7354 Whitby Place
Delta, B.C.
Canada
V4C 4M7
6 June 2005
Mr. Alan Gilbert
ISWSCYDC Representative
133 Reid Ave.
Port Washington, NY 11050
U.S.A.

Dear Mr. Gilbert,
Re: University of British Columbia entry into the 2005 ISWSCYDC
Please accept our entry into the 2005 ISWSCYDC. The enclosed report, titled "Design of a Rescue Diver Deployment Vessel", details the design of a 17.25 m aluminum catamaran intended for use by a search and rescue dive team within the Georgia Strait. This report was completed as part of our four month mechanical engineering course titled MECH 441 - Computer Aided Ship Design.

Thank you very much for your acceptance, and we are confident that this report will meet your expectations. If there is anything more you require, please do not hesitate to contact us either by email at ubc_nav_arch@yahoo.ca, or by telephone at 604-418-9160.

Respectfully submitted,

Bill Rawlings

Joel Atwater

Encl. Faculty Letter, Report

THE UNIVERSITY OF BRITISH COLUMBIA

Department of Mechanical Engineering 6250 Applied Science Lane
Vancouver, B.C. Canada V6T 1 Z4
Tel: (604) 822-2781
Fax: (604) 822-2403

June 3, 2005
Mr. Alan Gilbert
ISWSCYDC Representative
133 Reid Avenue
Port Washington, NY 11050
USA

Re: Participation of the University of British Columbia in the 2005 ISWSCYDC

Dear Mr. Gilbert,
This is to confirm that Mr. Bill Rawlings, Mr. Joel Atwater, and Mr. Koyla Harpe, are students enrolled in the Mechanical Engineering Undergraduate Program at the University of British Columbia. These students have been enrolled in our four-month course, MECH441 - Computer Aided Ship Design, which began in January, 2005. Their design project, Rescue Diver Deployment Vessel, is to be submitted to the 2005 ISWCCYDC competition.

Since Prof. Sander Calisal is attending conferences in Europe, I am writing this letter on his behalf. Dr. Calisal and I share teaching duties for the UBC Naval Architecture courses and I participate in the ME441 course as an evaluator. If you require further information, please do not hesitate to contact directly at (604) 822-2709 or mikk@mech.ubc.ca.

Design of a Rescue Diver Deployment Vessel

Prepared in fulfillment of the requirements for the
International Student Workboat/Small Craft/
Yacht Design Competition
Prepared by:
Joel Atwater Kolya Harpe Bill Rawlings
University of British Columbia
Vancouver, Canada
Submitted to:
Mr. Alan Gilbert
Society of Naval Architects and Marine Engineers
6 June 2005

Abstract

There have been a number of recent tragedies on Canada's Pacific Coast in which people have drowned while trapped in vehicles or boats. In these circumstances, the presence of a rapidly responding search and rescue dive team is invaluable.

Investigation of the dive teams operating in the south-coast region of British Columbia found that the teams were operating using generic, multi-role without specific features like onboard compressors that could have been a great asset. The design of a dedicated, high speed response boat would allow the dive teams to operate more effectively and could potentially save lives.

The design proposed is for a Rescue Diver Deployment Vessel (RDDV), a high speed, 17.25m aluminum catamaran specifically designed with the rescue diver in mind. The vessel will be powered by twin MAN 1300BHP marine diesel engines driving Wärtsilä-Lips water jets, this vessel is capable of 45 knots in calm water.

There are several integral systems included specifically to support the dive team. The most important of these is the high pressure compressor that is capable of filling empty SCUBA tanks or supplying air to submerged divers. In addition, there will be a cascade system for air handling. Finally, there is a victim lift installed in the stern between the hulls. This device facilitates moving equipment and divers in and out of the water as well as recovering victims quickly and easily.

Due to the nature of rescue diving operations, there is a need for onboard medical facilities. The design of the ship fully provides for the electrical communication, storage, space and environmental requirements of a sickbay. There is ample room to move victims onboard and to rapidly disembark. The vessel is also arranged to facilitate evacuation of victims by air ambulance off the aft deck.

The lack of dedicated vessels leaves the dive teams without the equipment to do their job as effectively as possible. If the agencies that protect the public invest in dedicated dive team search and rescue vessels, there could potentially be an increase in the teams effectiveness, perhaps saving lives.

Acknowledgments

Very special thanks to:

Jon Mikkelsen, UBC
Dr. Sander Calisal, UBC
Dan Vyselaar, UBC
Brian Konesky, BK Engineering
Grant Brandlmayr, Robert Allan Ltd.
Hans Muhlert, Robert Allan Ltd.
Chris Mulder, Robert Allan Ltd.
Dan McGreer, Aker Marine
Mike Wadden, Aker Marine
Milen Handjiyski, Aker Marine
Mark Cooke, Aker Marine
Alan Reynolds, Offshore Research
Bob Ayres, John Palliser, and Drew Edey, Canadian Coast Guard
RCMP E Division Recovery Dive Team
Doug Jimmo, Canadian Navy Search and Rescue Dive Team

Contents

1 Introduction 1
2 Owner Specifications 2
2.1 Vessel Specifications 2
2.2 Diver Support Specifications 2
2.3 Medical Equipment Specifications 2
3 Design Focus Areas 4
3.1 Vessel Particulars 4
3.2 General Hull Form 4
3.3 Lines Plan 5
3.4 General Arrangement 7
3.5 Structural Analysis 10
3.5.1 Longitudinal Hull Strength 10
3.5.2 Wet Deck Hull Strength 10
3.6 Scantling Calculations 12
3.7 Weight Estimate 12
3.8 Resistance and Powering 13
3.9 Stability 18
3.9.1 Intact Stability 18
3.9.2 Damaged Stability 18
3.10 Seakeeping 21
3.11 Machinery and Major Systems 22
3.11.1 Machinery Arrangement 22
3.11.2 Electrical Systems 24
3.12 Endurance and Tank Capacities 24
3.12.1 Fuel Oil 25
3.12.2 Ballast 26
3.12.3 Fresh Water 26
3.12.4 Grey and Black Water 26
3.13 Cost Analysis 26
4 Technical Risk and Mitigation 28
5 Conclusions 29
A Lines Plan 30
B Vessel Drawings 32
C Ship Structure 48
D Scantling Calculations 73
E Weight Estimate 74
F Resistance 89
G Stability Calculations 94
H Seakeeping Calculations 124
I Electrical Load 125
J Cost Estimate 128

List of Figures

1 RDDV Lines Plan 6
2 Plot of Developable Surfaces 6
3 Cabin General Arrangement 7
4 Profile View 7
5 Wheelhouse General Arrangement 8
6 Deck General Arrangement 9
7 Lift Arrangement 9
8 Effective Stress in Wet Deck 11
9 Midship Section 12
10 Heave and Trim vs Velocity 14
11 Wave profiles for $20,30,40$ and 50 knots 15
12 Wave and Frictional Resistance vs Speed 16
13 Total Resistance vs Speed 16
14 Jet Selection Chart 17
15 GZ Curves for Lightship and Loaded Conditions 19
16 Wind Heeling Arm 20
17 Machinery Arrangement 23
18 Tank Arrangement 24
19 Fuel Consumption vs Speed 25

List of Tables

1 Summary of Vessel Particulars 4
2 ABS Bending Moments 10
3 Summary of Ship Weights 13
4 Engine Specifications 17
5 Geometric Properties 21
6 Vessel Response in I.T.T.C. Wave Spectrum 22
$7 \quad$ Vessel Response in West Coast Wave Spectrum 22
8 Electrical System Loads 24
9 Fuel Oil Tank Capacity Parameters 25
10 Ballast Tank Capacity Parameters 26
11 Fresh Water Tank Capacity Parameters 26
12 Grey and Black Water Tank Capacity Parameters 27
13 Summary of Estimated Costs 27

Glossary

ABS	American Bureau of Shipping
ITTC	International Towing Tank Conference
PNA	Principles of Naval Architecture
RAO	Response Amplitude Operator
RCMP	Royal Canadian Mounted Police
RDDV	Rescue Diver Deployment Vessel
RIB	Rigid Inflatable Boat
SCUBA	Self Contained Underwater Breathing Apparatus
SWATH	Small-Waterplane Area Twin-Hull

1 Introduction

In August of 2002 the Cap Rouge II, a small, Steveston, BC based fishing vessel capsized in the lower Fraser River, killing five people. The tragedy acutely showed the importance of a rapid response dive team on Canada's west coast.

