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Computations of the propeller open water charactestics
using the SOLAGA computer program.
Predictions of the cavitation phenomenon

PAWEL DYMARSKI
Ship Design and Research Centre S.A. (CTO -S8hip Hydromechanics Divisiol5, Szczecinska St.,
80-392 Gdansk

This paper presents the theoretical model and rioatenethods which are applied in computer-pro
gram SOLAGA for computations of viscous flow arowstdp propeller as well as for modelling of cavi
tation phenomenon. The model presented in thelaiidased on mass conservation equation and Rey
nolds averaged NaviStokes equation, the turbulent viscosity is apprated with the use of Spalart
Allmaras turbulent model. The numerical model us®dsolving the system of main equations is based
on Finite Volume Method. The procedures for caigtapredictions applied in the SOLAGA program are
based on travelling bubble model. This paper ptssifre results of computations K¢, Kq characteris
tics for conventional and skewed propeller. Theiltssare compared with the data obtained from éxper
ment. The results of computation of cavitationtfor skewed propeller are presented as well.
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1. Introduction

The main target of the paper is to show state of developmentrgfuter program
SOLAGA, especially its ability to solve problems connecteith wiscous flow around
ship propeller with the use of periodic boundary conditions asasetb present the
results of computations of cavitation. Program SOLAGA has blegeloped in the
framework of research project supported by Polish Committeeieh&. It has been
also the main subject of the author's PhD thesis.

2. Governing Equations
The closed system of motion equations, derived for incompresagiiide i8 based

on the momentum and mass conservation laws. An integral formagd conservation
equation formulated for control volungewith a surface& reads

Ipv-ndSzo, (1)

and the conservation equationi<h momentum component has the following form:
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[ puae+ [ puy-nds=[(c,i, - pi,)-nds, 2)
ot Q N N

where

v is velocity vector,

u; —i-th velocity component,

p — pressure,

p — density,

n — unit vector normal t& surface,

i; — i-th component of Cartesian unit vector,

7j IS @ viscous stress tensor.

When the flow is turbulenty andu; refer to mean velocity vector and meiatin
velocity componentp is a mean value of pressure. The wamkari denotes average
in a time period, which is long compared to the period of turbulent osmiltafb].

The viscous stress tensgiis specified by Boussinesq approximation [1], [5]:

T = 2 p + w1)S;, (3)

where

1 is a molecular viscosity,

1 1S the turbulent viscosity,

S; is the mean strairate tensor.

The turbulent viscosity is calculated with the use of Spalhmaras turbulence
model [1], [5].

3. Cavitation

The cavitation model is based on travelling bubble method [4]. #isismraed in the
model, that a large number of micro gas nuclei is present imgtind.IWhen pressure
value decreases below a specified critical level, the rasfiumicleus starts to grow
rapidly and — according to the model — this is the inception of cavitation.

To determine behaviour of a single bubble the pressure field, tyeked (or
bubble trajectory) and initial size of nucleus have to be given.

The single bubble dynamic is described by Rayl&ttasset equation:

2A
AR 3(dRY , u dr Pt R TP P
——+= + = = , (4)

d2 2\dt) pR dt p
where

Ris a radius of the bubble,

tis time,
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p is pressure far from the bubble,

p, — vapour pressure,

py — pressure of the gas in the bubble,

A — denotes the surface tension coefficient.

When spectrum of nuclei at inflow is given (i.e. number of nuol@ given range
of radius) one can calculate nuclei distribution in every positenthe domain. Preb
ability of cavitation phenomenon can be approximated by the following simplified for
mula:

P, = cut(Z%nR?nl) , (5)

i

where
n; is the number of nuclei of siZ inside the unit volume and function ojt{s
defined as:

cut(x)= {x for x <1, 1 for x> 1}. (6)

4. Numerical Methods

The solution algorithm for solving the viscous flow is based aritd-iVolume
Method. The Finite Volume Method is based on integral form ofa@eaton equa
tions. The solution domain is subdivided into a finite number of cbntdumes, and
the conservation equations are applied to each of them. The cdommltaiode at
which the values of field functions are to be calculated diethe centroid of each
control volume (CV).

To express the value of each field quantity on CV surface tapuiinterpolation
methods are used. In the presented program two methods are applietd W8
(first order) and linear interpolation CDS (second order). Seidad volume integrals
are approximated using midpoint quadrature [3]. As a result ofliB&fetization ap
proach, one obtains an algebraic equation for each CV. The sybtmmations (after
linearization) is solved using an iterative method. Twotigms for solving the sys
tems of algebraic equations are used: ICCG for symmetiersyg and BCGSTAB
for nonsymmetric systems [3].

