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Abstract

High-speed propulsor blades often experience moderate to substantial amounts of
unsteady cavitation, and up to now have been designed via design methods for non-
cavitating blades combined with methods for the analysis of cavitating flows in a
trial-and-error manner.

In this thesis a numerical non-linear optimization algorithm is developed for the
automated, systematic design of cavitating blades. The objective and constraint func-
tions in the optimization process are expressed in terms of the design variables via
linear approximations of the results from an existing lifting-surface analysis method,
in the first stage of the algorithm, and quadratic approximations in the final stage.
In this way the number of required geometries to be analyzed and the associated
computational effort are minimized. The developed methodology is implemented in
a modular manner so that future improvements in the modeling of cavitating flows
can be readily incorporated. The proposed algorithm is validated with several known
non-linear optimization test problems.

The method is first applied to the design of efficient two-dimensional partially
and supercavitating hydrofoil sections and the results are compared to those from a
previously developed optimization procedure.

Then, the method is applied to the design of propeller blades in uniform flow.
The blade mean camber surface is defined via a cubic B-spline polygon net in order
to facilitate the handling of the geometry, and to reduce the number of the design
parameters. Non-cavitating blade geometries designed by the present method are
directly compared to those designed via an existing lifting-line/lifting-surface design
approach.

Finally, the optimization algorithm is applied to the design of cavitating blades in
non-uniform flow. The objective of the design is to obtain maximum propeller effi-
ciency for given conditions by allowing controlled amounts of sheet cavitation. Several
constraints on the unsteady cavity characteristics, such as the area of cavity planform
and the amplitudes of the cavity volume velocity harmonics, are incorporated in the
optimization technique. The effect of the constraints on the efficiency of the propeller



design is demonstrated with various test cases.
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Department of Civil Engineering, The University of Texas at Austin
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KT thrust coefficient : = T/(pn2 D 4)

KTo required thrust coefficient

KT circumferential mean KT
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p pressure on the blade
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Pv vapor pressure
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r radial coordinate
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U0o inflow velocity
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V cavity volume
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a step length in the quasi-Newton method

F circulation
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e tolerance for convergence

r7 propeller efficiency: = (J/27) (KT/KQ)
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Chapter 1

Introduction

Cavitation has always been a major concern to the propeller designers and researchers

mainly because of its undesirable nature. In most applications, marine propellers

operate in a spatially non-uniform flow field behind the hull of an ocean vehicle. This

non-uniformity causes periodic growth and collapse of cavities which result in cyclic

pressure fluctuation on the hull and vibratory forces on the propeller shaft. When the

cavity collapses, extremely high pressures arise either in the vicinity of the trailing

edge of the blade or on other hydrodynamic devices (e.g. rudder) downstream of the

blade. These pressures can often lead to pitting and serious erosion on the propeller

blade. In addition, excessive fluctuating pressures on the hull may cause undesirable

noise or even structural failure of the hull panels.

In the past, the propeller design philosophy has been to avoid cavitation for the

widest possible range of operating conditions. However, the recent demands for higher

ocean vehicle speeds and higher propeller loads have made this design philosophy

practically impossible to achieve. The performance of a propeller designed to be

cavitation free decreases appreciably once it starts cavitating. Most importantly,

the efficiency of a non-cavitating high speed propeller is relatively low due to large

frictional losses associated with the required large blade area.

The alternative is to allow for controlled amounts of sheet cavitation, which is less

harmful than other types of cavitation, and design propellers with small blade area.



1.1 Objectives

The objective of this work is to develop a computationally efficient optimization

method for the automated design of cavitating lifting surfaces. Analysis methods are

used in a systematic way via coupling with a numerical optimization algorithm.

An important consideration in the course of development is to implement the

methodology in a modular form so that upgrades in the analysis method or new

design constraints can be readily incorporated.

1.2 Previous Research

1.2.1 Two Dimensional Section Design

Design of efficient two dimensional sections is required in many applications such as

airplanes, hydrofoil crafts, and sailboat keels. Most of the current methods for the

design of cavitating propellers are essentially based on the design of two dimensional

cavitating blade sections.

The two dimensional design is usually performed by applying a two dimensional

analysis method in a trial-and-error manner until the section with the "smallest" drag

is found for the specified design condition, as in Kikuchi et al [36], Kamiirisa and Aoki

[30], Vorus and Mitchell [73], and Ukon et al [69].

Tulin was the first to apply linearized cavity theory for the analysis [68] and sys-

tematic design [67] of supercavitating hydrofoils at zero cavitation number, by using

a conformal mapping technique. He expressed the foil geometry (i.e. the pressure side

of the supercavitating sections) and the foil lift and drag in terms of a Taylor series

expansion. Optimum sections (i.e. sections with the highest lift to drag ratio) were

determined by considering the first two or five terms in the Taylor series expansion.

The two-term supercavitating sections are widely known as the Tulin sections, and

the five-term sections as the Johnson [29] sections. These sections are optimum only

in the limit of zero cavitation number.

Some design methods are based on charts, like those of Rutgersson [59], which



are obtained from systematic model tests on cavitating hydrofoils. This approach

works well for design conditions, for which the charts are available. However, the

applicability of the method is limited to geometries which are close to those in the

charts.

A popular way of designing hydrofoil sections is the so called inverse design

method, where a designer specifies the pressure distribution on the foil and solves

for the foil geometry. This method has been applied for example to aerofoils in tran-

sonic flow by Giles and Drela[23], and to super-cavitating hydrofoils by Ukon et al[69].

However, it is difficult, especially in the case of cavitating hydrofoils, to know a priori

the pressure distribution that leads to a desired global performance of the foil. As a

result, this method relies highly on the designer's skill.

An alternative to the inverse design methods, is a numerical optimization technique

used in combination with a flow analysis method, as described by Dulikravich[17]. The

analysis method is used first to evaluate the characteristics of an initial foil geometry.

Then, the optimization algorithm searches for an improved foil geometry, which meets

all the specified requirements, using information provided by the analysis method. In

most cases, analyzing the flow field is much more time consuming than the numerical

optimization process. This is in particular true when the analysis method is based

on computationally intensive Navier-Stokes equation solvers or coupled Euler and

boundary layer equation solvers, like those implemented by Lee and Eyi [48], and Eyi

et al [20], respectively. An efficient way of using an analysis code coupled with the op-

timization algorithm, is to approximate the foil characteristics from a relatively small

number of runs of the analysis code, and update them, as the optimization iterations

proceed, with additional analysis code runs. This approach has been applied to the

design of airfoils by Vanderplaats [72].

Black [4] used a numerical optimization technique combined with a coupled invis-

cid panel method/boundary layer method for the hydrofoil design. His attention was

on the cavitation-free performance, which is unique for hydrofoils. He compared his

designs to those of the inverse design method of Eppler and Shen [19, 62] and Shen

[61].



Kinnas and Mishima [41] applied a numerical optimization technique to the design

of partially cavitating sections. For any cavity length, the lift and drag coefficient, the

cavitation number, and the cavity area are expressed in terms of quadratic expansions

of the parameters that define the foil geometry, and the operating angle of attack.

The coefficients of these functions are obtained, in a least squares sense, from the

results of applying a non-linear cavity analysis method to a wide range of values of

the involved parameters. The foil geometry and angle of attack are determined from

the optimization algorithm by minimizing the drag for the specified requirements and

constraints. The method was also applied to the design of supercavitating hydrofoils

by Kinnas et al [43] and Mishima and Kinnas [52].

1.2.2 Propeller Blade Design

Propeller design based on experimentally obtained charts are still in common use for

typical ship propellers. They are also useful in helping the designer understand the

influence of various factors to the propeller performance. Among those charts is the

B-series of MARIN [71].

Current theoretical design involves two steps.

1. The optimum radial circulation distribution is determined to produce the de-

sired forces.

2. For the radial circulation and a given chordwise load distribution, the actual

blade geometry is designed to develop this load distribution.

Betz [3] established the linearized condition for the minimum kinematic energy loss of

a propeller in uniform inflow. He analyzed the trailing vortex system far downstream

of the propeller and found the Betz condition, that the induced inflow on the lifting

line must have a radially constant pitch.

Goldstein [24] studied the finite number of trailing vortex sheets and obtained the

Goldstein reduction factor, which is the ratio of the circumferential mean tangential

induced velocity and the local tangential induced velocity at the lifting line. The

Goldstein factor is a function of the number of blades, the pitch to diameter ratio of



the helix, and the radius r/R. Computed values for a number of their combinations

were published by Tachmindji and Milan [66].

Kramer [44] used the Goldstein factor to compute systematically the thrust co-

efficient for different number of blades, advance coefficient, and ideal efficiency and

made a concise chart, known as the Kramer diagram.

Eckhart and Morgan [18] published a design method which utilized the Kramer

diagram.

Lerbs [49], from similar considerations to Betz's, derived the Lerbs criteria for the

optimum propeller in the case of radially varying axisymmetric inflow. In this case,

the pitch of the induced inflow on the lifting line is required to be proportional to the

square root of the inflow velocity.

Sparenberg [65] and Slijper and Sparenberg [63] determined the optimum circu-

lation on a propeller with a shroud of finite length, as a function of the tip clearance

and the hub diameter.

More recently, de Jong developed a circulation optimization/blade design tech-

nique for propellers with end plates [13].

Yim [75] included frictional drag and cavity drag in his analysis of optimum radial

load distribution. He formulated the Euler differential equation for the variational

problem and applied Munk's displacement theorem [33] to it.

Coney [10, 9] developed a vortex lattice lifting line method for the determination

of the optimum radial circulation distribution. This method is applicable to multi-

component propulsors, such as ducted propellers and a propeller-stator combination.

Kinnas and Coney [38] developed a generalized image model to include the hub

and duct effects.

For high aspect ratio propellers, as often seen in aircraft applications, Prandtl's

lifting line concept has been a great success. It states that a three dimensional prob-

lem may be regarded as, locally at each radius, a two dimensional problem with the

inflow altered by the induced velocity.

Van Dyke [70] developed a rigorous lifting line theory based on matched asymp-

totic expansions.



When the aspect ratio is not high, the variation of the induced velocity over the

chord (from the leading edge to the trailing edge) is not negligible and results in a

virtual change in camber and angle of attack. This motivated the work for the lifting

surface corrections to camber and angle of attack, for example by Morgan et al [53].

Several lifting surface procedures appeared [57, 32) in early 1960's as the comput-

ers became commonly available. A very recent review of the mathematical aspects

of the propeller design was published by Sparenberg [64]. Almost in parallel to the

development of the computer capability both in speed and memory, substantial mod-

ifications have been made to the numerical lifting surface methods, including wake

alignment [25].

Greeley and Kerwin [25] used the vortex lattice method to solve the lifting surface

problem. Continuous singularities on the lifting surface are represented by a set of

vortex/source lattices. A part of the geometry is given, that is the radial distribution

of chord length, rake, skew, and thickness. From the cavitation consideration, the

chord length distribution (blade area) is usually determined empirically, for example

by Burrill's diagram [7]. For the same reason, circulation distribution may need to

be modified from the optimum distribution. Starting from an initial trial surface, the

method adjusts the surface to satisfy the kinematic boundary condition. Thickness

effect is included by the linear theory and superimposed on the vortex system. The

method assumes that the given inflow is the effective wake, which includes the in-

teraction of the generally vortical ship wake in the absence of the propeller and the

propeller induced irrotational velocity field.

Huang and Groves [27] developed a method to estimate the axisymmetric effective

wake using a simplified Euler equation.

Kerwin et al [31] recently coupled the axisymmetric RANS (Reynolds Averaged

Navier-Stokes) calculation and the vortex lattice design method. The effective wake

necessary for the vortex lattice design method is provided by the RANS computation.

