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Abstract 

 

This article discusses the application of Genetic Algorithms to ship structural optimization and the 

treatment of variables with a degree of uncertainty. The variable uncertainty is included in the 

simulation using a Monte Carlo approach. The software ModeFrontierTM is applied in the case study 

for a double-hull tanker midship section design. 
 

1. Introduction 

 

Optimization problems are problems in which one seeks to minimize or maximize a real-valued 

objective function by systematically choosing the values of real or integer variables from within an 

allowed set, which may be subject to constraints. Many real problems present uncertainty in their 

variables: They are inherent to the majority of physical, chemical, biological, geographical systems, 

etc. Stochastic optimization methods are optimization algorithms which incorporate probabilistic 

(random) elements, either in the problem data (the objective function, the constraints, etc.), or in the 

algorithm itself (through random parameter values, random choices, etc.), or in both. The concept 

contrasts with the deterministic optimization methods, where the values of the objective function are 

assumed to be exact, and the computation is completely determined by the values sampled so far. 

There are many stochastic optimization techniques. We will use here Genetic Algorithms (GAs) and 

Monte Carlo simulation. 

 

Our objective is to minimize the section area of a double-hull tanker ship as a measure of weight. We 

use classification society based rules and investigate the possibility of uncertainty in some plate 

thickness. The main origin of the uncertainty could be the shipbuilding process and the corrosion 

behavior. 

 

2. Methodology 

 

2.1. Genetic algorithms 
 

Genetic Algorithms are adaptive heuristic search algorithms built on the idea of genetics, natural 

selection and evolution. The basic concept of GAs is designed to simulate processes in natural system 

necessary for evolution, specifically those that follow the principles of survival of the fittest. As such 

they represent an intelligent exploitation of a random search within a defined search space to solve a 

problem.  

 

The selective mechanisms carry out the changes that determine the evolution of a population over the 

generations. Such changes can occur due to the interactions between the individuals or due to the 

influence of the environment on the individual. Three basic mechanisms derive from this: crossover, 

reproduction and mutation. They are called genetic operators and are responsible for carrying out the 

evolution of the algorithm. The application of these operators is preceded by a selection process of the 

best adapted individuals, which uses a function called the fitness function (a.k.a. adaptation function). 

 

An implementation of a genetic algorithm begins with a random population of chromosomes, i.e. the 

initial population can be obtained by choosing a value for the parameters or variables of each 

chromosome randomly between its minimum and maximum value. Then each individual is evaluated 

through the objective function. The fittest individuals (with the best adaptation values) have the 

greatest probability of reproducing (selection). Then genetic crossover and mutation operators work 

on the ones selected. The new individuals replace totally or partially the previous population, thus 

concluding a generation. 
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The selection operator allows the transmission of some individuals from the current population to the 

next one, with greater probability for the individuals with a better performance (fitness value), and 

with less probability for individuals with a worse performance. Crossover operators interchange and 

combine characteristics of the parents during the reproduction process, allowing the next generations 

to inherit these characteristics. The idea is that the new descendent individuals can be better than their 

parents if they inherit the best characteristics of each parent. The mutation operator is designed to 

introduce diversity into the chromosomes of the population of the GA, in order to ensure that the 

optimization process does not get trapped in local optima. In addition to these, there are other factors 

that influence the performance of a GA, adapted to the particularities of certain classes of problems. 

 

2.2. Monte Carlo simulation 
 

The present study uses the Monte Carlo simulation technique to deal with uncertainty concerning 

variables in optimization. The Monte Carlo method is a simulation technique used to solve probabilis-

tic problems in which the input variables have probability distributions by means of a random process 

and obtaining as a result the distributions of probabilities of the output variables. The random process 

used consists in generating random numbers to select the values of each input variable for each 

attempt. This process is repeated many times, obtaining many results from which one builds a 

probability distribution of the output variables. 

 

A random variable X has a normal distribution, with mean µ (-∞ < µ < +∞) and variance σ
2 

> 0, if 

there is a density function: 
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The notation X ~ N (µ, σ
2
) indicates that the random variable X has normal distribution with mean µ, 

and variance σ
2
. 