Presently, there are three dive teams operating on Canada's Pacific coast: the Navy and Coast Guard search and rescue dive teams and the Royal Canadian Mounted Police E-Division Recovery Team. While these teams are extremely well trained, the vessels that are presently being employed are not specifically designed for diving work; the specialized units are using multi-role vessels that were not designed to suit the specific needs of an underwater operation.

It is believed that there is a need for a dive tender that is capable to quickly respond to marine emergencies where people are trapped beneath the water's surface. As such, the Undergraduate Naval Architecture team from the University of British Columbia proposes the design of a high speed Rescue Diver Deployment Vessel (RDDV). This vessel design is to be entered into the International Student Workboat/Small Craft and Yacht Design Competition in June 2005.

2 Owner Specifications

The following specifications were the basis for the design of this vessel. They were developed through discussions with the RCMP, Navy and Coast Guard Dive Teams.

2.1 Vessel Specifications

Range	Typical Maximum	120 320	NM
Speed	Calm Water	40	knots
	All Conditions	20	knots
Length	Maximum	70	feet
	Minimum	50	feet

- Classed under ABS Regulations.
- Allow for easy recovery of divers.
- Provide sufficient deck space for providing critical victim stabilization after recovery.
- Allow for the easy transfer of victims to shelter/hospital area.
- Provide means for victim evacuation by Air Ambulance.
- Be able to support multiple divers as they conduct recovery operations.
- Have minimal draft to access shallow areas.

2.2 Diver Support Specifications

- Installed and plumbed high pressure air compressor capable of supplying submerged divers and filling used SCUBA tanks.
- Available facilities and supplies to rinse diving gear with fresh water.
- Ability to deploy a 12 to 16 foot Rigid Inflatable Boat (RIB).

2.3 Medical Equipment Specifications

- Provide sickbay area for a minimum of two victim stretchers and sufficient room to perform Cardiopulmonary Resuscitation.
- Good lighting and ventilation in sickbay.
- Provide Sufficient oxygen supply for victim care while in transit to the hospital (K-Sized Cylinder or equivalent). Should include Humidification for extended transit times.
- Communications equipment in Sickbay for immediate contact with on shore medical services
- Provide sufficient storage space for medical assessment equipment (Blood pressure cuff, stethoscope, tympanic thermometer, etc)
- Provide storage facilities for rewarming equipment such as wool/fleece blankets and rechargeable hot packs

3 Design Focus Areas

All the relevant aspects off the RDDV were addressed in the design process. These include the general hull form, vessel lines, the general arrangement, seakeeping, vessel weight, resistance, powering, machinery, electrical loading, diver support, tank capacities, stability, structure, scantling strength and cost.

3.1 Vessel Particulars

Table 1 below illustrates the final vessel particulars. The following discussion outlines the design process used to arrive at these specifications.

Table 1: Summary of Vessel Particulars

Dimensions

Water Line Length	16.4 m
Length Over All	17.25 m
Beam	6.75 m
Draft	0.70 m

Displacements

Lightship Weight 24280 kg
Fully Loaded Weight 28809 kg

Performance

Maximum Speed 45knots
Cruise Speed 20knots
Operating Range 320 NM
Endurance at 40knots 8.4 hours
Miscellaneous
Crew Complement 8

3.2 General Hull Form

Several hull forms were considered for the RDDV including SWATH, catamaran, planing and displacement mono-hull and hovercraft. The considerations regarding hull form choice are discussed below:

1. There is a requirement for very high speeds to quickly reach the scene of marine emergencies. The hull forms that meet this requirement are a planing mono-hull, a catamaran, hovercraft and a SWATH. A displacement hull would require a vessel that was too large to be practical or cost effective.
2. As most marine emergencies occur in high sea-states, the vessel must perform well in rough water. Planing mono-hulls typically perform poorly in heavy sea states.
3. The requirement to able to be operate in shallow water requires a vessel of minimal draft. The nature of SWATH prohibits the use of the hull form for this application.
4. Through discussion with the Coast Guard it was noted hovercraft have some difficulty maintaining position drift during diving operations.

A catamaran provides an excellent balance of high speed and low draft characteristics while providing excellent stability during diving operations. In addition, catamarans provide several other advantages. They typically have up to 40% more usable deck area compared to other ships of the same length. Catamarans also typically operate at higher power to weight ratio than mono-hulls. ${ }^{1}$ For these reasons, a catamaran was selected as the optimal hull form for the RDDV.

3.3 Lines Plan

The lines plan for this vessel was generated using the AutoShip modeling package, and exported to AutoCAD for plotting. The vessel form was finalized after many iterations of the powering calculations examining hull spacing, etc with a final frame spacing of 0.8625 m . A few points of consideration include the hard chine to aid vessel planing, and the varying freeboard along the length of the vessel. At the aft end of the vessel minimal freeboard was given to facilitate easy water entry and exit. Closer to the bow of the vessel, greater freeboard was allotted to aid in seakeeping and operation in rough seas.

Rhinoceros 3d was used to verify that all hull plates are fully developable for ease of manufacturing. Figure 1 below illustrates a simplified lines plan, while a more detailed lines plan may be found in Appendix A. Figure 2 below displays the green developable surface plot.

[^0]PLAN VIEW

BODY VIEW

SCALE: TD FIT

| 0.5 m 1 m | 2 m | 3 m |
| :--- | :--- | :--- | :--- |

Figure 1: RDDV Lines Plan

Figure 2: Plot of Developable Surfaces

3.4 General Arrangement

The first consideration when developing the general arrangement was that the deck needed to be sufficiently large to allow diving activities, stretcher maneuvering and to support a recovery lift. Within the main cabin (Figure 3) is a hospital area with sufficient storage for medical equipment, a galley space, and a water closet. Additionally, the helmsman must have good visibility to monitor activities in the water at the stern of the vessel and the ability to maintain adequate lines of sight to the front of the vessel for docking and maneuvering in close quarters. These tasks were accomplished by having an elevated wheelhouse accessed by either stairs from the aft deck, or by a ship ladder from within the main cabin.

Figure 3: Cabin General Arrangement
The aft windows on the wheelhouse are angled towards the stern of the vessel (Figure 4) to allow for unobstructed viewing of the working deck. The elevated wheelhouse provides excellent lines of sight towards the front of the vessel, while creating space to store the air compressor and cascading storage system beneath the stairwell and wheelhouse respectively.

Figure 4: Profile View

The pilots's seat is located along the centerline of the vessel, (Figure 5) further improving visibility. Storage in the wheelhouse is located on the chart table, in drawers beneath the chart table, and in small shelves along the back of the helm, chart table, and wheelhouse. Additionally, having the main cabin entrance pass beneath the chart table in the wheelhouse creates a corridor sufficiently wide to maneuver a stretcher into the main cabin. Lastly, it is recognized that the term chart table is used loosely as the use of paper charts is virtually obsolete; this space may be instead used for liquid crystal display monitors, etc.