The propeller force is then transmitted as the body force to the RANS domain. Most

methods design propellers in uniform inflow or axisymmetric inflow.

Blade skew properly matched to the ship wake is known to improve the unsteady



performance of the propeller. It can decrease the unsteady forces and/or retard the

cavitation inception substantially. A common way of including skew is to first use

a steady lifting surface method and then analyze the designed propeller using an

unsteady lifting surface analysis method [35] in a given wake field to find a skew dis-

tribution. This skew becomes a new input to the steady lifting surface design method.

SKEWOPT by Parsons and Greenblatt [54] is a skew design program which utilizes

a numerical optimization technique combined with an unsteady lifting line analysis

program.

Kuiper and Jessup [46] developed an unsteady propeller design method, which in-

tended to optimize the cavitation inception speed. They focused on the blade section

design based on the method of Eppler and Shen [19, 62] and Shen [61]

Dai et al [12] used an artificial intelligence for the preliminary propeller design.

They discussed numerical optimization, knowledge based systems, and genetic algo-

rithms.

1.2.3 Present Design Method

The present design method couples a numerical nonlinear optimization method and

a vortex/source lattice cavitating flow analysis method. Typical design methods

based on numerical optimization and analysis require the computation of the gradient

of the objective function in order to determine the search direction for the next

iteration. This is done by differentiating the function either analytically, if possible,

or numerically using a finite difference scheme.

For the present application (three-dimensional propeller problem), the evaluation

of the gradient of the objective function (e.g. propeller torque) is computationally

prohibitively expensive. Therefore, in the present method, the objective function

and also the constraint functions are approximated by polynomial expansions. This

requires only 1 function evaluation, which corresponds to 1 analysis program run,

compared to 1+ n if the one-sided finite difference scheme were used for the numerical

derivatives.

The algorithm is first validated by applying it to some known test functions taken



from literature. It is then applied to the design of two-dimensional cavitating hydrofoil

sections and the results are compared with another design. Finally, the method is

applied to the design of cavitating propeller blades in non-uniform flow.



Chapter 2

Numerical Optimization Method

The general nonlinear constrained optimization problem is defined as follows.

Problem P :

minimize

subject to

f(x)

gj(x) < 0
hi(x) = 0

= 1,2,...,m

i= 1,2,...,)I (2.1)

where f(x) is the objective function defined on R". x is the solution vector of n

components. gl(x) < 0,... ,gm(x) < 0 are inequality constraints defined on Rn

and hi(x) = 0,..., hi(x) = 0 are equality constraints also defined on R'. A vector

x = [xl, x 2,. - . - ]T satisfying all the constraints is called a feasible solution or a

feasible point to the problem. Thus, the problem is to find a feasible point t such

that f(x) > f(5ý) for each feasible point x.



2.1 The Method of Multipliers

The method of multipliers is used to solve the constrained minimization problem [2].

For convenience, the inequality constraints are converted into equality constraints by

introducing a new variable vector s = [s1,..., sm]T.

gi(x) < 0

Sg~(x) + s?2=0

Let us define the augmented Lagrangian penalty function

m

C(X,s;u,v,c,c) - f(U) +- f(
i=1
m

+E

-f(x) +±
i=1

i=1

I

uj[gi(x) + s2] + ~vhi(x)
L +g ] + + (c h'(x)i=1

2a*9i(x) + s2 2 + (cih(x)

2 2Si=1 2m 21

vihi(S) + 2cih (x)
i=1

where u = [ui,...,Um]T and v = [vl,...,vl]T are the Lagrange multiplier vec-

tors corresponding to the equality and inequality constraints, respectively and c =

[cl,. .. , c]T and a = [ci,..., cmi] T are the penalty parameter vectors corresponding to

the equality and inequality constraints, respectively.

The constrained minimization problem thus reduces to an unconstrained mini-

mization problem for the function £(x, s; u, v, c, a). This new minimization problem

is solved over [x, s]T with [u, v, c, a]T fixed, and then [u, v, c, ]T are updated in an

appropriate manner, as will be discussed in the next section.

Let the resulting minimized function be O(u, v, c, a)

(2.4)

(2.3)

i= 1,2, ... , m

i= 1,2,...,m (2.2)

0(u, v, c, a) = min £(x, s; u, v, c, )X,S



In computing O(u, v, c, c), the minimization of L(x, s; u, v, c, a) over [x, s]T can be

done first by minimizing [gi(x)+ s + +]2 over si in terms of x for each i = 1, 2,..., m,

and then by minimizing the resulting expression over x.

The function [gj(x) + si + .]2 takes its minimum value when:

S2 = [gi(x) + ] if this is non - negative

S= 0 otherwise (2.5)

Thus,

O(u, v, c, c) = min F(x; u, v, c, E) (2.6)

where

F(x; u, v, c, ) f(x) + i m2ax gi(x) ,

m 2 1 1

-E - + vihi(() + cihh () (2.7)
i=1 2 i=1 i=1

Note that each constraint has its own penalty parameter ci or ýi so that constraint

violations can be monitored individually.

2.2 Lagrange Multiplier and Penalty Parameter

Update Scheme

After the minimization of the function F(x; u, v, c, c) over x is done, the Lagrange

multiplier vectors u and v and the penalty parameter vectors c and c are updated.

When Xk minimizes the augmented Lagrangian penalty function at k-th iteration,

the following condition holds:



Sf(Xk)+ ai max [gi() + Ui
i=1 Ci

o] Vg (Xk)

+ ± iVhi(Xk) + Cihi(Xk)Vhi(lk)
i=1 i=1

m

= Vf(xk) + h[i + max{Egi(i), -i2}]V(k)

1 1

+ Oi~hi(Xk) + C hi(xk)Vhi(Xk) = 0
i=1 i=1

(2.8)

where = [=fl1,..., m], = [; I,..., 1]T = 1,]T  [ , 1]T..., and c = [cl,..., c]T are the

current values of the Lagrange multiplier vectors and the penalty parameter vectors,

respectively. On the other hand, for Xk, Anew and 0new to be an optimum solution to

the original problem P, the following necessary conditions must hold 1 [2]:

V f(Xk) + ZQ new)iV9i(Xk) j new)iihk) = 0
i=1 i=1

-T

Uewg (k) = 0

Unew > 0

(2.9)

(2.10)

(2.11)

Comparing equations (2.8) and (2.9) suggests the following Lagrange multiplier up-

date scheme

(2.12)(vnew)i = 'i + cihi(xk) i = 1, 2, ... , I

(unew)i = i + max{afgi(xk), -· } i = 1, 2, (2.13)

In order to impose larger penalties to terms whose constraint violations are larger,

'These are known as Karush-Kuhn-Tucker (KKT) necessary conditions

and

r

VF(Zk; fu, , c, )



the following update formulas for the penalty parameters are used. The first task is

to determine the term whose constraint violation is largest by computing

max[max{gi(xk), O}, Ihi(xk) I]

Then, for the term corresponding to the largest constraint violation,

(Cnew)i or (anew)i = 4ci or 4 ij

For other terms,

(cnew)i or (ýnw)i = 2ci or 26i (2.14)

2.3 Quasi-Newton Method for the Unconstrained

Minimization Problem

As mentioned in the previous section, the minimization of the function F(x; u, v, c, c)

must be accomplished over x. This minimization problem is solved iteratively. We

start with an initial solution vector xo, updated at the (k + 1)-th iteration:

Xk+1 = Xk + cOkdk (2.15)

where dk is a search direction vector and ak is a step length.

In the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [2] , which falls under

the general quasi-Newton procedures, dk is determined in the following way:

= -DkVF(k)

= Xk+1 - Xk

= VF(Xk+l) - VF(xk)



PkpT Dkqkq'DkDk+ = Dk Dkq k T (2.16)Dk+ = Dk + pkTqk + T7kVkVkk q Dkqk
1

Vk = Pk - Dkqk
Tk

q DkqkTk k Tk
Pk qk

where

Do : arbitrary positive definite matrix ( e.g. Do = I)

The step length ak is determined by using some one-dimensional line search algo-

rithm, as described in Appendix A.

minF(xk + oakdk), k > 0 (2.17)

It can be shown that by using the described update scheme, Dk preserves the

positive definiteness, thus, dk is in a direction of descent. Dk is an approximation of

the inverse of the Hessian matrix H- l(k), where the Hessian matrix is the matrix

of second partial derivatives of F(x), Hij(x) = . For quadratic functions, Dk

becomes the exact Hessian matrix within n steps.

Application of this algorithm requires calculations of Vf, Vg, and Vh. In the event

Vf, Vg, and Vh are given in terms of known functions, then Vf, Vg, and Vh may

be determined analytically. However, if Vf, Vg, and Vh are not explicitly known in

terms of the variables, one approach is to approximate them in terms of polynomial

expansions.

2.4 Scaling and Stopping Criterion

From the numerical point of view, it is important for all terms of the objective function

to be of the same order of magnitude. Otherwise, a small error relative to other terms

could be missed. Therefore, all the constraint functions are normalized with respect

to their typical values.

An equally important issue is the stopping criterion of the iterative algorithm.

Let E be a prescribed tolerance. The stopping criterion in the iterative process to



minimize F(x) via the quasi-Newton method, is provided by Dennis and Schnabel

[14]:

Xk+1 - XkI

and

IVF(Xk)l _ e (2.18)

The stopping criterion in the iteration for the penalty parameters is defined as:

m 1
1 1 max{ gi(x), 011 } Ih (x) I l (2.19)

This simply means that all the imposed constraints are satisfied within a tolerance.

2.5 Validation

The numerical optimization algorithm described in the previous sections has been im-

plemented to a computer program. The program is tested for several known functions

taken from Hock and Schittkowski [26] and Shittkowski [60].

2.5.1 Unconstrained Optimization Problem

Unconstrained minimization problems are tested first. The number of iterations re-

quired for the converged solutions is summarized in Table 2.1. Convergence history

of the test problem No. 2-3 is shown in Figure 2-1.



Problem number Number of variables,n Number of iterations
2-1 2 20
2-2 2 20
2-3 6 35
2-4 10 201

Table 2.1: Performance of the optimization program for unconstrained optimization
test problems

Test Problem No. 2-1

Objective function f(x) = 4(zl - 5)2 + (z 2 - 6)2

Equality constraints none

Inequality constraints none

Starting point Xo - (8, 9 )T

f(xo) = 45

Solution from [60] = (5, 6 )T

f(b) = 0

Present method x = (5.000, 6 .0 00 )T

f(t) = 0.000



Test Problem No. 2-2

Objective function u2 + u2 + u2

ui = ci - x1 (1 - xi)

cl = 1.5, c2 = 2.25, c3 = 2.625

X = (x 1 ,x 2)T

Equality constraints none

Inequality constraints none

Starting point xo = (2, 0. 2 )T

f(xo) = 0.5298

Solution from [60] 5 = (3, 0. 5 )T

Present method t = (3.000, 0. 5 00 0 )T

f(t) = 0.000

Test Problem No. 2-3

Objective function f(x) = 10 E =1(16 - i)(xi - 1)2

x = (X1, 2, X 3, X4, X5 , X6) T

Equality constraints none

Inequality constraints none

Starting point Xo = (0, 0, 0, 0, 0, O)T

f(xo) = 750

Solution from [60] t = (1, 1, 1, 1, 1, )T

f () = 0

Present method t = (1.000, 1.000, 1.000, 1.000, 1.000, 1.000)T

f(.) = 0.000
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Figure 2-1: Convergence history of the present method for test problem No. 2-3

Test Problem No. 2-4

Objective function f(x) = [1 i3 (x,- 1)2]1/3

X - (Xl7, x 2 3,X 4 5,X Z6, X7 8X9, 10)T

Equality constraints none

Inequality constraints none

Starting point Xo = (0, 0, 0, 0, 0, 0, 0, 0, O, )T

f(xo) = 14.4624

Solution from [60] = (1, 1, 1, 1,1, 1, 1, 1, )T

f(t) = 0

Present method z = (1.000, 1.000, 1.000, 1.000, 1.000,

1.000,1.000, 1.000, 1.000, 1.000)T

=f(t) = 0.000

1.4 x,

x2

1.2 x 3

x4
1.0 X

x6
0.8

0.6

0.4

0.2

0.0



2.5.2 Constrained Optimization Problem

Several constrained optimization test problems are used to test the performance of

the program in this section. Table 2.2 summarizes the test problems used.