 

The mean of the normal distribution is determined, making z = (x – µ)/ σ in the following equation: 
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The normal density appears when integrating the first integral, with µ = 0 and σ
2 

= 1, with this value 

being equal to one. The second integral has a zero value. 
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The variance is determined, making z = (x – µ)/ σ in the following equations: 
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Applying in the density equation an average equal to zero and variance 1, and making Z~N (0,1), one 

has a standardized normal distribution. 
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The corresponding distributed function is given by: 
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And one can say that: 
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For example, suppose that X~N (100,4) and we wish to find the probability of X being less than or 

equal to 104; that is to say, P(X≤104)=F(104). Standardizing the point of interest x = 104, we obtain: 
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( ) ( ) 9772.02104 == φF                                                                                                      

 

Thus the probability of the original normal random variable X, being less or equal to 104, is equal to 

the probability of the standardized normal random variable being less or equal to 2. There are tables 

where we can find accumulated standardized normal probability values for various values of z. 

 

3. Double Hull Tanker Midship Section 

 

The 1978 MARPOL Protocol introduced the concept known as protective location of segregated 

ballast tanks. The ballast tanks (which are empty on the cargo-carrying leg of the voyage and only 

loaded with water ballast for the return leg) are positioned where the impact of a collision or 

grounding is likely to be greatest.  Thus the amount of cargo spilled after such an accident will be 

greatly reduced. The 1983 MARPOL amendments ban the carriage of oil in the forepeak tank - the 

ship's most vulnerable point in the event of a collision. 

 

In 1992 MARPOL was amended to make it mandatory for tankers of 5000 dwt and more ordered after 

6 July 1993 to be fitted with double hulls, or an alternative design approved by IMO (Regulation 13F 

(regulation 19 in the revised Annex I which entered into force on 1 January 2007) in Annex I of 

MARPOL 73/78). The requirement for double hulls that applies to new tankers has also been applied 

to existing ships under a program that began in 1995 (Regulation 13G (regulation 20 in the revised 

Annex I which entered into force on 1 January 2007) in Annex I of MARPOL 73/78).  All tankers 

would have to be converted (or taken out of service) when reaching a certain age (up to 30 years old). 

This measure was adopted to be phased in over a number of years because shipyard capacity is limited 

and it would not be possible to convert all single hulled tankers to double hulls without causing 

immense disruption to world trade and industry. 
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This paper uses as case study the midship section design of a double-hull tanker to highlight the 

optimization procedure considering uncertainty in some variables. Optimization can be applied in 

many design phases, including preliminary design and detailed design. We focus here on the 

structural design phase, in particular the section modulus optimization under uncertainty. We assume 

the ship as beam. The section modulus is directly associated with the beam strength and the geometric 

material distribution. 

 

SM = I / y                                                                                    (8) 

 

I [m
4
] denotes the moment of inertia and y [m] the distance from the neutral axis. The minimum and 

required SM following ABS (American Bureau of Shipping) rules are established in part 3, chapter 2, 

section 1 item 3.7.1 b as follows: 

 

                                                                                       (9) 

  

                                                    
 

C2 = 0.01 

 

The required SM is calculated by: 
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Mt denotes the total bending moment, composed of the calm-water moment Msw and the wave 

moment Mw. fp = 17.5 kN/cm
2
. The wave moment is calculated by: 

 

   
 

                                                            (11) 

 

With k1 = 110 and k2 = 190. 

  

We must also calculate the calm-water moment in hogging and sagging condition. We use the DNV 

(Det Norske Veritas) rules to calculate the Msw moment: 

 

                                         (12) 

 
 

CWU = Cw for unrestricted service, with Cw =  0.0792 L   for L ≤ 100 

      10.75 – [(300-L)/100]
3/2

  for 100 < L < 300 

      10.75    for 300 ≤ L ≤ 350 

      10.75-[(L-350)/150]
3/2  

for L > 350 

 

4. Case Study 

 

To illustrate the application of optimization under uncertainty techniques, we select a ship section 

modulus calculation. This normally is done in a spreadsheet. Fig. 1 presents the section used as case 

study. The main elements selected to optimize in this case study were: bottom, double bottom, deck 

side hull, side and bilge thickens plates.  
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Fig. 1: Double Hull Tanker Midship Section 

 

The optimization algorithm used is a single and multi objective simulated annealing (MOSA) 

algorithm. The main features are: 

 

a) Obeys boundary constraints on continuous variables 

b) Allows user defined discretization (base) 

c) Enforces user defined constraints by objective function penalization 

d) Allows concurrent evaluation of the n independent points 

 

Fig. 2 presents the ModeFrontier
TM

 model showing the variables, objectives and the mathematical 

model built in Excell
TM

.  