Figure 5: Wheelhouse General Arrangement
On the port side of the main cabin is the hospital area (See Figure 3) with space for two stretchers (capable of being airlifted). Between the stretchers, cabinet space is provided for oxygen canisters and masks and a wall-mounted suction unit. Additional cabinets for other medical equipment such as an automated external defibrillator, airway gear, blankets, and ventilator are located beside each stretcher and in the wheelhouse void next to the air storage system. Beside the hospital area is a water closet containing a head, sink, and shower. On the starboard side of the main cabin are additional storage cabinets, and a mess and galley area. Additional storage space is provided at the forward wall of the cabin, ahead of the mess area.

Outside of the deckhouse, diver tank storage is provided along the port side (Figure 6). Other divespecific equipment includes a plumbed air status monitoring panel on the aft face of the stairwell leading to the wheelhouse, deck lockers for storage of hose used to breathe surface air, and sufficient freshwater and drainage to rinse equipment. The recovery lift is centered on the stern of the vessel (Figure 7) and is large enough for an emergency stretcher. It employs a four-bar linkage system so as to always remain parallel to the deck for simple loading, and is operated at the air status monitoring panel by two winches. To further facilitate diver entry and exit (in addition to the lift), access to the swim grids is provided by gates in the bulwarks. Additional bulwark gates for boarding and disembarking the vessel are fitted at the sides of the aft deck. There is a small RIB for use in areas the primary vessel cant access stowed on the foredeck. Anchors are stowed on the port side of the fore and aft deck. In addition to holding the vessel in place, the aft anchor may be used as a descent line for divers.

Appendix B contains all general arrangement drawings for this vessel, as well as rendered images of the 3-D model. Lastly, it should be noted that all doorway, stairwell, and accommodation, etc. dimensions were specified according to the ABS Guide for Crew Habitability on Offshore Installations.

Figure 6: Deck General Arrangement

Figure 7: Lift Arrangement

3.5 Structural Analysis

3.5.1 Longitudinal Hull Strength

The longitudinal hull structure was analyzed according to the ABS Guide for Building and Classing High Speed Naval Craft 2003. The hull scantlings were specified using the ABS rules (See Section 3.6), and then the required section modulus based on the vessel speed and dimensions was obtained. Using this required section modulus, ABS specified a minimum vessel moment of inertia of $31 \mathrm{in}^{2}$. $f t^{2}$. Using a scale drawing and the known scantlings, the actual inertia of the vessel was calculated to be $1085 i n^{2} \cdot f t^{2}$ in AutoCAD. This demonstrates that the RDDV satisfies the ABS requirements for longitudinal hull girder strength. All supporting calculations may be found in Appendix C.

3.5.2 Wet Deck Hull Strength

The structure of the wet deck was analysed according to ABS rules. Using tabulated accelerations and vessel parameters the maximum bending moments and shear stresses were found. See Table 2. The wet deck structure was modelled in AutoDesk Inventor with conservative plate thickness of 3.66 mm . This solid model was analysed using ANSYS, a commercial Finite Element Analysis (FEA) package. Using FEA, the stress concentrations caused by the lift platform at the stern can be taken into account. Figures 8 a and 8 b show the effective stress throughout the wet deck in transverse and longitudinal bending. It should be noted that the deflections shown are exaggerated for ease of visualization. Using the bending moments predicted by ABS codes, there were no significant stresses present in the wet deck structure.

Table 2: ABS Bending Moments

Parameters			Calculated Values		
K_{1}	2.5		$M_{t b}$	1378	$k N-m$
K_{2}	1.25		$M_{t t}$	2429	$k N-m$
Δ	29	tonnes	Q_{t}	290	$k N$
B	4.75	m			
L	16.75	m			
$n_{c g}$	3				

Figure 8: Effective Stress in Wet Deck

3.6 Scantling Calculations

The vessel has been designed to satisfy ABS High Speed Naval Craft Rules 2003. 5083 H116 aluminum was selected for construction as aluminum is a lightweight material; the 5083 H 116 alloy has proven to be a reliable, corrosion resistant solution. In Figure 9, both a typical midship and bulkhead section are shown as specified by the classification society. Though the majority of the design has been conducted in SI units, the dimensions shown below have been selected to coincide with common imperial dimensions for convenient purchase in North America. A larger drawing may be found in Appendix D.

ABS MIDSHIP SECTIDN

ABS BULKHEAD SECTIDN

Figure 9: Midship Section
The bottom and side shell plate thicknesses have been increased by 58% above the required rule thickness (from 4 mm to 6.35 mm , or $1 / 4 \mathrm{inch}$). The freeboard deck was increased to 36% more than the required value, while the wet deck was increased by 14%. In general, the superstructure plate thicknesses were increased by 30%, while most stiffeners and transverse members were simply increased to the next convenient imperial size. All supporting calculations may be found in Appendix D.

3.7 Weight Estimate

The weight estimate was completed using a commercial spreadsheet package. The structural weight was calculated on a frame-by-frame basis. Frames zero through five contain a 10% margin for extra structure in way of the recovery lift, water jets and engines. Table 3 below summarizes the weights by category and displays the vertical, longitudinal, and transverse centres of gravity for the vessel. Appendix E contains the detailed weight estimate.

As expected, the major contributing factors to the weight of the vessel are the structure and machinery. It should be noted that the machinery weights for this vessel are a much larger proportion of the weight compared to other vessels of this size. This is largely due to the specific requirements of the craft, such as the air compressor and water jets. Lastly, it should be noted that the lightship weight may be obtained simply by subtracting the tank weight from the Total Weight in Table 3.

Table 3: Summary of Ship Weights

Structure	11400	kg
Machinery	7359	kg
Tanks	4530	kg
Electrical	949	kg
Other	3200	kg
Margin	1372	kg
Total Weight:	28809	kg
VCG	1.46	m
LCG	7.26	m
TCG	0.05	m

3.8 Resistance and Powering

The resistance of the RDDV was calculated using Michlet, a potential flow solver. Michlet requires an input file to specify the geometry of the vessel and a file specifying all the constants. The geometry file can be created by projecting points onto the half hull surface and outputting their coordinates. The coordinates are then organized in a comma separated file to provide the half breadths of each station in a single line (the number of lines is the number of stations). The input file specifies the number of stations and waterlines as well as the draft and length of the vessel. From these values, Michlet generates a hull form assuming linear sections between each point. The hull spacing, displacement, number of hulls, speed range, trim angle, and heave can also be specified in the Michlet input file. Michlet was also used to optimize the hull spacing and reduce any wave superposition effects. At cruise speed, there is no cross wave/hull interaction and the wakes from the two hulls do not interact until 25 m aft of the vessel. This analysis allows for a reduction of wave superposition effects and, by extension, reduces erosion of shorelines due to the vessel's wake, reducing the overall environmental impact.

The trim angle and heave at each speed as the vessel begins to plane were calculated using formulas developed by Savitsky, available in PNA. These formulas and the geometry of the vessel were put into an Excel spreadsheet and the trim angle and heave were calculated at 10 speeds between 1 and 49 knots. The change in trim and heave can be seen in Figure 10. With all the values specified in the input file, Michlet solved the far field wave pattern to determine the wave resistance on the hull. Figure 11 represents the wave patterns at 20, 30, 40 and 50 knots.