Test Problem No. 2-5

Objective function f(x) = 9 - 8x1 - 6x 2 - 4x 3 + 2x2 + 2x2 + x1

+2xlx 2 + 2x 1x 3

x = (x 1, X2, 3)T

Equality constraints none

Inequality constraints g1 (x) = x1 + x 2 + 2x 3 - 3 < 0

g2(x) = -XZ < 0
g3(x) = -x 2 < 0

g4(x) = -ZX3  0

Starting point so = (0.5, 0.5, 0. 5 )T

f (xo) = 2.25

Solution from [26] : = (1.3333, 0.7778, 0. 4 4 4 4 )T

f(t) = 0.1111

Present method t = (1.3333, 0.7778, 0. 44 4 4 )T

f(t) = 0.1111



Test Problem No. 2-6

Objective function f(x) = (xI - 1)2 + (x 2 - 2)2 + (x 3 - 3)2 (x4 - 4)2

x= (1, , •,x )T

Equality constraints hi(x) = x, - 2 = 0

h2 = x2 + X2 - 2 = 0
Inequality constraints none

Starting point Xo = (1, 1,1, 1)T

f(xo) = 14

Solution from [26] a = (2, 2, 0.8485, 1.131 4)T

f(t) = 13.8579
Present method x = (2.0000, 2.0000, 0.8485, 1.1 3 14 )T

f(;) = 13.8579

Test Problem No. 2-7

Objective function f(x) = _, l =1 aij(x? + xi + 1)(x + xj + 1)

S= ( 1, X2, .. 16 )T

Equality constraints hi(x) = E16 bijz - c = 0

i = 1,...,8

aij, bij, and ci are given in Appendix B

Inequality constraints gi(X) = -xi < 0

gi+16(x) = xi - 5 < 0

i= 1,...,16

Starting point Xo = (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10)T

f(xo) = 566766

Solution from [26] : = (0.03985, 0.7920, 0.2029, 0.8444, 1.1270, 0.9347, 1.6820,

0.1553, 1.5679,0, 0, 0,0.6602, 0,0.6743, 0)T

f (t) = 244.8997

Present method : = (0.03985, 0.7920, 0.2029, 0.8444, 1.2699, 0.9347, 1.6820,

0.1553, 1.5679, 0, 0, 0, 0.6602, 0, 0.6742, 0)T

f (f:) = 244.8997



Table 2.2: Constrained optimization test problems

Problem no. No. of variables No. of equality constraints No. of inequality constraints
n 1 m

2-5 3 0 4
2-6 4 2 0
2-7 16 8 32



Chapter 3

Analysis of Cavitating Propellers

by Vortex Lattice Method

The analysis of the flow around a cavitating propeller subject to non-uniform inflow is

required at each design optimization iteration. Since this analysis is made a number

of times in the course of optimization, it MUST be computationally efficient. For

this reason, a vortex lattice method was chosen. A vortex lattice analysis method

for cavitating propellers in nonuniform flow developed at MIT is HPUF-3A. A brief

description of HPUF-3A is given in this chapter.

3.1 Vortex Lattice Method

The presence of a propeller is represented by the distribution of singularities (vortices

and sources) on the blade mean camber surface and its assumed wake surface. The

unknown strength of the singularities is determined by applying the kinematic and

dynamic boundary conditions at some appropriate control points.

The basic assumptions are :

* Linearized boundary conditions are satisfied on the blade mean camber surface



* The wake consists of the transition wake, where the roll up and and contraction

occur, and the ultimate wake, where the trailing vortices become a concentrated

tip vortex. This is illustrated in Figure 3-1.

* There is no roll up in the transition wake.

* Given inflow is an effective wake, which is the difference between the total

velocity in the presence of the propeller and the propeller induced velocity.

* Sources representing the blade thickness are independent of time and deter-

mined by a spanwise application of thin wing theory.

* The formation and decay of the cavity occurs instantaneously depending only

on whether the pressure exceeds the vapor pressure.

* Cavity starts at the leading edge of the blade and vanishes at the cavity trailing

edge.

* Cavity thickness is constant across each strip in the spanwise direction and

varies linearly along each cavity panel in the chordwise direction.

* There are no spanwise effects in the cavity closure condition.

* Viscous force is computed based on the frictional drag coefficient, Cf, which is

applied uniformly on the wetted surface of the blade.

HPUF-3A has been continuously modified since its first version by Lee [47] in

1979. The major modifications include:

1. Nonlinear leading edge correction to the cavity solution [37].

2. Inclusion of the hub effect via images [38].

3. Supercavitating sections, which have finite trailing edge thickness [45].

4. Blade geometry representation by B-splines [51].

5. Wake alignment [58]. This is the version that has been used in the present

optimization program.
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3.2 Blade Geometry

The coordinate systems and the propeller geometrical notation are shown in Figure

3-2. A propeller-fixed cartesian coordinate system is first defined with the x axis

positive downstream. The y axis is normal to x axis at any angular orientation

relative to the key blade. The z axis completes the right hand system. A cylindrical

coordinate system is defined in the usual way.

X • X

r= y+2  (3.1)
0 = tan-

The radial distributions of skew, 0m(r), and rake, xm(r), define the mid-chord line

of the blade as illustrated in Figure 3-3. The leading and trailing edges of the blade

are constructed by passing a helix of pitch angle O(r) through the mid-chord line.

xI,t(r) = xm(r):F sin O(r)
2

c(r)
01,t(r) = Om(r) : 2 cosO (r) (3.2)

yi,t(r) = r cos 6,t(r)

zi,t(r) = rsine ,t(r)

where c(r) is the chord length at the radius r , and the subscripts 1 and t denote the

leading and trailing edges, respectively.

The camber f(r, s) is measured on the cylindrical surface of radius r normal to

the nose-tail helix, where s is a non-dimensional chordwise coordinate, which is 0 at

the leading edge and 1 at the trailing edge.

Finally, the thickness t(r, s) is added symmetrically to the camber line on the

cylinder in the normal direction to the mean camber surface. This is shown in Figure
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Figure 3-2: Coordinate systems and geometrical notations in HPUF-3A, adapted
from [25]
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= m(r) + c(r) ( -

= Om(r) + c(r) s8-

= r cos O(r, s)

= r sin , (r, s)

1)
21

2

sin q(r) - f(r, s) cos q(r)
cos (r)+

r
sin O(r)f(r, S)

T

The maximum values of f(r, s) and t(r, s) at radius r are denoted as the maximum

camber, fo(r), and the maximum thickness, to(r), respectively.

3.3 B-spline Representation of the Blade

The B-spline representation of the blade is attractive in several ways and has been

included in HPUF-3A.

In the traditional geometry definition described in section 3.2, tabular data for

s=1

7-
ro

xC(r, S)

6,(r, S)

yc(r, S)

(3.3)



radial distributions of pitch, rake, and skew, and chordwise distributions of camber

and thickness are usually given. Inaccuracy arises due to the interpolation process

necessary to determine the actual blade surface. By using B-splines, all points on the

surface are defined uniquely. Another advantage of B-splines is that the blade may be

defined with a relatively few number of parameters. This is particularly convenient

for designing blades by numerical optimization. The number of parameters, also of

the design variables, reflects the computational effort of the optimization method.

3.3.1 Cubic B-spline Curves and Surfaces

In HPUF-3A, cubic B-splines, which is a subset of Non- Uniform Rational B-Splines

(NURBS), are used. To see some properties of B-splines, B-spline curves are reviewed

first following Patrikalakis [55].

Non-uniform B-spline curves are defined as :

N,-1

P(u) = [Z(u), y(u), z(u)]= E diNi,k(u) (3.4)
i=O

N > k

where,

di : B-spline control points

Ni,k (u) : B-spline basis of order k (piecewise polynomial of degree k - 1)

u : parameter in the interval to < u < tNu+k-1

T = It,, = tj = ... = tk- < k <_ tk+< < tNu_1 < tNu =-..= tNu+k-11
k equal values Nu-k internal knots k equal values

knot vector, which has total N, + k knots

B-spline basis Ni,k (u) is determined from the following required properties.

1. Partition of unity
Nu-1
E Ni,k (u) = 1 (3.5)
i=O



2. Positivity

Ni,k(u) > 0

3. Local support (change of one vertex, di affects curve locally)

Ni,k(u) = 0 if u ý [ti, ti+k]

4. C k - 2 continuity

Ni,k (U) is (k - 2) times continuously differentiable at simple knots. If a knot

has a multiplicity equal to p (< k),

tj = tj+1 =... - tj+p-1

and Ni,k (u) is (k - p - 1) times continuously differentiable.

Ni,k (u) may be obtained recursively as, for example, in Yamaguchi [74].

Ni,i(u) =
0

u - ti
Ni,k(u) = i -N

ti+k-1 - ti

U E [ti, ti+l)

ti+k - u
,k-1) + tk - U Ni+,k-1 (u)

ti+k - ti+1l

If a "0/0" situation occurs, that term is set equal to 0 in equation (3.9).

Since in most propeller applications, continuity in curvature but not in higher order

derivatives is desirable, k = 4 (cubic B-splines) is chosen. Figure 3-5 shows the cubic

B-spline basis (k = 4) for N, = 7.

Figure 3-6 illustrates control points and the corresponding cubic B-spline curve.

Cubic B-spline surfaces are defined similarly as follows.

Nu-1

P(u, w) = [x(u, w), y(u, w), z(u, w)] =
i=O

N,- 1

E dijNi,4(u)Nj,4j(w)
j=0

(3.10)

where

dij : B-spline control points

(3.6)

(3.7)

(3.8)

(3.9)
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Figure 3-5: Cubic B-spline basis (k = 4) : N, -= 7
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Figure 3-7: Cubic B-spline surface. 4 x 4 vertex polygon net is shown together with
the 10 x 9 grid utilized in HPUF-SA

Ni,4(u) : B-spline basis of order 4

Nj,4 (w) : B-spline basis of order 4

The basis Ni,4 (u) and Nj,4 (w) take the same form as before. A cubic B-spline surface

from a 4 x 4 vertex polygon net is shown in Figure 3-7.

3.3.2 Physical and Parametric Spacings

In HPUF-3A, the singularities (discrete vortices and sources) are placed on the blade

mean camber surface with uniform spacing in the radial direction and half-cosine

spacing in the chordwise direction. When the blade geometry is defined by B-splines,

if the parameters u and v are cosine spaced and uniformly spaced, the resulting

singularities are not in general correctly located in the physical space as shown in



Figure 3-8. It is essential to have the correct spacing in a numerical lifting surface

theory for a required accuracy [47]. In HPUF-3A, parameters u and v are iteratively

determined to give the desired spacing in the physical space, as described in Appendix

C. Figure 3-9 shows the correct spacing achieved in the physical space after the

iterations.