When the problem of flow around a propeller is solved with theofisetating
grid, the problem becomes unsteady. The time integral in the iN&iadkes equation
is solved with the use of implicit Euler method.

a. Rotating grid

Computation of flow around ship propeller requires the use of mgtatid or re
tating coordinate system. In the first method, the conservatignations have to be
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modified in order to take into account a relative velocitiween grid (control vel
umes) and coordinate system. The mass conservation of equatsindier rotating
control volume in integral form reads

[p(v=v,)nds, ™

where

Vp = ® X I'y iS a velocity of CV boundary,

o — rotational velocity of the grid,

I, — position vector of a point &

The momentum conservation equation fdh momentum component takes the
following form:

ijpu,.dgz+jpu,.(v—vb)-nds=j(r,.jij—pi,.)-nds. (8)
dtQ S S

b. Periodic boundary conditions

In case of computation of open water characteristic of a peopilis possible to
use periodic boundary conditions (Figure 1). This approach reducsizere domain
z—times (where z is a number of blades).

"Right"
periodic periodic
boundary boundary

Fig. 1. Periodic subdomain and periodic “left” dnight” boundary conditions.
The periodic subdomain covers only a single bkaatkits size iz times lower
than size of whole domairz (s a number of blades)

At the periodic boundaries we have the following conditions:
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PL=Pr,  @L=¢r  VL=QrVR 9)

where
¢ is a scalar quantity (i.e.: turbulent viscosity),
Qr. is a transformation matrix frofiright” Rto “left” L periodic boundary:

1 0 0
Qi =|0 cosa -sina|, (10)
0 sina cosa

o =2mn/zis an angle between left and right periodic boundary.

Non-matching interfaces

From the numerical point of view periodic boundary condition is asrfate be
tween two subdomains (Figure 25, In SOLAGA solver, the grid at periodic inter

face may be nomatching, it allows to build almost orthogonal grids with better

structure thafimatching meshes (Figure 2c, d).

a)

/

Fig. 2. Scheme of matching (a) and reratching(b) connections at periodic boundary.
Difference between structure of periodic matchicigahd normatching grid (d)
for calculation of flow around propeller blade
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5. Computations

Computations were carried out for two propeller models: modelcAnventional
propeller and model B — skewed propeller. Computations were catregith rotat
ing grid and with the use of periodic boundary conditions with-matching inter
faces. The details of computational settings are preseniebia 1.

Table 1. Computational settings

Time step 0.0001 s

Number of iterations per time step3

Interpolation scheme CDS (blending factor 0.8)
Time integral approximation Implicit Euler

a. Test case 1 — model A. Flow around conventional propeller

Geometry of the model A. Computational conditions

Table 2. Geometry of propeller model A

Type Fixed pitch
No of blades 4

Diameter 183.90 mm
Pitch ratio at 0.7 radius 0.7413
Expanded area ratio 0.574

Hub ratio 0.175
Blade width at 0.7 radius 55.79 mm

Table 3. Open water test and computational corrditio

Test conditions Computational conditions
Propeller revolutions 28.0 1/s 28.0 1/s
Propeller velocity, 0.0-4.2m/s 1.0; 2.0; 3.0; 4.0n/s
Advance coefficiend 0.0-0.816 0.194; 0.388; 0.583; 0.777

The domain size and grid structure

Size of the domain: the inlet is located B.3ipstream from the propeller, the out
let is 2.2D downstream, the diameter of the domain is2.9he boundary faces of
the domain are presented in Figure 4a.

The grid was generated with the use of program ANSYS ICED Eexa. The
grid is hexahedral and blogtructured, number of C¥ (per one blade) is 974 424.
The grid structure on blade, hub and periodic surface is shown in Figure 4b.

Results of computations

Pressure distribution over the suction and pressure side qirdpeller blade is
presented in Figure 5.
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Fig. 4. a) Model A: domain of computations, b) Gstducture on the propeller blade,
hub and periodic surface

The comparison of the calculated and experimental valués afidKq for several
values of] is presented in Figure 6a.

Pressure [Pa]
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Fig. 5. Pressure distribution over the suctiontlehd pressure (right)
side of the conventional propelldr= 0.388
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Fig. 6. a)Ky, Kq characteristics of model Aconventional propeller,
b) pressure distribution at the domain intersestids 0.388
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b. Test case 2 model B. Flow around skewed propeller

Geometry of the model B. Computational conditions

Table 4. Geometry of Propeller model B:

Type Controllable pitch

No of blades 5

Diameter 265.73 mm

Pitch ratio at 0.7 radius 1.4281

Expanded area ratio 0.820

Hub ratio 0.3026
Table 5. Test and computational conditions:

Test conditions: Computational conditions:

Propeller revolutiona 11.01/s 11.01/s

Propeller velocity, 0.5-4.1m/s 1.0; 2.0; 3.0; 4.0n/s
Advance coefficiend 0.1711.403 0.342; 0.684; 1.026; 1.368

Table 6. Data for computations of cavitation

Propeller velocity,

Advance coefficiend
Reference pressure (at inflop)
Number of nuclei (at inflowin,
Radius of nuclei (at inflowiRy

2.0m/s
0.684

0.04; 0.06; 0.08; 0.10 ba
0.1 1¢ Unt
10.010%m

r

The domain size and grid structure

Size of the domain: the inlet is located D.Qpstream from the propeller, the out
let is 1.9D downstream, the diameter of the domain is2.4 he boundary faces of

the domain are presented in Figure 7a.