The skin friction is solved using the ITTC57 method. The wave, friction, total resistance, and power curves can be seen in Figures 12 and 13. Correlating the resistance from these curves into horsepower, it was found that the total required horsepower (EHP) was approximately 1330hp at 45 knots.

In addition to the frictional and wave resistances calculated in Michlet, the air resistance for the deck house was also considered. The air resistance at 45 knots corresponds to 125 Hp . To calculate the air resistance it was assumed that the deck house was a blunt body with a coefficient of drag

Change in Heave and Trim

Figure 10: Heave and Trim vs Velocity
of 0.96 based on frontal area. This drag coefficient was derived for a tractor trailer unit; the shape of the deck house was assumed to be geometrically similar to that of a tractor trailer. Note that all resistance calculations may be found in Appendix F.

Due to draft requirements and safety concerns with divers in the water, the RDDV is fitted with water jets. The jets to be used were sized based on charts available online from the manufacturer, Wärtsilä-Lips. Figure 14 shows the plots available to determine the water jet size ${ }^{2}$. At an EHP of 1300 HP and a ship speed of 45 knots , the line above the intersection of the power and design speed allows the selection of the LJ43E.

Through discussions with a representative from Wärtsillä-Lips, the water jets are expected to perform with an efficiency of 69.3% at 45 knots. The water jets are directly driven by the engines, therefore a shaft efficiency of 95% is expected. Combining the EHP, air resistance and total efficiency yields a total engine power of approximately 2200 HP .

Several engine manufactures were considered including MAN, Caterpillar and Detroit Diesel. Given that this vessel is semi-planing, the weight of the engines was primary concern so the lightest engines that met the power requirements were examined. The specifications of the engines considered are summarized in Table 4.

MAN Marine D2842LE404 Diesel engines were chosen because of the weight savings compared to the Caterpillar and Detroit Diesel engines. In addition, these engines are specifically designed for non-continuous duty in high speed response boats. The manufacturer specifies 1000 hours of running per year, which corresponds well to a midlife refit after 15000 hours, given an approximate

[^1]Design of a Rescue Diver Deployment Vessel

Figure 11: Wave profiles for 20, 30, 40 and 50 knots
vessel llfe of twenty-five to thirty.
The MAN engines produce a 400BHP surplus, which allows for future alterations to the vessel and accounts for weight creep. In addition, one can expect increased reliability from the engines if they are not run at their maximum output capacity.

Figure 12: Wave and Frictional Resistance vs Speed

Figure 13: Total Resistance vs Speed

Figure 14: Jet Selection Chart

Table 4: Engine Specifications

Engine	Power Output (HP)	Weight (lb)
MAN D 2842 LE 404EDC	1282	3905
MAN D 2842 LE 407	1187	4092
Detroit Diesel 16V200M7	1225	5190
Caterpillar C32	1401	5617

3.9 Stability

Calculations supporting the following stability discussion may be found in Appendix G.

3.9.1 Intact Stability

The RDDV stability was tested in two conditions:

1. Light ship with no fluids on board
2. Fully loaded departure condition

For obvious practical reasons, the vessel is not expected to operate in a light ship condition (no fuel or water onboard the vessel). The vessel was not tested in a fully loaded arrival condition as there is no significant cargo to be carried, the majority of the fresh water used is to be captured in sewage tanks (environmental), and fuel used is to be offset with salt water ballast. As such, only the fully loaded departure conditions were analyzed.

Stability of a vessel is a function of the GM value and the GZ curve. In order to generate both these, the Cross Curves of stability, assuming a VCG of 1.46 m and 1.54 m were first generated for displacements ranging from 28.2 to $10.8 M T$ and from 0 to 80 degrees. Using the estimated light ship weight of $25.3 M T$ and loaded ship of $28.5 M T$ the righting arm curve can be generated from the cross curves. Figure 15a shows the real righting arm curve for the light ship condition and Figure 15b shows the righting arm for the loaded condition

One of the requirements of the RDDV is that the vessel must be capable of withstanding up to Hurricane (Beaufort Sea State 11) conditions. A storm not at the level of a hurricane is assumed to have a wind speed less than 63 knots. In order for the vessel to pass the ABS High Speed Naval Craft Stability Requirements the intersection between the wind heeling arm and the GZ curve must be less than 60% of the maximum GZ value. The positive area between the wind heeling arm and the GZ curve must be 1.4 times greater than the area from the intersection to from the intersection 25 degrees negative, and the intersection point of the two curves must be at an angle less then 10 degrees. The RDDV passes the stability requirements for wind heeling moments in both light ship and loaded ship conditions. The plot of the wind heeling arm on the GZ curve can be seen in Figure 16.

During high speed turns, the effective GZ is reduced. The heeling arm for a high-speed turn is dependant on the velocity of the vessel and the turning radius. In order for a vessel to be able to safely make a turn the same requirements for the heeling arm curve must be met as in the wind heeling arm analysis. In the case of the RDDV the minimum turning radius at a speed of forty five knots is 141 m . This radius will of course decrease as the speed of travel decreases.

3.9.2 Damaged Stability

The floodable length for the vessel was calculated by determining the maximum length of a single compartment before the vessel will heave, heel and trim such that the margin line is submerged.

(a) Lightship Conditions

(b) Loaded Conditions

Figure 15: GZ Curves for Lightship and Loaded Conditions

Figure 16: Wind Heeling Arm

From these calculations the floodable length of a single compartment is 15.99 m in one hull. Note that this in accordance with Transport Canada requirements (TP 7301) ${ }^{3}$.

[^2]
3.10 Seakeeping

To perform a seakeeping analysis, RAO values were examined for several different vessels including a catamaran ferry, a SWATH catamaran, and a semi-displacement high-speed catamaran. The RAOs (roll, heave, and pitch) for the semi-displacement catamaran were chosen for analysis due to the geometric similarities between this hull and the RDDV as shown in Table 5.

Table 5: Geometric Properties

Ratio	Semi-Displacement Catamaran	RDDV
Length / Beam	10	8.2
Spacing / Beam	2	2.375

The RAOs for the semi-displacement catamaran were found at a Froude number of 0.8 which corresponds to a speed of 40 knots for the original vessel; using Froude scaling yields a speed of 19.7 knots for the RDDV. Therefore, these RAOs are suitable to investigate the operating characteristics of the vessel at the minimum speed requirement of approximately 20 knots in all seas. These RAOs were developed using a "fully three-dimensional, time-domain seakeeping simulation with extensions to account for lift, viscosity, and nonlinearity" ${ }^{4}$.

Two different wave spectra were applied in conjunction with the known RAOs. It is known that the significant wave height in the Georgia Strait exceeds 2.5 m for only about 3 hours per year ${ }^{5}$. The first spectrum applied was that recommended by the I.T.T.C. that best suits ocean conditions at a significant wave height of 2.5 m . The closest measured wave spectrum that could be obtained was one observed by wave buoys off of the west coast of Vancouver Island ${ }^{6}$. As this location is open to the Pacific Ocean, it is a higher energy spectrum than that predicted by the I.T.T.C. and will likely over-predict the vessel response occurring in the sheltered Georgia Strait. However, it has been included as this is the nearest measured spectrum. On the West Coast of Vancouver Island, the significant wave height is below $2.5 \mathrm{~m} 70 \%$ of the time.

Upon multiplying the known RAO by the wave spectrum, the significant vessel response amplitude was obtained from the area underneath the plot. Tables 6 and 7 below display the calculated significant vessel response in roll, heave, and pitch using the two wave spectra discussed above at a vessel speed of 19.7 knots (a heading of zero degrees denotes travel in the same direction as the waves). Appendix H contains the spectra plots and detailed seakeeping calculations.