3.3.3 Effect of the Number of B-spline Vertices on the Blade

Geometry Representation and the Solution

If one desired to represent a certain given propeller blade geometry exactly, an infinite

number of B-spline vertices would be necessary. However, in general, a fewer num-

ber of vertices is sufficient to represent typical propeller blades. Figure 3-10 shows

the blade geometries defined by B-splines with 4 x 4 and 7 x 7 vertices. Given a

target propeller blade, DTMB N4381, and the number of B-spline vertices, a least

squares problem for minimizing the error between the target geometry and the re-

sulting geometry defined by the vertices was solved [31]. Contour plots of the error

distribution over the entire blade are shown in Figure 3-11. The error is the distance

in three-dimensional space between the input point and the B-spline defined point,

non-dimensionalized by the propeller radius, R. Figure 3-12 shows that the predicted

forces and the cavity volumes for this propeller with 4 x 4 and 7 x 7 vertices agree

well with the values for the original blade. This particularly justifies the use of very

few number of vertices for the blade design, since there is no target blade geometry

and the only concerns are the forces and the cavity characteristics. The forces are

less sensitive than the cavity volume to the number of B-spline polygon vertices. The

cavity volume appears to be converging to that corresponding to N4381 more slowly

than KT and KQ.
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Figure 3-10: Original N4381 blade geometry and the geometries defined by 4 x 4 and
7 x 7 B-spline vertices.
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3.3.4 Geometrical Feature Extraction from B-spline Sur-

face

Although the B-spline representation of the blade is perfectly sufficient both for an

input to analysis programs and for manufacturing, it is still convenient to be able to

know the geometry in terms of the traditional designers notations, such as pitch and

camber. Patrikalakis and Bardis [56] developed an algorithm for the feature extrac-

tion from NURBS. In our case, since the singularities are placed at constant radii, it

is easy to extract the geometrical feature from the mean camber surface defined by

B-splines.

Using equations (3.2) and (3.3),

2

~r (r) + Ot(r)xm(r) = 2

c (r) = /(xt(r) - xi(r))2 + r2(0t(r) - 0(r))2

tan (r) - x(r) (3.11)
r(Ot(r) - Of(r))

tan Ol,t(r) zit(r)
Yit(r)

r cos ¢(r)(Oc(r, s) - Om(r)) - sin (r)(xm(r) - xc(r, s)) 1
c(r) 2

f(r,s) = xm(r) - xc(r, s) + c(r)(s(r, s) - 1/2) sin (r)
cos O(r)



Chapter 4

The Design Method

The present design method couples the numerical optimization scheme described in

Chapter 2 and the unsteady vortex and source lattice cavitating flow analysis method,

HPUF-3A, described in Chapter 3. The corresponding program is designated as

CA VOPT-3D.

HPUF-3A provides the objective function, which is to be minimized, and the

constraints functions. For example, for the torque minimization problem for a given

thrust, the objective function would be the torque, and the constraint function would

be given in terms of thrust.

f (x) = KQ(x)

hi(x) - KT(x) - KTo
KTo

where KT(x), KQ(x) are the thrust and torque coefficients, respectively, with x being

the design variable vector that defines the blade geometry. KTo is the required thrust

coefficient. Notice that the equality constraint is normalized on its required value,

KTo, in this case, as explained in section 2.4.



4.1 The Algorithm

A flow chart of the algorithm is shown in Figures 4-1 and 4-2. It starts with an initial

blade geometry represented by an n component design variable vector x,.

The first stage is to obtain linear approximations of the objective function and

constraint functions. HPUF-3A is run for the following 1 + n geometries to obtain

the coefficients of the linear functions in terms of the design variables.

xj = xo + Aej , j = 0, 1,..., n (4.1)

where A is a small specified positive number, usually taken equal to 0.01 in CAVOPT-

3D, and ej is a unit vector whose j-th element is 1. eo is the zero vector.

Each xj corresponds to a blade geometry slightly different from the initial guess.

f(X) = Ff+XTGf

91(x) = F,, + T G,,

g2 () = Fg2 + TG 92

gi(x) = Fm + x TGgm (4.2)

hi(x) = Fh, + xTGhl

h2 (X) = h2 XTGh 2

hi(x) = Fh, + xTGhl

X = {XZo, 1X,...,X T

where x is the design variable vector, Ff, Gf, Fg,, G,,, F 92, G9 2 ,..., Fhl, Gh, are the

coefficients of the linear functions. This corresponds to the first order Taylor series

expansions around the initial guess xs, if Ff, F91 , ... , Fh, are taken as the function



values at xo. For example,

Ff ; f(xo) (4.3)

af(X()
axi

G• f(X:o) Of(X)
Gf xa ) afX (4.4)

dxi

af(Xo)

X is a set that has 1 + n geometries. The procedures up to this point is the initial-

ization of the linear optimization, as noted in Figure 4-1.

The minimization problem (2.1) is then solved numerically for the linear objective

and constraint functions to give an improved geometry Xk. The maximum change of

each element of x is limited to a specified number, 6, which is usually taken equal to

0.01 in CAVOPT-3D. Xk is added to the set X and HPUF-3A is run for this Xk. The

iteration counter k is increased by 1. Since X has now 2 + n elements, determining

the coefficients of the linear functions would be an over-determined problem. In the

present algorithm, only the most resent 1 + n geometries are used to determine the

coefficients. Geometries not used for the determination of the coefficients are stored

in a memory for later use. For those newly defined functions the minimization prob-

lem is again solved to give a new solution Xk. This process is repeated n(n + 1)/2

times until the set X has N = 1 + n + n(n + 1)/2 elements. The linear optimizations

just done may be regarded as the initialization of the quadratic optimizations in the

final step. From this set X, quadratic approximations of f(x), gi(x), hi(x) may be

obtained.

f( ) = Ff + 1xG + I~2xH
291( x) = Fg + xTG1 + x H X2

g2() 92 + XTG9 2 2 92



gm(x) = Fg + xTGg + 2xTHgm (4.5)

hi(x) = Fh, + x TGhl + - Hh,

1 Th2(x) = Fh2 + xTGh 2 +- X THh2 X

hi(x) = Fh, + x TGhl + 2X HhX

X = {Xo, X 1 ,..., Xn+n(n+l)/2

where Ff, G f , H i, , G,,, H,, Fg,, G2,, H9 ... , Fh,, Gh, , Hh, are the coefficients

of the quadratic functions in terms of the design variables. Hf, Hgl,..., Hh, will

eventually be approximations of the Hessian matrices near the optimum solution.

For instance,

Hhl
Hhj P 1 xixj

OxlOxl OX1822 OxOlxn

0X20XI OX2OX2 OX2OXn

h21  Oh2 ... 2Oh

SOXnOXl OXaOX2 OXnOXn

(4.6)

The minimization problem is solved for the quadratic functions. The new solution Xk

is again added to the set X and the xi, which is far from the optimum solution, is

removed from X. This way, X would always have N elements. However, it has been

found that the matrix that is to be inverted to give the coefficients of the quadratic

functions is often close to singular. To remedy this ill-conditioned problem, no ele-

ments are removed from the set X until it has N + n elements. After the number

of elements in X becomes N + n, one element is removed at every iteration. Thus,

hereinafter, X has always N + n elements. The coefficients of the quadratic functions

are computed by the least squares method.

The element xi removed at each iteration after this point is determined in the

following way.

(9n91 (x4X 9n4x



The basic idea is to remove an element far away from the current optimum solution.

Stage 1 first N iterations

Stage 2 next 2N iterations

Stage 3 after 3N iterations

x = xu{}- {xi}
xi is the earliest x in the set X

xi is the x corresponding to the largest f(x)

(remember f (x) must be minimized)

x=xU{ }
The number of elements in X increases

During Stage 1, all the elements obtained from the linear approximation of the func-

tions are replaced by the solutions from the quadratic approximations. Stage 3 helps

smooth out the functions, f(x), gi(x) and hi(x), and improves the convergence. Oth-

erwise the solution may oscillate without any improvement in f (x). The iteration is

repeated until the change in x becomes less than a specified tolerance, E.



STAR T

No. of variables = n

Initial geometry xo
x. =x o + e.

J J

T (1)

gi (x) = Fl + x G
g (x) =F ()+ xTG (1)

h (x)= Fh) +X TGh 1h)

X = {xo, x, ... ,xn}

set k = 1

......_ý_ 'I

HPUF-3A

or

other analysis
program

initialization of

linear optimization

linear optimization

(initialization of

quadratic optimization)

f (x ), gi (xk), hi (.
YES

giNO

f (x) = F (k) + TG(k)
.f + f

gi (x) = Fk) + XTG (k)

hi () = F( k) + TG(k)
hi hi

in X
k=k+l

H- UDTF -A

rk ) JL
or

other analysis
program

Figure 4-1: Flow chart of CAVOPT-S3D
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Figure 4-2: Flow chart of CAVOPT-3D, continued



N, y =

= J, y=

= 1, yhub

I=

t x r x

=N

z

Ný z

Figure 4-3: Construction of B-spline polygon net for initial propeller geometry

4.2 Initial Blade Geometry

Blade geometry is defined by a B-spline polygon net, as described in section 3.3. The

net consists of N, chordwise by N, spanwise B-spline control points (vertices). The

indices I and J are used for the "chordwise" and "spanwise" directions 1, respectively.

Thus, I runs from 1 to N, and J from 1 to N,. Figure 4-3 shows how an initial B-

spline polygon net is created.

Consider a particular chordwise strip, which is denoted by the index J. This has

N, vertices that form a straight line segment. This segment has a total length cj and

lies in a certain y = yj (constant) plane. It has an angle qj measured from z axis

as shown in Figure 4-3. yj is determined from the cosine spacing between yl = rh

("hub" radius) and YN, = 1 (tip).

'These sections are not chordwise or spanwise according to the traditional sense, where the
sections are placed along cylindrical surfaces

1



1 - cos \ (N-l )
YJ = (1 -r) 2 )^ + r, J = 1,..., Nw (4.7)

qj is defined by

iryj tan qj = 4 = constant (4.8)

The chordwise spacing is also cosine spacing, therefore

d~y = (Xoj, yoj, Zoj)
T

cQ· cos(M)
j = - os -) sin 0j (4.9)

1 - cos(B 1 )
j Y= (1-rh) 2 + r

cjcos('j))
z~- = cosej, I = 1,...,N,, J= 2,...,N - 1

Finally, the vertices for J = 1 are moved radially inward so that they are right on

the hub surface. Similarly, the tip vertices (J = N,) are moved so that they are on

r = yNN. + z = 1. Notice that this initial B-spline polygon does not introduce

skew or rake.

x _ c 2"s•  sin ¢12
yrh I h- 1,..., Nu (4.10)
,1 1r + cO cos2  - Cos2 1/4

Clrh COS('- ) COS q1I'i 2Vr2 + C cOS2( COS-1 2 1/4X1= 1 2r ±co -s( ' cs2qi/4N

cN, cos( ~')
X, = - 2 sin ON,XI,Nw -

2



Y ,N - 2 1=1(... ,Nu (4.11)
S L 1+ C OS2 , N-COS2( )COS2 C /4

2V c cos( ) cos )C
zi,N, 2/1 + c Cos2 ) COS 2  /4

4.3 Design Variables

The B-spline polygon net defines the blade geometry without skew. Skew is added

independent of the blade geometry defined by the polygon. The vertices move at

each optimization iteration to give an improved new blade geometry. The direction

of the movement of each vertex is decomposed into two directions, the direction nor-

mal to the initial leading edge-trailing edge line on a horizontal plane (with the yj

value fixed) and the chordwise direction. When a chordwise vertex line stretches, the

movement of the vertices in the chordwise direction is determined according to the

cosine spacing. The chord length at the tip is kept constant. The tip vertices simply

rotate without change in camber. There is a case in the design where the radial

chord length distribution is given. In this case, no vertices are allowed to move in

the chordwise direction. The vertices at the leading edge and the trailing edge on a

particular chordwise strip always move by the same amount in the opposite direction,

thus there will be no skew or rake after the movement. Again, hub and tip vertices

are moved so that they are on the hub and tip surface, respectively.