 

 

 
Fig. 2: ModeFrontier

TM
 optimization model 

 

The mathematical model includes eight variables and two objectives. The cost objective is represented 

by area (area of material or sectional material area) and the second objective represents the ratio 

between the calculated section modulus and the required section modulus. This indicates a safety 

aspect. Uncertainty was included in the eight variables with normal distribution with standard 

deviation of 5% in each thickness plate. The mathematical model is written in the Excell
TM

 

spreadsheet.  

 

Genetic Algorithms are always time consuming and it was not different in this case. The model ran in 

a computer with 2 processors Quad-core (2.27 GHz) and took 3 hours and 10 minutes to calculate 

2250 feasible models (in robust approach – which runs 10 times in uncertainty procedure) and 



 53 

indicates the Pareto frontier with 42 designs. Fig. 3 shows the Pareto frontier for mean inertia and 

mean area ratio. Fig. 4 shows the bottom and deck thickness relation for all feasible designs. The 

selected designs in the Pareto frontier are indicated in green. 

 

 
Fig 3: Mean Inertia and mean area Pareto frontier 

 

 
Fig 4: Mean Deck thickness and mean bottom thickness 

 

Deb (2001) highlights the necessity to find a unique solution in almost all engineering and practical 

problems. The Pareto frontier was extracted from the feasible designs, Fig. 5. As a typical multi-

objective problem, the increase in safety (mean ratio) means an increase in mean material area. The 

decision maker must select the best design and other aspects should also be considered. Deb (2001) 

called this phase as “Choose one of the obtained solutions using higher-level qualitative information”. 

 

To illustrate the final process, Fig. 5 highlights four designs. Design 1 shows the lowest ratio and also 

the minimum mean area. This can be established as the most “optimistic” design. Design 4 in the 

other hand presents the highest safety aspect but also the most expensive. Design 2 is a good choice 

with 50% of “safety factor” and a very low mean area.  
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Design 3 with 5% more area (17000 to 18000) increases the “safety factor” from 50% to 100%. Also 

increasing the area after the point indicated by design 3 does not indicate a substantial gain in the 

“safety factor”. Table I presents the main elements of designs 2 and 3. 

 

 

Fig 5: Feasible designs in Pareto Frontier 

 

Table I: Main Elements with mean, maximum and minimum values 

 

DESIGN ID (42 Feasible Designs in Pareto Frontier) 2186 2014 

Long. Bulkhead Max 13 12 

Long. Bulkhead Mean 12 11 

Long. Bulkhead Min 11 10 

Long. Bulkhead STDEV 1 0 

Bilge.Max 15 13 

Bilge.Mean 14 11 

Bilge.Min 13 10 

Bilge.STDEV 1 1 

Deck Plate Max 22 32 

Deck Plate Mean 20 30 

Deck Plate Min 18 26 

Deck Plate STDEV 1 2 

Bottom Plate Max 13 13 

Bottom Plate Mean 12 12 

Bottom Plate Min 11 11 

Bottom Plate STDEV 1 1 

Double Bottom Plate Max 5 6 

Double Bottom Plate Mean 5 6 

Double Bottom Plate Min 4 6 

Double Bottom Plate STDEV 0 0 

Side Plate Max 14 17 

Side Plate Mean 12 16 

Side Plate Min 11 14 

Side Plate STDEV 1 1 

Double Side Plate Max 10 11 

Double Side Plate Mean 10 10 

Double Side Plate Min 9 9 

Double Side Plate STDEV 0 1 
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Centre Girder.Max 29 28 

Centre Girder.Mean 27 26 

Centre Girder.Min 25 24 

Centre Girder.STDV 1 1 

area.Max 16736 18912 

area.Mean 16534 18617 

area.Min 16034 18136 

area.STDEV 242 309 

ratio.Max 1,53 2,12 

ratio.Mean 1,46 2,00 

ratio.Min 1,34 1,77 

ratio.STDEV 0,06 0,26 

 

5. Conclusion 
 

The method presented here in indicates the possibility to handle optimization problems where 

uncertainty should be attributing to any variable. The Monte Carlo method associated with genetic 

algorithms, as optimization procedures, worked well to solve the mathematical model with 

uncertainty.  

 

The problem we faced was the time consumed using a common computer with duo core processor. 

The application for a section modulus calculation although simple, highlights the main methodology 

appliance. Naval Architecture designer can expect an interval of confidence for his section modulus 

and also evaluate the hull resistance characteristic in a risk approach. 
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