The vessel response predicted in the I.T.T.C. wave spectrum is significantly less than that predicted in the West Coast wave spectrum; predicted values are reasonable and demonstrate the vessel can maintain approximately 20 knots in most headings for over 99.9% of the conditions experienced in the Georgia Strait. However, it is important to note that due to geometry and inertial differences between the modeled vessel and the RDDV, model tests should be performed on the RDDV hull to verify the seakeeping characteristics. As the freeboard has purposely been minimized to aid diving and victim recovery, model tests would also verify that the current freeboard is adequate in rough seas. Additionally, model tests would determine if excessive slamming would occur. If

[^3]Table 6: Vessel Response in I.T.T.C. Wave Spectrum

Heading (deg)	Roll (deg)	Heave (m)	Pitch (deg)
0	19.3	1.677	17.5
45	13.4	1.819	11.5
90	9.7	1.675	5.7
135	14.4	1.675	5.9
180	17.1	1.675	5.8

Table 7: Vessel Response in West Coast Wave Spectrum

Heading (deg)	Roll (deg)	Heave (m)	Pitch (deg)
0	24.1	4.193	26.1
45	20.9	3.778	18.2
90	17.2	3.466	12
135	19.8	3.466	12.1
180	21.2	3.466	12.1

excessive slamming does occur, the freeboard should be increased, or the hulls should be widened, particularly near the front of the vessel.

3.11 Machinery and Major Systems

Close consideration was given to several aspects of the vessel in relation to machinery and ship's systems. Discussed below is the general machinery arrangement and an electrical loan analysis.

3.11.1 Machinery Arrangement

The RDDV has specific requirements due to its mission as a rescue vessel supporting divers. High speed and reliability are of primary concern along with the need for open deck and sickbay space. The machinery has been arranged in a way to keep the working areas of the vessel open while not compromising the RDDVs performance. The machinery arrangement is shown in Figure 17 and Appendix B. In general, diving operations will be conducted off the stern and off the starboard side of the vessel with support equipment on the port.

Propulsion

The prime movers of the RDDV are a pair of MAN D2842LE 404 Marine Diesel engines, producing approximately 1300 HP each, located just aft of the deckhouse. The vessel is driven by two WärtsilläLips LJ43E water jets mounted on the transom. Careful selection of the engines, matching engine and jet RPM, allows for direct drive from the engine, through only a universal joint; this precludes the need for a gearbox and increases overall efficiency. Selection of the engines and jets was discussed in Section 3.8.

Figure 17: Machinery Arrangement

Air Handling Equipment

Rescue diving operations are typically conducted using surface supplied air; this allows for much longer dive durations when compared to SCUBA equipment; however SCUBA is still used when surface supplied air is not feasible.The RDDV is fitted with a high-pressure Bauer compressor and a Breathing Air Systems PK6 6000psi cascade system used to fill SCUBA tanks and for low pressure surface supplied air. In order to increase vessel loiter time, the compressor is driven by an independent diesel engine. This factory option has minimal weight and size costs over an electrically powered device. A significant air reserve is maintained for safety reasons which requires a large number of tanks stowed on the deck. These tanks are kept on the port side of the vessel to allow unfettered access to the starboard working side. The compressor and cascade system are installed in the void space beneath the stairs and boat ladder accessing the wheelhouse.

Electrical Machinery

An electrical load analysis was performed for the RDDV systems (See Section 3.11.2) which provided baseline requirements. Using this data, alternators, batteries and a generator set were specified. Each main engine is fitted with a $24 \mathrm{~V}, 70 \mathrm{~A}$ alternator to provide electrical power for general ship operations such as radios, controls, GPS and navigation lighting. A Catapillar C2.2 genset is installed producing up to 21.5 kW at $120 / 240 \mathrm{VAC}$ to provide power for additional lighting, cooking and heating. The genset and batteries are installed in the starboard hull to balance the weight of the compressor and cascade system on the port side.

Other Systems

Several other pieces of machinery are installed on the RDDV. Anchor windlasses are fitted on the port side of the vessel. This ensures that if the vessel is anchored, the lines will not interfere with operations being conducted off the starboard side. To assist in the recovery of victims, a recovery lift is installed in the stern. This platform can be lowered into the water, loaded and then lifted to deck level. The lift is raised and lowered by means of two winches fitted into the void space in the wet deck.

3.11.2 Electrical Systems

A predicted electrical load analysis was completed on the RDDV accounting for $12 \mathrm{VDC}, 24 \mathrm{VDC}$ and $120 / 240 \mathrm{VAC}$ systems. The values were derived from a different vessel of similar size and mission. The electrical loads are summarized in Table 8. The complete analysis is available in Appendix I

Table 8: Electrical System Loads

	Power (W)	Current (A)
12VDC	760	63
24VDC	4410	184
120VAC	21100	88

Consideration was given to gensets driven by the main engines, however due to the mission of this vessel, prolonged loiter times can be expected. As such, using an independent genset with a smaller engine reduces fuel consumption, allowing for longer mission duration.

Power is distributed using electronically controlled AC-DC (rectifying) and DC-AC (inverting) converters. This allows some AC systems such as the computer and lighting to be driven by the batteries and alternators without the need for the genset to be running. Conversely, DC systems can be powered and batteries charged using the genset when the vessel is at loiter without the main engines running.

3.12 Endurance and Tank Capacities

Tank capacities were calculated knowing the requirements for range, speed and diving operations. In some circumstances, the tank capacities were increased to fully utilize the space between frames. Figure 18 illustrates the tank arrangement. A larger view may be found in Appendix B.

Figure 18: Tank Arrangement

3.12.1 Fuel Oil

Knowing the fuel consumption rate of the chosen engine, the required fuel for the 320 nautical-mile round trip can be calculated. The fuel consumption rate for a range of 1200 RPM to 2300 RPM was known for the MAN D engine. This RPM range corresponded to a speed range of 30 to 45 knots. At the maximum required speed of 40 knots, $0.42 \mathrm{~m}^{3}$ of diesel would be consumed in 160 nautical miles per engine. Therefore, assuming that one third of the fuel would be used on the trip out, one third used on the trip back and one third of the fuel used loitering at the site and for reserve, the required fuel would be $2.52 \mathrm{~m}^{3}$. At the design speed of 45 knots , the fuel required for a 160 nautical mile round trip, based on the same fuel consumption pattern, is $7.15 \mathrm{~m}^{3}$. Figure 19 shows the fuel consumption rate at each speed between 30 and 45 knots and the fuel consumed per engine in the same speed range for a 160 nautical mile trip.

Figure 19: Fuel Consumption vs Speed

Table 9: Fuel Oil Tank Capacity Parameters

Number of Tanks	4	
Midship Station Area (1 hull)	2.25	$\mathrm{~m}^{2}$
Half Midship Area	1.125	$\mathrm{~m}^{2}$
Permeability	0.95	
Single Tank Volume	0.882	$\mathrm{~m}^{3}$
Diesel Specific Density	0.85	
Single Tank Weight	749.461	kg
Four Tank Weight	2997.844	kg

3.12.2 Ballast

The key role of the ballast tanks is to maintain the trim of the vessel. As fuel is consumed, salt water is pumped into the forward ballast tanks to counteract the loss of the mass of the fuel. As such, the capacity of the ballast tank should be approximately the fuel oil capacity plus some mass for lost fresh water. The parameters for the tank capacity can be found in Table 10.