The number of design variables, therefore, is

n = (N, - 1) x (Nw - 1) + 1 when chord length is given

n = N, x (N, - 1) + 1 when chord length is determined

If linear skew is included, n is increased by 1 in either case.

The amount of the movement of the vertices is the design variable x = (x,...,z, )T

and is illustrated in Figure 4-4. This is also shown more schematically in Figure 4-5.

The coordinates of the new vertices, dI,j = (xI,J, YI,J, zzI,)T, corresponding to x,

using the initial vertices, di,g = (X,,J, yI,,, z,,)T , are listed in Appendix D.

n __
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/
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Figure 4-4: Design variables and B-spline vertices movement
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Figure 4-5: Initial B-spline polygon vertices, design variables, and vertex movement
(4 x 4 vertices)
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4.4 Numerical Validation

For the propeller design, the functions, f(x), gi(x), or hi(x) are not known explicitly.

The algorithm is first validated by applying it to some known functions taken from

[26]. This is done by simply replacing HPUF-3A with a routine that computes the

function values.

4.4.1 Choice of xi for the Removal from the Set X

The algorithm was first tested for a simple case where f(x) is a function of two

variables and there are no constraints [5].

X = (x 1x 2 )T

f(x) = (x 1 - 1)4 + (x 1 - 1)2 x2 + (22 - 2)2 (4.12)

A subroutine which computes f(x), given x, replaces HPUF-3A in the flow chart

shown in Figures 4-1 and 4-2. The optimum solution is obviously

S= (1, 2)T (4.13)

The algorithm starts with xo = (3, 3 )T.

The top plot in Figure 4-6 is a contour of f (x). The middle figure is a contour

plot of the quadratic approximation of f(x) after the final iteration of the present

method. It is seen that the optimum point t = (1, 2 )T is captured locally by the

quadratic approximation.

The bottom figure shows a contour of the quadratic approximation of f(x) from

the algorithm without removing any points ever from the set X. A converged solution

t = (0.893, 1. 4 03 )T was obtained, but it is clearly wrong. The convergence history of

the variables, xl and x2, and the function, f (x), for the present method with/without

removing x at iterations is shown in Figure 4-7. Several tolerances, E, for the conver-

gence are indicated in the figure. The stopping criterion is:



I 1Xkk)

<6

Since the quadratic approximation is supposed to be valid only locally near the

optimum point, the points far away from this point should not be used for the function

approximation.

4.4.2 Functions with Constraints

Some other functions [26] tested are shown below.

Test Problem No. 4-1

Function to be f(x) = (x 1 - 1)2 + (x 1 - x2 )2 + (x 3 - x 4)4 + (x 4 - 5 ) 4

minimized x = (X, x 2 , 3, 4, x 5)T

Equality constraints hi(x) = xl + x + X - 2 - 3v

h2(X) = -= 3 + X + 2- 2V,
h3 (X) = x1x 5 - 2

Inequality constraints none

Starting point Xo = (2, 2, 2, 2, 2 )T

f () = 1

Solution from [26] t = (1.191, 1.363, 1.473, 1.635, 1.679)

f(t) = 0.07878

Present method t = (1.191, 1.363, 1.473, 1.644, 1.680)

f(t) = 0.07878
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Test Problem No. 4-2

Function to be f () = x + 4 + xx 2 - 14 - 16 2 + (x 3 - 10)2

minimized +4(x 4 - 5)2 5 ( - 3)2 + 2(x 6  1)2 + 54x

+7(Xs - 11)2 + 2(x 9 - 10)2 + (xio - 7)2 + 45

X = (Xl, xX2 x3 4, X5,X6 X7, x 8,9 X 10 )T

Equality constraints none

Inequality constraints g1(x) = -105 + 4x1 + 5x2 - 3x7 + 9x8

g2 (x) = 10X - 8x 2 - 17x 7 + 2xs

g3 (x) -8x 1 + 2X 2 + 5x 9 - 2x 10 - 12

g4(x) = 3(x - 2)2 + 4(2 - 3)2 + 24 - 74 - 120
g9(x) = + 8 2 + ( - 6)2 - 2(4 - 40

g6 (x) - 0.5(xi - 8)2 + 2(2 - 4) 2  3X 2 - X6 - 30

g7(x) = + 2(x2 - 2)2 - 2x1x2 + 14xs - 6r6

gs(x) = -3xl + 6x 2 + 12(Z 9 - 8)2 - 7x10

Starting point Xo = (2, 3, 5, 5, 1, 2, 7, 3, 6, 10)T

f (xo) = 753

Solution from [26] = (2.172, 2.364, 8.774, 5.096, 0.991, 1.431,

1.322, 9.829, 8.280, 8.376)T

f(t) - 24.306

Present method 5 = (2.173, 2.362, 8.773, 5.091, 0.989, 1.427,

1.323, 9.830, 8.278, 8 .3 6 6 )T

f(t) = 24.307

The convergence history of the design variables, x, the objective function, f(x), and

a constraint function, g1(x) for the problem No. 4-1 and 4-2 are shown in Figures 4-8

and 4-9, respectively.
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Chapter 5

Design of Two Dimensional

Cavitating Sections

The design algorithm described in the previous chapters was applied to the design of

two dimensional cavitating hydrofoil sections.

A similar method was used to design two dimensional cavitating sections by

Mishima and Kinnas [52], where the objective function and constraint functions are

expressed explicitly in terms of quadratic functions of the main parameters of the

hydrofoil geometry, angle of attack, and the cavity length. The coefficients of the

quadratic polynomials are determined by applying the least squares method to the

results obtained from the analysis method for a wide range of the geometry parame-

ters involved. Once these quadratic functions become available, an optimization may

be done very quickly for any design conditions. This method is applicable only if the

number of design variables is small and running the analysis program is computation-

ally inexpensive.

The present design method is applied to this two dimensional problem and the

results are compared with the results from [52].

5.1 Statement of the Problem

The design of partially and super-cavitating two dimensional hydrofoils is considered.
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Figure 5-1: A partially cavitating hydrofoil.

The design objective is to determine the hydrofoil geometry and its operating condi-

tion (angle of attack, a), which produces the minimum drag, D, for specified design

requirements. The main parameters that define the geometry of a partially cavitating

hydrofoil, also shown in Figure 5-1, are:

* the chord, c

* the maximum camber, fo

* the maximum thickness, to

The thickness and camber distributions along the chord are assumed to be given.

The main parameters that define the geometry of a supercavitating hydrofoil, also

shown in Figure 5-2, are :

* the chord, c

* the maximum camber on the pressure side, fo

Uoo POO

.. ..
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Figure 5-2: A supercavitating hydrofoil.

* location of the maximum camber, f,

Since only the lower surface of the foil determines the hydrodynamics of supercav-

itating flows, the thickness is not included as a parameter. The upper surface can

be placed anywhere arbitrarily inside the cavity. Thus, when computing the section

modulus of a foil, the upper cavity surface is considered as the upper surface of the

"compound" foil. It is reasonable to assume that the cavity always starts at the

leading edge of the foil, since the supercavitating sections have a sharp leading edge.

Furthermore, we deal with situations where the cavity detaches at the trailing edge

of the foil on the pressure side.

The design requirements taken into consideration in this work are :

* Sectional Lift, Lo(N/m)

LGa



* Cavitation number, co, defined as:

Poo - Pv
co= 1 2 (5.1)

where p is the fluid density, po, is the ambient pressure, and p, is the vapor

pressure.

* Minimum section modulus of the foil, zmin

* Acceptable cavity length, I

* Acceptable cavity volume, V, or cavity height, h

The condition on the cavity length is necessary in order to avoid unstable cavities,

usually being the long partial or short supercavities. The cavity volume/height con-

straint ensures acceptable positive cavity thickness (volume) in order to avoid very

thin cavities (also negative thickness cavities) which either are non-physical or may

turn into harmful bubble cavitation.

For the case of supercavitating sections, in addition to specifying the minimum sec-

tion modulus of the compound section, the minimum allowable cavity height at the

10% of the chord length from the leading edge is specified via an inequality constraint.

This ensures positive cavity thickness, as well as sufficient local strength at the sharp

leading edge of the foil. An alternative to this condition would be to impose a lower

limit on the magnitude of the leading edge radius of the section.

The problems are:

Partially cavitating hydrofoil

minimize f(x) = CD (x)

subject to hi(x) = CL(x) - CLo = 0

h2 (x) = U(x) -o = 0 (5.2)

g1(x) = (1 < 0C C max



V(x) V
12 1(2 m

z(x) zmin <

g3 (x) =- + 0C3 C3

where x = (a, to/c, fo/c, 1/c)T

CL and CD are the lift and drag coefficients, respectively.

Supercavitating hydrofoil

minimize f (x) = CD (x)

subject to hi(x) = CL(x) - CLo = 0

h2 (x) = a(x) -o = 0 (5.3)

g =--+ - <o

C3 + c3

9 3 () - ho(X) + i 0
c rin

where x = (a, fo/c, f,/c, 1/c)T

hio is the cavity height at 10 % from the leading edge of the foil.

5.2 Hydrodynamic Quantities

The hydrofoil lift, L, and drag, D, acting on the hydrofoil as shown in Figures 5-1

5-2 are expressed in terms of lift and drag coefficients, CL and CD, respectively:

L = 1pU2cCL (5.4)
2

D = 2pU cCD (5.5)

The drag coefficient, CD, may be decomposed into two components.
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CD = Cb + CD (5.6)

where CD is the inviscid cavity drag coefficient, and Cý is the viscous drag coefficient.

A numerical nonlinear cavity analysis method of Kinnas and Fine [39, 40] is uti-

lized for the inviscid hydrodynamic quantities. The shape of the cavity surface is

determined iteratively using non-linear theory, with the use of a low-order potential

based panel method. The inviscid forces are determined by integrating the pressures

along the foil surface.

The viscous drag is determined by assuming a uniform friction coefficient, Cf,

over the wetted part of the foil. Cf is expressed in terms of the Reynolds number

(Re = Uooc/lv, v : kinematic viscosity) via the ITTC formula [8]:

0.075
Cf = (5.7)= (logloRe - 2)2

The cavity detachment point is taken to be fixed at 0.2% c in the case of partial

cavitation and at the sharp leading edge in the case of supercavitation.

5.3 Numerical Solutions

In the case of partially cavitating hydrofoils, the combination of NACA a=0.8 camber

form and the modified NACA66 thickness form [1] is used. The following values for

the constraints are imposed:

CLo = 0.593

ao = 0.6

Re = 5.6 x 106

- = 0.4 (5.8)

-= 0.02
(V12min



Zmin = 7x10-5
C

3

In the case of supercavitating hydrofoils, the NACA 4-digit camber form [1] is

used. The NACA 4-digit camber form has two parameters, which are the maximum

camber-to-chord ratio fo/c and the location of the maximum camber fp/c, as shown

in Figure 5-2. The values for the constraints are:

CLo = 0.303

ao = 0.2

Re = 6.3 x 106

Smin= 1.15 (5.9)
) min

hio = 0.01
min

Zmin = 7 x 10-5
C3

The resulting partially cavitating foil geometry from the present method and the

method of [52] are shown in Table 5.1. It is seen that the geometries from the two

methods are reasonably close.

a to/c fo/c 1/c L/D
Present method 2.08 0.031 0.028 0.39 88.6
Mishima & Kinnas 2.07 0.029 0.028 0.40 88.6

Table 5.1: The optimum partially cavitating foil geometries from the present method
and Mishima & Kinnas [52]

The resulting supercavitating foil geometry from the present method and the

method of [52] are shown in Table 5.2. The foil geometry from the present method

is shown also in Figure 5-3, together with the corresponding pressure distribution on

the foil. The sections designed by the two different approaches are not the same. The



method of Mishima and Kinnas [52] uses a global interpolation that covers a wider

range of the geometries. The present method uses a more local interpolation and is

expected to represent the actual functions more accurately.

a fo/c fp/c I/c LID
Present method 1.23 0.009 0.90 1.15 32.5
Mishima & Kinnas 1.36 0.011 0.82 1.15 31.8

Table 5.2: The optimum supercavitating foil geometries from the present method and
Mishima & Kinnas [52]

a to/c fo/c 1/c
1 2.5 0.03 0.03 0.20
2 3.0 0.05 0.04 0.30
3 2.0 0.04 0.03 0.35
4 3.0 0.05 0.02 0.30

Table 5.3: Initial foil geometry guesses

In general, a nonlinear optimization problem is initial guess dependent. In other

words, if there exist more than one local minima to the objective function, any one

of these minima may be obtained depending on the initial guess. Due to the special

structure of the problem, no multiple solutions were found for the range of lift and

cavitation number that were tested. This uniqueness is attributed partly to the fact

that the range of the solution is known, so that a reasonable initial guess can be

selected. Figure 5-4 shows that several different initial guesses, which are tabulated

in Table 5.3, lead to the same solution.
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5.4 Effect of the Algorithm Parameters on the

Solution

There are several parameters used in the algorithm and the effect of the parameters

on the solution is investigated in detail in this section. The parameters are re-stated

below.