Fig. 7.a) Model B: domain of computations, b) grid struetan the propeller blade,
hub and periodic surface
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The grid was generated with the use of program ANSYS ICHD Eexa. The
grid is hexahedral and blockructured, number of C\¢ ( per one blade) is 1 086 176.
The grid structure on blade, hub and periodic surface is shown in Figure 7b.

Results of computations

Pressure distribution over the suction and pressure side girdipeller blade is
shown in FigureB. The comparison of the calculated and experimental valuks of
andKq for severall is presented in Figure 9a, however picture 9b shomgssure dis
tribution inside the domain. The low pressure area whichrésched behind a blade
tip is caused by a strong vorticity of tip vortex. The tip ewris visible even far than
180 degrees behind the blade.
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Fig. 8. Pressure distribution over a suction (laftyl pressure (right)
side of the skewed propeller= 0.684
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Fig. 9. a)Kr, Kq characteristics of the skewed propeller (model B),
b) pressure distribution at intersections of thedm,J = 0.684
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Figure 10 presents distribution of probability of cavitatRya, at blade surface as
well as the shape of isosurfaeg,, = 0.5 which can be treated as a face of large scale
cavitation structures, e.g.: laminar cavitation, tip vortexitaaon or large bubbles.
Bubble cavitation can be expected in regions where functiorobpility takes a value
between about 0.1 and 0.5. The presented model does not predict secondarfy form
cavitation, e.g.: cloud cavitation.

Open water cavitation tests for the propeller are planned tarpied out in the
near future. Up to now, the presented cavitation model has badatedlon an ex
ample of hydrofoil [2].

— /Tlp vorlex cavitation

Large bubbles or/and \
laminar cavitation

Peav

a)p = 0.04 bar b) p=0.06 bar

¢) p=0.08 bar d)p=0.10 bar

Fig. 10. Computational predictions of cavitatiorepbmenon on propeller blade for advance coefficient
J=0.684 and various values of reference pressumepitiures shows probability of cavitatiBga, on
blade surface as well as isosurféggy = 0.5

6. Conclusions

1. The calculated pressure distribution over the blades girtmellers is smooth,
without any numerical oscillations, also there are no pressseillations near peri
odic, nonmatching boundaries.
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2. The calculated propeller characteristics: thiysiand torqueq coefficients are
in good agreement with the experimental results for both convehtso skewed
propeller.

3. Program SOLAGA can be also a good tool for the tip vortex modellihe low
pressure area caused by vorticity is clearly visible farmaethe propeller blade (Fig
ure 9 b). Close examination of his figure shows the core of thexvoreated by the
next blade.

4. Figure 10, in which the probability of cavitation is presented, shbes strue
tures of cavitation like those observed on similar propetiedels in cavitation tunnel.
One can distinguish the elongated structure of tip vortex cawitathich spreads
from leading edge, through the tip, to the slipstream (Fifj0ae-10c). The regions are
also visible where bubble cavitation may appear, wRegg ranges from about 0.1 to
0.5 (Figure 18, b) as well as large area where laminar or/and developed bubble
cavitation can be expected (Figure 10a).
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Obliczenia charakterystyk srub swobodnych przy uzyciu programu komputerowego
SOLAGA. Prognozowanie zjawiska kawitacji

Niniejszy referat prezentuje pokrétce model teaaty oraz metody obliczeniowe zasto
sowane w programie komputerowym SOLAGA stuzacym do obliczen optywu lepkiego $ruby
okretowej oraz do wykonywania obliczeniowych prognoz wystepowania zjawiska kawitacji.
W pracy zastosowano model cieczy lepkiej opartyGwenaniu zachowania masy oraz réwna
niu zachowania pedu (réw. Naviera-Stokesa) w formie usrednionej Reynoldsa. Lepkos¢ turbu-
lentna aproksymowana jest przy uzyciu modelu turbulencji Spalarta-Allmarasa. Model nume
ryczny zastosowany do rozwigzania glownego uktadu rownan bazuje na metodzie objgtosci
skonczonej. Metodg prognozowania zjawiska kawitacji oparto na modelu unoszonego pgche-
rzyka. W artykule przedstawiono ponadto wyniki obliczen w formie rozktadu ci$nien oraz cha
rakterystykKy, Kq sruby, ktore zostaty porownane z danymi do§wiadczalnymi. Przedstawione
zostaty rowniez wyniki obliczen kawitacji na skrzydle sruby okrgtowe;.