Table 10: Ballast Tank Capacity Parameters

Number of Tanks	2	
Average Station Area (1 hull)	1.93	$\mathrm{~m}^{2}$
Number of Stations	1	
Permeability	0.95	
Single Tank Volume	1.512638	$\mathrm{~m}^{3}$
SW Specific Density	1.025	
SW Specific Density	1025	$\mathrm{~kg} / \mathrm{m}^{3}$
Single Tank Weight	1550.453	kg

3.12.3 Fresh Water

Fresh water is generally estimated based on the number of crew of the vessel and the type of activities they are involved in. For the RDDV, there is an additional requirement for fresh water in order to wash all of the dive equipment. The parameters can be found in Table 11.

Table 11: Fresh Water Tank Capacity Parameters

Number of Tanks	1	
Station Area (1 hull)	2.443	$\mathrm{~m}^{2}$
Number of Stations	1	
Permeability	0.95	
Single Tank Volume	1.915	$\mathrm{~m}^{3}$
FW Specific Density	1	
Single Tank Weight	957.351	kg

3.12.4 Grey and Black Water

The grey and black water tanks were sized to be able to store all of the available fresh water. As it is against most environmental regulations to dump grey or black water into the ocean, all waste water must be stored onboard. Parameters can be found in Table 12.

3.13 Cost Analysis

Through discussion with industry members and quotation on machinery, an approximate cost for the construction of the RDDV was generated. The total cost of the vessel is CAD $\$ 2,045,600$. plus

Table 12: Grey and Black Water Tank Capacity Parameters

Grey Water

Number of Tanks	1	
Half Station Area (1 hull)=	1.22	m^{2}
Number of Stations $=$	1.00	
Permeability $=$	0.95	
Single Tank Volume $=$	0.96	m^{3}
GW Specific Density =	1.00	
Single Tank Weight = Black Water	287.21	kg
Number of Tanks	1	
Half Station Area (1 hull)=	1.22	m^{2}
Number of Stations $=$	1.00	
Permeability $=$	0.95	
Single Tank Volume $=$	0.96	m^{3}
GW Specific Density =	1.00	
Single Tank Weight =	287.21	kg

any applicable taxes. Table 13 summarizes the costs for the construction of the RDDV. A detailed breakdown of costs can be found in appendix J

Table 13: Summary of Estimated Costs

Structural	$\$ 329086$
Deck Equipment	$\$ 77152$
Machinery	$\$ 738200$
Electrical	$\$ 15600$
Miscellaneous	$\$ 583600$
Engineering	$\$ 116003.8$
10\% Contingency	$\$ 182604.2$
Total	CAD $\$ 2045606$

4 Technical Risk and Mitigation

The RDDV is a single mission vessel, designed for rapid response to underwater emergencies. As such, there are a limited number of circumstances that might cause the design to perform inadequately, namely:

1. Failure to meet design speed.
2. Inability to operate in storms/poor weather.
3. Insufficient equipment or space to support diving operations.
4. Insufficient equipment or space to provide medical assistance.

To reduce the risk of any of these failures occurring, there has been substantial research, modelling and design changes.

The maximum speed of the vessel was of great concern during the design. As such, care was made to computationally model the hull for wave and frictional resistance using Michlet (See section 3.8). In addition, the engines have a 16% power surplus. If unforeseen events do occur, there is power in reserve to compensate.

One of the major reasons for designing this vessel as a catamaran is the excellent roll stability characteristic of this hull form. RAOs for a catamaran of similar geometry were found and analysed for the wave climate of southern British Columbia. The analytical result shows the vessel should be able to operate in virtually all conditions; however there is neither specific data for the RDDV nor wave data for the east coast of Vancouver Island. Before this vessel is constructed, it is recommended that model tests be performed to verify the vessels sea keeping performance.

When preliminary specifications for the RDDV were being established, the three major rescue and recovery dive teams in British Columbia were consulted, these being the Royal Canadian Mounted Police Recovery Dive Team, the Canadian Coast Guard Rescue Dive Team and the Canadian Navy Rescue Dive Team. Input was taken from divers, crew and officers as to the key features a dive vessel would require; these characteristics have been incorporated into the design. Some specific features included in the design of the RDDV include a compressor system (specifically requested) and a stern recovery lift. The lift will allow easy rescue of victims, even in rough weather.

The requirements for the medical facilities were found through discussions with the Canadian Coast Guard and the variety of equipment that was recommended has been accounted for in the design. Due to developments in technology, there may be equipment to be installed at some later date. To account for this, there is abundant storage and power available in the sickbay area.

5 Conclusions

The RDDV described above presents a solution satisfying all of the requirements for an emergency response dive team vessel as specified by the RCMP, Navy, and Coast Guard dive teams. The 17.25 m aluminum catamaran is intended for use in the Southern region of the Georgia Strait, British Columbia.

In calm water, the vessel speed is predicted to be at least 45 knots, while a seakeeping analysis was performed to predict sustained speeds of 20 knots in over 99.9% of the conditions encountered in the operating region. Two MAN 1300BHP diesel engines coupled with two Wärtsilä-Lips water jets propel the vessel.

Diving-specific equipment includes a high-pressure compressor in conjunction with a cascade storage system capable of filling empty SCUBA cylinders or supplying air to submerged divers. Monitoring panels and air lines are specifically plumbed into the vessel to increase the efficiency and convenience of diving operations. Other diving-specific equipment includes a recovery lift both to be used by divers for entering and exiting the water, and for recovery of victims.

Significant medical facilities are also provided on the vessel. A hospital area with space for two stretchers has been provided, along with an over-sized doorway and corridor for ease of stretcher maneuvering. Storage space for all required medical equipment such as oxygen canisters and masks and an automated external defibrillator is conveniently provided near the stretchers. The final vessel cost is predicted to be approximately CAD $\$ 2,045,600$.

As this vessel is specifically designed to meet the needs of an emergency response dive team, it will improve the teams effectiveness as compared to that when operating from the more generic vessels currently in use. It is likely that such a vessel, capable of both improving diving operations and enabling comprehensive care for victims, will result in lives being saved during future marine emergencies.

A Lines Plan

B Vessel Drawings

PROFILE - EXTERIOR GA

PLANFORM - EXTERIOR GA

SCALE: 1:75

	1	1	1	1
0	0.5 m	1 m		2 m

\left.| UBC RESCUE DIVER DEPLOYMENT VESSEL | |
| :--- | :--- |
| PLANFORM GA | |$\right]$

FWD BODY - EXTERIOR GA

SCALE: 1:75

UBC RESCUE DIVER DEPLOYMENT VESSEL	
FWD BODY GA	
DATE:	
4 JUN 05	BR
CHECKED: -	-

PLANFORM - CABIN GA

SCALE: 1:75

	1	1	1	1	
0	0.5 m	1 m		2 m	

UBC RESCUE DIVER DEPLOYMENT VESSEL	
CABIN GA	

PLANFORM - WHEELHOUSE GA

RECOVERY LIFT - GA

PLANVIEW

SCALE: 1:75

UBC RESCUE DIVER DEPLOYMENT VESSEL RECOVERY LIFT GA BR - Rev

TANK ARRANGEMENT

SCALE: 1:75
UBC RESCUE DIVER DEPLOYMENT VESSEL

DATE:	
4 JUN 05	DRAWN BY:
CHECKED:	REVISION:
-	-

MACHINERY ARRANGEMENT

UBC RESCUE DIVER DEPLOYMENT VESSEL	
MACHINERY ARRANGEMENT	
DATE: 4 JUN 05	DRAWN BY: CHECKED: -

C Ship Structure

The hull structural analysis has been performed to meet ABS High Speed Naval Craft Rules requirements (2003)
Part 3 - Hull Construction and Equipment
Chapter 2 - Hull Construction
Section 1 - Primary Hull Strength
3. Primary Hull Strength - Twin-Hulled Craft