A perturbation of each design variable for the initial

linear approximation of the functions

(see also equation (4.1))

6 : maximum allowed change of design variables at each iteration

e :tolerance for convergence

The effect of each parameter on the performance of the algorithm is demonstrated

next. The default parameter values used in the hydrofoil design problems are:

A = 0.05 (5%) of the initial variable

6 = 0.02

S= 1x10-3

The algorithm terminates when the root mean square of the change of the variables

is less than E.

i=-1 X k+l ) ]



The two-dimensional hydrofoil design problem is suitable for a test of the perfor-

mance of the algorithm, since the number of the design variables is relatively small

and the computational effort is much less than the three-dimensional propeller design

problem.

Figures 5-5 and 5-6 show the effect of a on the solution and the required number

of iterations, equivalently the number of analysis runs, for the partially and super-

cavitating hydrofoil designs described in the previous sections, respectively. 6 and E

are kept constant, equal to the default values in this test. In both design cases, a

affects the number of iterations, but the solution is not sensitive to this parameter.

Figures 5-7 and 5-8 show the effect of 6 on the required number of iterations and

the solution for the same partially and supercavitating hydrofoil designs as in Fig-

ures 5-5 and 5-6, respectively. It is seen from these figures that the solution is again

insensitive to 6, although there is a dependence of the number of iterations on 6.

However, this seems to be problem dependent. Therefore it is difficult or not feasible

to find the optimum 6 that works for all the problems. Although it is needless to say

that the required number of iterations is extremely important from the viewpoint of

computational efficiency, the fact that the solution is unique regardless of the 6 value

is even more essential.

Finally, Figures 5-9 and 5-10 show the effect of e on the solution. In the case

of the supercavitating hydrofoil, complete convergence is realized for e < 1 x 10- .

For e larger than this value, CD is slightly higher than the truly converged CD. In

the case of the partially cavitating hydrofoil, complete convergence is achieved for

e < 1 x 10 - 3 . In the contrast to the supercavitating hydrofoil case, CD is lower for a

larger e. This is because all the constraints are not strictly satisfied for a larger E.
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5.5 Effect of Viscosity

The effect of viscosity may be included more accurately, than via a uniform friction

coefficient, by coupling the inviscid cavity panel method with the integral boundary

layer solver of Drela [15], as was done recently by Kinnas et al [42]. The viscous flow

effects have been found to alter the cavitation number and the lift coefficient, as well

as the cavity detachment point. A numerically efficient way to include these effects,

iteratively outside the optimization loop, has been developed by Kinnas and Mishima

[41] and Kinnas et al [43].

Step 1: Determine inviscid optimum foil geometry for given CLo and o,.

Step 2: Apply viscous/inviscid interactive cavity analysis method for the optimum

foil geometry. Determine modified lift coefficient, CL,, and modified cavitation

number, a,, due to viscous effects.

Step 3: Determine optimum foil geometry for given CL,o and a' where:

c•o = CLo - (CLV - CLo) (5.10)

a' = ao - (a, - 0o) (5.11)

Step 4: Iterate Steps 2-3 until CL, = CLo and a, = ao.

The optimum inviscid and viscous geometries and the corresponding pressure dis-

tribution on the foils are shown in Figures 5-11 and 5-12, respectively. The iterative

procedure between the inviscid optimization and the viscous analysis converged after

three iterations in this case.
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Chapter 6

Design of Cavitating Propeller

Blades

The design of three dimensional propeller blades by the present method is described

in this chapter. First, the design of a propeller in uniform flow is performed. This

geometry turned out to be a non-cavitating propeller for the given conditions. The ra-

dial circulation distribution corresponding to this design is compared to the optimum

circulation based on lifting line theory [10]. The blade geometry and the pressure dis-

tribution on the blade are compared with the design from a lifting-line/lifting-surface

approach [25].

Then, cavitating propeller blades in non-uniform flow are designed for several de-

sign requirements. The convergence of the algorithm and the effect of the constraints

on the solution are investigated.

6.1 Statement of the Problem

The objective of the cavitating propeller design is to find a blade mean camber surface,

represented by a B-spline polygon net, which requires minimum torque for a given

design requirement.

Given :

* Effective wake



* Thrust coefficient
T

KT =
pn2D 4

* Advance coefficient
Vs

Js =
nD

* Cavitation number
Pshaft - Pv

n 1 n2D2

* Froude number
n2D

Fn--
9

* Number of blades, Z

* Thickness distribution

* Rake distribution

* Constraints on cavity characteristics and/or unsteady forces

where

T : propeller thrust

V, : ship speed

n : propeller rotational speed

D : propeller diameter

Pshaft : pressure at the propeller shaft depth far upstream

p, : vapor pressure

p : fluid density

g : acceleration of gravity

Determine :

* Blade mean camber surface by a B-spline polygon net that requires minimum

torque coefficient,

K=QKQ pn2D 5
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where,

Q : propeller torque

In non-axisymmetric inflow, the given thrust is the circumferential mean value of

a time-varying thrust, and the torque to be minimized is the circumferential mean

value of a time-varying torque. In a non-dimensional form,

I 27r
KT = 27-

1 27r

KQ = 2fo

KT(O)dO

KQ(O)dO

(6.1)

(6.2)

Figure 6-1 illustrates unsteady forces of a four-bladed propeller in a non-axisymmetric

inflow.
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Figure 6-1: Circumferential mean thrust and torque of a four-bladed propeller in a
non-axisymmetric inflow
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6.2 Propeller in Uniform Flow

6.2.1 Design Condition

The design condition is

Ji = 1.0

cr, = 5.0 (6.3)
KT = 0.15

The number of blades, Z = 3, is chosen. The hub/diameter ratio is 0.2. The inflow

is uniform. Pressure variation due to the hydrostatic effect is turned off in HPUF-3A,

thus, the Froude number, F., does not affect the solution. The radial thickness and

rake distributions are given. Skew optimization is not included in this design. The

propeller designed for these conditions turns out to be a non-cavitating propeller.

The chord length is also given to allow the direct comparison to the design using a

lifting-line/lifting-surface approach. B-spline vertices are allowed to move only in the

direction normal to the original chordwise segments in the yz plane, not to stretch in

the chordwise direction. Four chordwise (N, = 4) by four spanwise (N, = 4) B-spline

vertices are used.

6.2.2 Results

The radial circulation distributions from CAVOPT-SD and from a vortex-lattice lift-

ing line design program, PLL [11], are shown in Figure 6-2. The frictional drag

coefficient, Cf = 0.004 was used. The convergence history of KT, KQ, and the cavity

area is shown in Figure 6-3. Although the initial blade is cavitating, it turns out that

the optimum design for this relatively high cavitation number is a non-cavitating

propeller. The blade geometries from CAVOPT-3D, together with the 4 x 4 B-spline

vertices, are shown in Figure 6-4.
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For the same chord length distribution as in CAVOPT-3D, PLL was run to get

the optimum radial circulation distribution. Then, the circulation obtained from

CAVOPT-3D was used in the lifting line calculation to evaluate the forces, which

are tabulated in Figure 6-2. Circulation distributions from the two methods are

reasonably close to each other. The fact that the two slightly different circulation

distributions give almost the same efficiency implies that the design surface is fairly

flat near the optimum solution.

However, this is not necessarily the best design because this propeller blade was

not designed to have shock free entry. If a fully wetted propeller was to be designed,

a fully wetted design method should be used. A lifting surface non-cavitating blade

design method developed by Kerwin [25], which is designated as PBD-10O, was used

to design a blade for the comparison to the design by the present method. PBD-10

requires a radial and chordwise circulation distribution as an input and iteratively

determines the blade geometry, which satisfies the flow tangency condition on the

blade mean camber surface. The optimum radial circulation distribution determined

by PLL was used. The NACA a=0.8 loading [1] was used as the chordwise vorticity

distribution at all radii. The pressure distributions on the optimum blade designed

by CAVOPT-3D and PBD-1O are shown in Figure 6-5. It is seen from this figure

that for both designs the blade sections are at ideal angles of attack (shock-free en-

try) at all radii as required by PBD-10. Although the shock free entry condition

was not imposed by CAVOPT-3D in this design, the singular behavior at the leading

edge, which could have increased the drag, was avoided. Figure 6-6 shows the blade

geometries designed by CAVOPT-3D and PBD-10O. The CAVOPT-3D geometry is

the same as in Figure 6-4. Since the chordwise loadings are not the same, as shown

in Figure 6-5, the required pitch distributions to give (almost) the same radial cir-

culation distribution are slightly different in the CAVOPT-3D and PBD-10 designs.

The geometry resulting from PBD-10 exhibits a discontinuity near the tip. This is

typical in this version of PBD due to its blade geometry representation. PBD-10

determines the locations of discrete control points and splines them to give the entire

blade geometry. CAVOPT-3D used a cubic B-spline representation that guarantees
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the smoothness of the blade geometry in curvature as well as in slope.

It took approximately one hour for this design to be determined by CAVOPT-3D on

an ALPHA/DEC 600(5/266) workstation.
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6.3 Cavitating Propeller in Non-Uniform Flow

6.3.1 Design Condition

The design of cavitating propellers in non-uniform flow with cavity constraints is

considered in this section. The design condition is

J, = 1.2

a, = 2.5

F, = 5.0

KT = 0.2 (6.4)

SK < SKMAX

CA < CAMAX

VV < VVMAX

FA < FAMAX

where

SK : Skew at the tip

CA : Maximum back cavity area / Blade area

FA : Maximum face cavity area / Blade area

VV : Blade rate cavity volume velocity harmonics / nR3

SKMAX : Allowable maximum skew at the tip

CAMAX : Allowable maximum back cavity area / Blade area

CAMAX : Allowable maximum face cavity area / Blade area

VVMAX : Allowable maximum blade rate cavity volume velocity harmonics / nR3

As discussed in section 6.1, the present method minimizes the circumferential

mean torque, KQ, in non-axisymmetric inflow for a given circumferential mean thrust,
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KT. This is different from other design methods, which evaluate the optimum

propeller geometry subject to circumferential mean axisymmetric inflow. For non-

cavitating propellers, the two approaches will give the same steady forces in linear

theory, in which the response to sinusoidal gusts with different frequencies is the sum

of the individual responses to each frequency. However, for cavitating propellers, the

two approaches will be different due to the nonlinear effect of the cavity.

