
- Limitation: expression of spray by Volume of Fluid method with multi-phase model

Pressure report: longitudinal direction

- 5 longitudinal planes along x-axis
- Same distance from centreline with experiments

Pressure report: transverse direction

• Over 30 transverse sections with 50mm interval

R-CCM+

• Same distance from transom stern with experiments

Pressure report: 1.86 m/s

Pressure report: 3.00 m/s

Pressure report: 4.16 m/s

Comparison: 1.86 m/s

Comparison: 3.00 m/s

Comparison: 4.16 m/s

Comparison: 1.86 m/s

Comparison: 3.00 m/s

Comparison: 4.16 m/s

Comparison: Heave (negative dynamic sinkage)

Speed [m/s]

2.5 3 Speed [m/s]

Comparison: Frictional coefficient

Comparison: Lift trade-off

Results: Resistance break-down

Results: Lift trade-off

Results: Lift distribution

- Hydrostatic characteristics
- Slightly trim
- Cv ≈ 1.5:
 - Stagnation line detected
 - Hydrodynamic effect initiating
- Cv ≈ 2.0:
 - Obvious hydrodynamic effect
 - 'Hump' region immerse

Results: Lift distribution

- Cv ≈ 1.0:
 - Trim due to negative hydrodynamic suction pressure
- Cv ≈ 1.5:
 - Centre of Buoyancy retreats due to trim angle
 - High suction pressure around transom
- Cv ≈ 2.1:
 - Centre of Buoyancy further backward
 - Centre of Hydrodynamic lift comes near COG
 - Indicating further speed increase resulting in stabilised attitude

Conclusion: Pressure & attitudes

- At low speed well conformed pressure reports
- Slight overestimation of hydrodynamic effects in high speeds
- Reasons:
 - Hydroelasticity of towing tank model: absorbing hydrodynamic lift
 - Existence of pressure tappings on towing tank model: reduced hydrodynamic effect
 - Limitation of k-w SST turbulent model: transom separation

Conclusion: Resistance

- At low speed in good accordance with experimental data
- Growth in underestimation of total resistance as speed increases
- Reasons:
 - Hydroelasticity of towing tank model: absorbing hydrodynamic lift hence higher wetted surface area in the experiment
 - Existence of pressure tappings on towing tank model: reduced hydrodynamic effect hence additional resistance incurred
 - Limitation of k-w SST turbulent model: transom separation