3.1 Longitudinal Hull Girder Strength

3-2-1/1.1 Section Modulus

$\mathrm{SM}=$	$\mathrm{C}_{1}{ }^{*} \mathrm{C}_{2}{ }^{*} \mathrm{~L}^{2}{ }^{*} \mathrm{~B}^{*}\left(\mathrm{C}_{\mathrm{b}}+0.7\right)^{*} \mathrm{~K}_{3}{ }^{*} \mathrm{C}^{*} \mathrm{Q}$	$\left(\mathrm{in}^{2}-\mathrm{ft}\right)$
$\mathrm{SM}=$	2.96	$\left(\mathrm{in}^{2}-\mathrm{ft}\right)$

where:
$\mathrm{C}_{1}=0.0134^{*} \mathrm{~L}+3.75 \quad$ for $\mathrm{L}<295 \mathrm{ft}$

$\mathrm{C}_{1}=$	4.44

$\mathrm{C}_{2}=\quad 1.44 \mathrm{E}-04$
$\mathrm{L}=\quad 51.168 \mathrm{ft}$
$B=\quad$ sum of WL breadths of side hulls
$B=\quad 11.864096 \mathrm{ft}$
$V=\quad$ maximum speed
$V=45 \quad$ knots
$\mathrm{Cb}=\quad 0.45 \quad$ (not to be less than 0.45)
$\mathrm{K}_{3}=\quad\left(0.7+0.3^{*}(\mathrm{~V} / \mathrm{sqrt}(\mathrm{L})) / 1.3\right)$
$\mathrm{K}_{3}=$
1.3
$C=\quad 0.9 \quad$ for aluminum craft
$\mathrm{Q}=\quad 0.9+\mathrm{q}_{5} \quad$ (not less than Qo)
$\mathrm{Q}=\quad 1.314285714$

$\mathrm{q}_{5}=$	$115 / \sigma \mathrm{y}$	
$\mathrm{q}_{5}=$	0.004791667	
$\mathrm{Qo}=$	$92000 /(\sigma \mathrm{y}+\sigma \mathrm{u})$	
$\mathrm{Qo}=$	1.314285714	
$\sigma y=$	24000	psi
$\sigma \mathrm{u}=$	46000	psi

Neutral Axis Calculation:

Drawing the item in AutoCAD:
$\mathrm{NA}=\quad 1.04 \quad \mathrm{~m}$ above baseline
$\begin{array}{lll}\mathrm{Ixx}= & 0.065 \quad \mathrm{~m}^{4}\end{array}$
$1 x x=\quad 650 \quad \mathrm{~cm}^{2}-\mathrm{m}^{2}$
Ixx =
1085
$\mathrm{in}^{2}-\mathrm{ft}^{2}$

3-2-1/1.5 Moment of Inertia

		$\left(\mathrm{in}^{2}-\mathrm{ft}^{2}\right)$
$\mathrm{I}=$	$\mathrm{L} * \mathrm{SM} /\left(\mathrm{Q}^{*} \mathrm{C} * \mathrm{~K}\right)$	
$\mathrm{I}=$	30.90	$\left(\mathrm{in}^{2}-\mathrm{ft}^{2}\right)$
$\mathrm{L}=$	51.168	ft
$\mathrm{Q}=$	1.31	
$\mathrm{C}=$	0.9	
$\mathrm{~K}=$	4.14	Table 2 p inertia must be greater
Inertia $\mathrm{OK} ?$	OK	

D Scantling Calculations

The following tables are for ABS High Speed Naval Craft.
They were generously provided, courtesy of Mr. Dan McGreer of Aker Marine.

ABS MIDSHIP SECTIDN

ABS BULKHEAD SECTIDN

SCALE: 1:50

	1	1	1		
0	0.5 m	1 m		2 m	

UBC RESCUE DIVER DEPLOYMENT VESSEL
MIDSHIP STRUCTURE
DATE: \quad DRAWN BY
CHECKED: \quad REVISION:

WET DECK PLATE

Part 3 Chapter 2

ABS High Speed Naval Craft, 2003

Section 2 Design Pressure
3.5 Wet deck or cross-deck - taken as the lower deck b/w the side and center hulls

design pressure, Pwd	$=\frac{18.13}{}$ psi
$P w d$	$=30 N_{1} F_{D} F_{1} V^{\star} V_{1}\left(1-0.85 h_{a} / h_{1 / 3}\right) \mathrm{psi}$

where

$\mathrm{N}_{1}=$	0.00442
$\mathrm{~h}_{\mathrm{a}}=$	2.3 ft
	not greater than $\left(1.176{ }^{*} \mathrm{~h}_{1 / 3}\right)$

$h_{1 / 3}=\quad 8.50 \quad f$
$F_{D}=\quad 0.83 \quad$ design area factor, not less than 0.83(based on s)(see page 60)
$F_{1}=\quad 0.4 \quad$ Varies with Length
$V=45 \quad$ knots
$V_{1}=11.88 \mathrm{ft} / \mathrm{s}$
$A_{D}=360 \quad$ in $^{2} \quad$ area of plate panel (page 59)
$A_{R}=1.61 \Delta / \mathrm{d} \quad \mathrm{in}^{2}$
$\mathrm{A}_{\mathrm{R}}=\quad 9.97 \quad \mathrm{in}^{2}$
$\mathbf{d}=\quad 3.020 \quad \mathrm{ft}($ not less than 0.04 L$) \quad 2.04672$
long'l span, $\mathrm{l}=36.000$ in.
long'l spacing, $\mathbf{s}=12.000$ in.
$A_{D} / A_{R}=\quad 36.12$
$\mathrm{V}_{1}=7.24 \mathrm{~h}_{1 / 3} / \sqrt{ } \mathrm{L}+3.28 \mathrm{ft} / \mathrm{s}$
$=11.88$

Part 3 Chapter 2
Section 3 Plating

plate thickness, $\mathrm{t}=$ wet deck

0.144	in
$t=$	$0.012^{*} \mathrm{~s}$
in	
where	
$s=$	12

1.3.3 Minimum Thickness - Bottom Shell
plate thickness, $\mathrm{t}=$ wet deck

$$
\begin{gathered}
\mathrm{t}=0.015^{*} \operatorname{sqrt}\left(\text { L*qa }^{*}\right)+0.04 \mathrm{in} \\
0.12 \quad \text { in } \\
0.14 \mathrm{~mm}
\end{gathered}
$$

$$
\begin{aligned}
& \text { qa }=17000 / \sigma_{\mathrm{ya}} \\
& \text { qa }=0.607 \\
& \mathrm{~s}_{\mathrm{ya} a}=28000 \mathrm{~N} / \mathrm{mm}^{\llcorner } \\
& \\
& \mathrm{L}=51.168 \mathrm{ft}
\end{aligned}
$$

Part 3 Chapter 2
Section 4 Internals
1.3 Strength and stiffness

Wet Deck longitudinals
1.3.1 Section Modulus

SM $=$	1.566]in ${ }^{3}$	$25664.445 \mathrm{~mm}^{3}$
SM =	*p*s* ${ }^{2} / \sigma a$	in ${ }^{3}$	p. 95
where,			
$\mathrm{s}=$	1	ft .	
I=	3	ft.	
$\mathrm{s}_{\mathrm{a}}=$	15000	(.75sy)	
(alum.6061-T6) $\mathrm{sy}=$	20000	psi	
Stiffener Dimensions from "Select_A_Stiffener"			
web depth	web thk	\|flange width	\|flange thk
3	0.1875	3	3/16
76.2	4.7625	76.2	4.76
Actual SM:	2		