Three-bladed propeller is chosen in this design again. The radial thickness and

rake distributions are given. The thickness is usually given from the structural consid-

eration. The rake is determined from the structural requirement and the geometrical

arrangement of the ship hull and the propulsor. The chord length is determined by

the method. Linear skew is used, where skew is 0 at the hub and maximum at the

tip.

The inflow is spatially nonuniform and has only the axial component. The inflow

velocity field is shown in Figure 6-7.
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6.3.2 Cavity Constraints

In this section, several cavity constraints are investigated. In non-uniform inflow,

cavity changes its shape during a propeller rotation. The maximum cavity planform

area on the suction side of the blade (also called back cavity), non-dimensionalized

on the blade area, is restricted to be less than some specified value, CAMAX. The

blade geometry including the blade area is determined with this constraint by the

optimization procedure, which minimizes the required torque. The blade area has

usually been determined using an empirical chart and a non-cavitating blade design

method is used to determine the blade geometry. Then an analysis method is used

to check the cavitation performance.

The non-dimensional maximum cavity planform area on the pressure side (also

known as face cavity) must be less than some specified value, FAMAX, which is al-

most zero in most cases.

One of the main objectives of the present design concerns the unsteady perfor-

mance of the propeller. The pressure fluctuations induced by the intermittent cavity

on a ship's hull, as well as the vibratory forces acting on the propeller shaft, must be

considered. The blade rate harmonics of cavity volume velocity is a direct measure

of the free-space pressure fluctuations at large distances from the propeller as shown

in [6, 34]. In the program, VVMAX is the maximum allowable blade rate harmonics

of cavity volume velocity non-dimensionalized on nR3.

Skew is introduced to improve the unsteady performance of the propeller. Table

6.1 summarizes the imposed constraints and the resulting propeller characteristics.

N, = 4 (chordwise) and N, = 4 (spanwise) B-spline vertices are used for the designs

presented in this section. Initial B-spline vertices are arbitrary, although of course a

reasonable guess will help a faster convergence towards the optimum solution. The

same initial geometry with IJ = 1.55 (defined by equation (4.8)) is used for all the

runs in this section.
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Constraints Results
SKMAX CAMAX VVMAX FAMAX SK CA VV FA rl

1 0 - - - 0 0.617 0.0149 0.002 0.780
2 45 - - - 45 0.652 0.0178 0.002 0.792
3 45 0.3 - - 45 0.300 0.0110 0.002 0.790
4 45 0.3 0.007 - 45 0.300 0.0070 0.012 0.787
5 45 0.3 0.007 0 45 0.261 0.0070 0 0.776

Table 6.1: Cavity constraints and resulting values

Design No. 1

Figure 6-8 shows the blade geometry and cavity shapes designed without any con-

straints, which corresponds to the design No. 1 in Table 6.1. Skew is not included

in this design. The convergence history of this run is shown in Figure 6-9. Without

constraints, the non-dimensional maximum cavity planform area was 0.617.

Design No. 2

Figures 6-10 and 6-11 show the optimum blade and cavity shapes, respectively for

design No. 2. There is no cavity constraint imposed. Linear skew is included. With

skew, the efficiency increased from 0.780 to 0.792. However, the maximum cavity

area, CA increased to 0.652.

Design No. 3

In the next design, the objective is to minimize the required torque with for given

maximum cavity area allowed. Linear skew is allowed in this design. This run (design

No. 3 in Table 6.1) is intended to show the effectiveness of skew to improve the

unsteady performance. The optimum blade geometry and convergence history are

shown in Figures 6-12 and 6-13, respectively. With skew, the efficiency is 0.790,

which is only slightly lower than that for design No. 2 and higher than that for

design No. 1. The blade rate harmonics of cavity volume velocity, which is not

constrained, goes down as a by-product.
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Design No. 4

In the next design (design No. 4 in Table 6.1), the constraint on the cavity volume

velocity harmonics is imposed. The results are shown in Figures 6-14 and 6-15.

Substantial reduction in cavity volume velocity harmonics is achieved with a small

decrease in efficiency. Figure 6-17 shows the iteration history of the cavity geometry.

The blade is at 420 from the top.

Up to this point, there is no constraint on face cavitation. It is likely in the

course of optimization that major face cavitation is avoided, since such cavitation

would tend to exhibit a poor performance. In fact, designs No. 1-3 have almost zero

face cavitation. However, there is a case where the blade has a small amount of face

cavitation. The design No. 4 is one of those few cases. It is possible to impose a

constraint which eliminates face cavitation completely.

Design No. 5

Figures 6-16 shows the cavity geometries of the face cavitation free design (design

No. 5 in Table 6.1). The face cavity constraint is turned on after 3N iterations.

In other words, in the earlier iterations, face cavitation is allowed to exist simply to

obtain a functional relationship between the face cavity area and the design variables.

Otherwise, the function would not be defined well, since the most blade geometries

would give zero face cavity area.

Figure 6-18 shows the blade geometries for designs No. 1-5 in terms of the radial

distributions of pitch, camber, and chord length.

6.3.3 Effect of Initial Blade Geometry

In order to investigate the effect of the initial blade geometry on the solution, three

different initial B-spline polygon nets were used. The parameter values 1 = 1.2, 1.55

and 1.8 (defined by equation (4.8) in section 4.2) are used.

In these runs,
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Figure 6-14: Cavity shapes for design No.
to right : SKMAX = 450, CAMAX = 0.3,

I U

0.8

0.6

0.4

0.2

0.0

20

1.5

1.0

0.5

0.0

Maximum cavity area

Blade ratecav vol vel hrm.

..
100 200 300 400

Number of HPUF-3A run

4 , Blade angle 0 = 318', 00, 420 from left
VVMAX = 0.007, FAMAX = 00

0 IU

0.08

0.06

0.04

0.02

50 "

Figure 6-15: Convergence history of design No. 4 : SKMAX = 450, CAMAX = 0.3,
VVMAX = 0.007, FAMAX = oc

117

t• 4t

I' I}00n



0.0 05 0.0 0.5 1.0

Figure 6-16: Cavity shapes for design No. 5 , Blade angle 0 = 3180, 00, 420 from left
to right : SKMAX = 450, CAMAX = 0.3, VVMAX = 0.007, FAMAX = 0

SKMAX = 450

CAMAX = 0.3 (6.5)

FAMAX = oo

VVMAX = 5x 10-3

The initial and resulting blade geometries are shown in Figure 6-19 and the cavity

volume history during one propeller revolution is shown in Figure 6-20. The resulting

KQ from these three runs are in Table 6.2. The iteration history of KT and KQ is

shown in Figure 6-21. Three different initial KT and KQ converged to the almost

identical final values.

It appears that the geometries do not differ much, except near the hub and the

tip. It is interesting to see that KQ is very close in all three cases, although the blade

geometries are not exactly the same.
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Figure 6-17: Iteration history of cavity shapes of design No. 4 (0 = 420) : SKMAX
= 450, CAMAX = 0.3, VVMAX = 0.007, FAMAX = oc
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Figure 6-19: Optimum blade geometries from different initial
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(D KQ
1.20 0.04880
1.55 0.04889
1.80 0.04888

Table 6.2: KQ resulting from CAVOPT-3D for different initial blade geometries

6.3.4 Torque-Constrained Design

There are cases in propeller design where the available torque (power) is given and

the maximum thrust (ship speed) is maximized. If lifting line theory were used to

determine the optimum circulation distribution, the thrust-constrained problem and

the torque-constrained problem would give the identical circulation [10].

Using the present method, the thrust-constrained problem was first solved. Then

taking the resulting KQ as the available torque, the torque-constrained problem was

solved. The blade geometries and cavity volume histories from the two problems are

shown in Figures 6-22 and 6-23, respectively. The iteration history of KT and KQ

is shown in Figure 6-24. Starting from the same initial blade, the forces for the two

problems converged to the same values, taking different iteration paths. The resulting

blade geometries are slightly different. However, the cavity volume histories are very

close since the same cavity constraints are imposed in the two designs.
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Chapter 7

Conclusions and

Recommendations

In this chapter, some conclusions on the work accomplished in this thesis are made

and recommendations regarding future research for possible improvements are given.

7.1 Conclusions

In this thesis, a numerical optimization algorithm is developed for the automated sys-

tematic design of cavitating blades.

The present method, designated as CAVOPT-3D, couples a numerical optimiza-

tion technique with an existing vortex and source lattice method for the analysis of

cavitating flows, designated as HPUF-3A.

The optimization part employs the method of multipliers, which combines the La-

grangian duality method and the penalty function method. The method can handle

general non-linear functions with arbitrary number of both equality and inequality

constraints. It has been shown to be efficient and robust when applied on some known

test problems.

In the flow analysis part, the blade mean camber surface is defined by a cubic

B-spline polygon net in order to facilitate the handling of the geometry, and to re-

duce the number of design variables (parameters). The B-spline representation of
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the blade is shown to approximate a given blade geometry well with a relatively few

number of vertices.

In the method developed, the objective and constraint functions are expressed in

terms of the design variables, which are the movements of the B-spline vertices. Lin-

ear approximations of the results from the analysis method are used in the first stage

of the algorithm, and quadratic approximations are used in the final stage. These

polynomial approximations are updated at every iteration towards the optimum solu-

tion. For each updated solution, this algorithm requires only one function evaluation,

which corresponds to one analysis program run, compared to I + n runs required

typically by gradient-based optimization methods.

The present method has been validated extensively by applying it to several known

test functions.

The method is first applied to the design of two-dimensional partially and super-

cavitating hydrofoil sections. The effect of the parameters used in the algorithm on

the solution is extensively investigated for the two-dimensional cavitating hydrofoil

problems.

Then, the method is applied to the design of three-dimensional propeller blades

in uniform flow. The radial circulation distribution obtained by the present method

is shown to be consistent with the optimum circulation distribution given by a varia-

tional approach based on a lifting line model. The corresponding blade geometry and

the pressure distribution on the blade are compared with that determined by using

an existing lifting-surface inverse approach.

Finally, the method is applied to the design of cavitating blades in non-uniform

flow. The blade geometry, including the blade area and the chord length distribution

along the radial direction, is determined by the method to maximize the propeller

efficiency by allowing controlled amounts of sheet cavitation. Upper bounds on the

maximum cavity planform area and the amplitudes of the cavity volume velocity

harmonics are incorporated in the optimization algorithm via inequality constraints.

The effect of these unsteady cavity constraints on the blade geometry and the corre-

sponding propeller efficiency is shown.

129



7.2 Recommendations

Some suggestions on the future research related to the present work are given in this

section.

Flow analysis method

As stated previously, any improvements in the flow analysis method, HPUF-3A, can

be easily incorporated.

* Supercavitating propeller

Although HPUF-3A can treat both partial and supercavitation, it is primarily in-

tended for partial cavities and/or short supercavities. Recently, it was modified to

work for supercavitating sections that have a finite trailing edge thickness [45]. Fur-

thermore, the length of the transition wake is extended to allow for a longer super-

cavity. If a supercavitating propeller for a higher ship speed is to be designed with

the present algorithm, further improvements on the modeling of the supercavities will

be necessary.

* Cavity detachment point

HPUF-3A assumes that the cavity always starts at the leading edge of the blade.

This may cause a negative cavity thickness near the leading edge, as shown in Figure

7-1.

This implies that in reality the cavity detaches aft of the leading edge of the

blade. Since it is well known that the location of the cavity detachment point may

affect the predicted cavity extent, a variable cavity detachment model is desirable

for more accurate prediction. For two-dimensional hydrofoils, Franc and Michel [22]

found experimentally that the cavity detachment occurs immediately downstream of

a laminar separation point. A laminar separation point may be predicted by a strip-

wise application of a boundary layer/inviscid flow coupling cavitating flow solver, for
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Figure 7-1: Negative cavity thickness near the leading edge of the blade

example developed by Kinnas et al [42]. For a non-cavitating propeller application,

this was done by Hufford et al [28].

* Panel method

HPUF-3A is attractive for its computational efficiency. However, when faster com-

puters become available, a better modeling of the cavity flow by the panel method, for

example PROPCAV by Fine [21], will eventually replace the vortex-lattice method.

If one desires to model tip vortex cavitation accurately, panel methods must be used.

Optimization

* Inclusion of more physical constraints

Some additional physical constraints which will improve the performance of the cur-

rent method are:
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Unsteady forces acting on the propeller shaft and on the propeller blades

All these quantities are direct outputs from HPUF-3A in the form of harmonic

coefficients. Depending on the relative importance of each force component

to another (e.g. consideration of resonance frequencies of the shaft system),

constraints on the weighted sum of the unsteady forces may be imposed.

Margin of the minimum pressure at mid-chord of the blade section

In order to avoid mid-chord/bubble cavitation, a constraint on the margin of

the minimum pressure at mid-chord to the cavitation number may be imposed.

Suppression of developed tip vortex cavitation

One possible way of avoiding developed tip vortex cavitation is to impose a con-

straint on the cavity shape at the tip. The constraint would require that the

cavity size decrease towards the tip.

* Multi-point optimization

In the present work, optimization is performed for one design condition. For most

ship propeller designs, this will be sufficient. However, the overall performance for

various operating conditions may not be satisfactory. Drela [16] used the "two-point"

optimization for the minimum drag design of low Reynolds number airfoils to over-

come this problem. He defined the objective function as a weighted sum of the CD

values at two CL operating points. This extension is in fact straightforward and can

be implemented easily in the present scheme.

* Application of the present method to other problems

The present method may be applied to other optimization problems by replacing

HPUF-3A by any programs. This was demonstrated for the two-dimensional cavitat-

ing hydrofoil design problem.
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Appendix A

One-Dimensional Line Search

Method

In the Quasi-Newton algorithm, one-dimensional unconstrained minimization method

to solve the following problem is required at each iteration.

min f(k + akdk), k 0 (A.1)

Since this one dimensional line search routine is called quite a few times, it must

be efficient as well as accurate. From a practical point of view, it is often desirable

to sacrifice accuracy in this routine to gain in overall computational efficiency. One

of such methods is Armijo's rule and is described below [50].

The idea is that the step length ak must be reasonably large but not too large.

Let us define the functions

(a) = f (x + ad) a > 0 (A.2)

0(a) = 0(0) + auO'(0) a > 0 (A.3)

for fixed 0 < a < 1.
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A step length a is acceptable, if

e(a) < (a) (A.4)

This is seen in Figure A-1 as the part below the dashed line. To prevent a from being

too small, Armijo's rule requires

(A.5)

This is seen in Figure A-1 for a = 0.5.

Numerically, mk is the first nonnegative integer m for which,

f(xk) - f(xk + p m dk) Ž -U-amVf(xk)Tdk

where,

ak = pmk

Starting from m = 0, m is increased by 1 until equation (A.6) is satisfied.
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0(ad) > ý(Lad)



U acceptable range

Figure A-i: Acceptable step length in Armijo's rule
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Appendix B

Data for the Test Problem

Tabulated data for the test problem No. 2-7 in section 2.5.2 is given in this appendix.

j 1 2 3 4 5 6 7 8 9 1011121314154 16
alj 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1
a2j 0 1 1 0 0 0 1 00 1 0 0 0 0 0 0
a3  0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0
a4j 00 0 0 1 00 1 00 0 1 0 0 0 1 0
a5j 0 000l 0 0 0 0 1
a6j 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0
a7j 0 0 0 0 0 0 1 00 0 0 1 0 1 0 0 0
asj 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
a9j 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

aloj 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
alj 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
al2j 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
a 3  00j 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
al4j 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
a15j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
al6j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table B.1: Data aij for test problem No. 2-7
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j b13  b23 b33 b43  b5j b63  b7j bs83  c
1 0.22 -1.46 1.29 -1.10 0.00 0.00 1.12 0.00 2.50
2 0.20 0.00 -0.89 -1.06 0.00 -1.72 0.00 0.45 1.10
3 0.19 -1.30 0.00 0.95 0.00 -0.33 0.00 0.26 -3.10
4 0.25 1.82 0.00 -0.54 -1.43 0.00 0.31 -1.10 -3.50
5 0.15 -1.15 -1.16 0.00 1.51 1.62 0.00 0.58 1.30
6 0.11 0.00 -0.96 -1.78 0.59 1.24 0.00 0.00 2.10
7 0.12 0.80 0.00 -0.41 -0.33 0.21 1.12 -1.03 2.30
8 0.13 0.00 -0.49 0.00 -0.43 -0.26 0.00 0.10 -1.50
9 1.00 0.00 0.00 0.00 0.00 0.00 -0.36 0.00

10 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
11 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
13 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Table B.2: Data bi3 and c, for test problem No. 2-7
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Appendix C

Determination of Parametric

Spacing for the Blade Geometry

When the propeller mean camber surface is defined by B-splines, the spacings for the

parameters, u and w, for the chordwise and spanwise directions, respectively, are de-

termined iteratively so that the resulting physical spacings are the required spacings

in HPUF-3A.

Suppose that we want NN chordwise by MM spanwise vortex lattice 1, as shown

in Figure C-1. Given a B-spline polygon net, a point xij = [xij, ij, zij] on the

blade mean camber surface, may be uniquely defined by specifying the radius, rij =

jy + zj , and the nondimensional chord length measured from the leading edge, sij

(defined in section 3.2, also in Figure 3-4). Therefore, the problem is to find the

parametric spacings, uij and wij such that xij corresponds to the required 2 rij (=rj)

and sij (=si).

A flow chart of the algorithm is shown in Figure C-2.

Step 1 Initially, the parameter values, uij and wij, are set equal to the values of the

'For another lattice, such as source lattice, the same algorithm works
2Although it is not essential, it is assumed in this section that rij is independent of i and that

sij is independent of j, as shown in Figure C-1.
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Tip

Hub

rMM

1 S2 Si
L.E. T.E.

Figure C-1: NN chordwise by MM spanwise vortex lattice

physical spacings:

yij = Si

wij = rj (C.1)

In general, this does not give the required spacing in the physical space.

Step 2 For the current uij and wij, the corresponding rij are computed. Then for

each spanwise strip i, a cubic spline interpolation of wij as a function of rij is
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obtained.

wij = spline Wi(rij) (C.2)

The new wij is determined by

wij = spline wi(rj) (C.3)

Step 3 For the current uij and wij, the corresponding ss, are computed by using

equation (3.11). For each chordwise strip j, a cubic spline interpolation of uij

as a function of sij is obtained.

uij = spline uj(sij) (C.4)

The new uij is determined by

uij = spline uj(sj) (C.5)

Step 4 The convergence of the algorithm is checked by evaluating

NN MM

e = E (rij - rj) 2 + (Sij - Si) 2

i=1 j=1
(C.6)

Step 2-4 is repeated until e becomes less than a small specified tolerance (currently

equal to 10-i).

A typical convergence history for e is shown in Figure C-3.
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START

Given u..

Spline : wij = spline wi (r1 .)
wij = spline wi (rj)

Given w..

Spline : u = spline u1 (s )

u. = spline u. (si)Ii pj j

NO(r - r 2 + (S -Si 2NO J

YES

END

Figure C-2: Flow chart of the iterative method for the determination of uij and wej
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Figure C-3: Typical convergence history of the algorithm : NN = 20 chordwise by
MM = 9 spanwise vortex lattice
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Appendix D

B-Spline Vertex Movement

The coordinates of the B-Spline vertices, d1 ,j = (xI,J, Yrj, , z,)T, corresponding to

the design variables using the initial vertices dI,J = (x ,j, yIJ, ,J)T, are listed below.

The design variables and the vertices movements for 4 by 4 vertices are illustrated in

Figure D-1.

1. Chord length given

On the hub (J = 1)

X1,1= X 1- , 1  XNu-1 COS 1

Y1,1 h= (D.1)Yi = •/(yl)I + (z,•0 XN- 1 sin 10)2

S rh(z•, - XN, -1 sin ¢1)
Y1) + (z, 1 - X•N- sin S 1)2

x =,i x,1 - xI- cos 1  (D.2)

rhy,i1+ ±,i, = 1• sin) 2  ,I = 2,...,N,V(Y ,J)2 + (zj + xi-1 sn 12

rh(z7,1 + xj- 1 sin 1)
Y(y,1)2 + (Z,j + xI- 1 sin 01)2
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Intermediate (J = 2,. . ., N - 1)

SX,j + X(N -l)XJ COS OJ

- z, - X(N,-l)xJ sin 0J

-X,J - X(N-1)x(J-1)+I-1 COS OJ

- Z1,j + X(Nu,-1)x(J-1)+I-1 sin 1J

At the tip (J = N,)

XI,N - XNw COS((N 1)x(N1) -1)+1) + Zo,VN, sin(x(N,-1)x(N -1)+1)

(D.3)

YI,NW

V(Y, + (-X,N, ý in((N_-1)x(Nc-1)+1) + ZN. COS (X(N-l1)x(N,-1)+1)) 2

-XN si(X(N,•-1)x(N,-1)+1) + zY,° u cos(X(N-1)x(N -1)+i)

\/(YI,N~)2 + (-xO,N sin (x(N-1)x(N, -1)+ + Z,Nwu COS((Nu-1)x(N-1)+1))
2

sin q 1
S, 1 + XN,-1 COS 01 - XN, 2

rhY 1l, 1

V ( 1 -0-,) + (7-,1 - XN -1 N. I- /XATu c LI)2
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XZ1,j
XiJ

Yi,j

Zi,j

XYj

YI,J

ZIJj

(D.4)

YI,N,

ZI,Nw

(D.5)

2. Chord length determined

On the hub (J = 1)

X1,1

Y1,1 (D.6)



Th(Z, 1 - XNu_1 S-in 1 - XN, 2

iY,I)2 + (zNj, - XN~-1 sin q1 - XNu COS)2

I ,1 XI-
COS (7r I-1

COS 01 - XN, N,-lsin 12

cos( u - 1) )2
(1,1) - (Z,1 + x- 1 sin 1 - N O COS1

Th(Z 1,1 + X-1 Slin l - XN- c cos0 1)

Scos(w ) COS0)

Intermediate (J = 2,...,Nw - 1)

o sin Cj
1- X1,J JxN-l 1 COS gJ - XJxn, 2

- Yi,J

- ,J - xNu- l in J - ZJxN,1 2

- I, J - X(J-1)xNu+I
cos(2 ) sin J

1 COS J - ZJxN N-1 sin j2

= Y',

Z, Jj + X(J-1)xNu±+I-1
COS )sin qJ - XJxNu, N2-1 COS j

2

At the tip (J = 1N,)

SX•,Nw COS(XNux(Nw-1)+I) + Z7,N sin(x Sr(N-r1)+)
YI,N,

CN, 2  _ (-x I,N sin(xN ) x(N,-1)+1) + Z•,AT COS(X Nx(N,-1)+1))2

-xo,NW SiIn(XNx(N,,-1)+]) + ZI,NW COS(XN~ x(N,,-1)+1)
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Z1,1

XI,1

YI,i

zI,1

(D.7)

Xi,j

Zi,J

(D.8)

Xl,j

yI,J

ZI,j

(D.9)

YI,N,

ZI,N,

(D.10)

\(YION.)2 + (--X, Sinl(XzNx(N-) -i)i) + Z1,, CO[ S x(N,-1)+1)) 2

----



Chord length given Chord length determined

J = 4 (tip)
S x,

7 C

x9

X8

x

X,,

Figure D-1: Design variables and B-spline vertices movement : N, = 4, N, = 4
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