[^4]| Stiffener Dimensions from "Select_A Stiffener" | | | | | | | | | | Stiff Area(mm2) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Location | F_{1} | Design P | Wet Deck PI. | Req.Long. SM | web depth | web thk | flange width | flange thk | Actual SM | | |
| Fr. 0-4 | 0.5 | 22.66 | 6.98 | 1.96 | 3 | 0.1875 | 3 | 3/16 | 2.09 | 725.81 | Long. Spacing at 12 inches |
| Fr. 5-14 | 0.4 | 18.13 | 6.24 | 1.566 | 3 | 0.1875 | 2 | 3/16 | 1.67 | 604.84 | Long. Spacing at 12 inches |
| Fr. 14 - end | 1 | 45.32 | 6.58 | 2.58 | 3 | 0.25 | 2 | 1/4 | 2.85 | 806.45 | Long. Spacing at 8 inches |

3.5 Wet deck or cross-deck

For wet deck transverse

$$
\begin{aligned}
\text { design pressure, Pwd } & =\frac{45.32}{} \mathrm{psi} \\
\qquad P w d & =30 \mathrm{~N}_{1} F_{D} F_{1} V^{*} \mathrm{~V}_{1}\left(1-0.85 \mathrm{~h}_{\mathrm{a}} / \mathrm{h}_{1 / 3}\right) \mathrm{psi}
\end{aligned}
$$

where

$$
\begin{array}{lll}
\mathrm{N}_{1}= & 0.00442 & \\
\mathrm{~h}_{\mathrm{a}}= & 2.3 \mathrm{ft} & \text { p. } 64 \\
& \text { not greater than }\left(1.176 * \mathrm{~h}_{1 / 3}\right) & =
\end{array}
$$

$\mathbf{h}_{1 / 3}=$	8.50	$\mathbf{f t}$
$\mathrm{~F}_{\mathrm{D}}$	$=$	0.83
$\mathrm{~F}_{1}=$	1	design area factor, not less than 0.83(based on s)(see page 60)

$F_{1}=1 \quad$ Varies with L

$$
V=\quad 45 \quad \text { knots }
$$

$$
V_{1}=11.88 \quad \mathrm{ft} / \mathrm{s}
$$

$$
\mathrm{A}_{\mathrm{D}}=3240 \quad \text { in }^{2} \quad \text { area of plate panel (page 59) }
$$

$$
A_{R}=\quad 1.61 \Delta / d \quad \mathrm{in}^{2}
$$

$$
\mathrm{A}_{\mathrm{R}}=9.97 \quad \mathrm{in}^{2}
$$

$$
\mathrm{d}=\quad 3.020 \quad \mathrm{ft}(\text { not less than } 0.04 \mathrm{~L})
$$

Transv.span, $\mathrm{l}=108.000$ in.
Transv. spacing, $s=36.000$ in.

$$
A_{D} / A_{R}=325.09
$$

$$
\mathrm{V}_{1}=7.24 \mathrm{~h}_{1 / 3} / \sqrt{ } \mathrm{L}+3.28 \mathrm{ft} / \mathrm{s}
$$

$$
=\quad 11.88
$$

Part 3 Chapter 2
Section 4 Internals
1.3 Strength and stiffness

Wet Deck transverse
1.3.1 Section Modulus

	SM $=$	38.468	in ${ }^{3}$	
where,	SM =	*p*s* ${ }^{2} /$	in ${ }^{3}$	(0.8m)
	$\mathrm{p}=$	45.32	psi	
	$\mathrm{s}=$	1.31	ft .	
	I=	9	ft .	
	$\mathrm{s}_{\mathrm{a}}=$	18000	(0.75sy)	
(alum.5083-H116, H	1) $s y=$	24000	psi	

1.3.2 Moment of Inertia

$$
\begin{aligned}
\text { Moment of Inertia } & =111.283 \mathrm{in}^{4} \\
\text { Inertia } & =\left.54^{*} \mathrm{p}^{*} \mathrm{~s}^{*}\right|^{3} / \mathrm{K}_{4} \mathrm{E} \quad \mathrm{in}^{4}
\end{aligned}
$$

where,

$$
\begin{array}{rcl}
\mathrm{K}_{4}= & 0.0021 & \text { for shell and deep tank stringers and transverse } \\
\mathrm{E}= & 10000000 & \mathrm{psi}
\end{array}
$$

Use the following to obtain section modulus and inertia, and web thickness check for section, then enter blue data to table below							
Enter blue data	Wet Deck Transverse		Section used:				
	deck plate mm	web depth mm	web thk mm	flange width mm	flange thk mm	actual SM, in ${ }^{3}$	actual $\mathrm{I}, \mathrm{in}^{4}$
	6.6	250	14.3	125	12.7	under	189
		web check 1 okay web check 2 okay					

CALCULATION OF SECTION PROPERTIES
Type of member

Deck or location

Req'd rule $\mathrm{SM}=$ Actual $\mathrm{SM}=$

Project No.

web thickness check

Maximum and minimum value see 3.2.2/1.1

not greater than, $\mathrm{n}_{\mathrm{cg}}=1.39+\mathrm{k}_{\mathrm{n}}\left(\mathrm{V} / \mathrm{L}^{\wedge} 0.5\right)$

$=\quad 4.30$	g 's	$\mathrm{k}_{\mathrm{n}}=$
for speed greater than	$18 \sqrt{ } \mathrm{~L}(9.94-\sqrt{ } \mathrm{L})=$	358.823164 knots
$\max . \mathrm{n}_{\mathrm{cg}}=$	6	g

vert.acc Use $n_{c g}=\quad 4.30$ g's

Part 3 Section 3 1.3	Chapter 2 Plating Thickness	0.00	ft. above baseline
1.3.1	Lateral loading	Side shell plate	4.00 mm
	plate thickness, $\mathrm{t}=$ wet deck	0.158	in. $\quad 4.00 \mathrm{~mm}$
	$t=$	$\mathrm{s} \sqrt{ } \mathrm{pk} / \sigma_{\mathrm{a}}$	in.
	where		
	$\mathrm{s}=$	12	in.
	$\mathrm{p}=$	4.55	psi (design pressure)
	$\mathrm{k}=$	0.5	plate panel ratio factor,3-2-3 Table 1
	$\sigma_{\text {a }}=$	13200	psi (design stress)
	1/s=	2.67	
	I=	32	in.
	$\mathrm{s}_{\mathrm{a}}=$	13200	(0.55sy)
	(alum. $5083-\mathrm{H} 321 / \mathrm{H} 116$) $\mathrm{sy}=$	24000	psi

not to less than (based on stiffener spacing)
Minimum Thickness

Part 3 Chapter 2
Section Internals
1.3 Strength and stiffness

Side shell longitudinals
1.3.1 Section Modulus

Part 3 Chapter 2 Section 4 Internals
1.3 Strength and stiffness

Side shell transverse
1.3.1 Section Modulus

	SM $=$	4.099	in ${ }^{3}$
where,	$S M=144 *{ }^{*}{ }^{*}{ }^{*}{ }^{2} / \sigma a$		in ${ }^{3}$
	$\mathrm{p}=$	4.55	psi
	$\mathrm{s}=$	3	ft .
	I=	5	ft .
	$\mathrm{s}_{\mathrm{a}}=$	12000	(0.6sy)
(alum. $5083-\mathrm{H} 321$	6) $s y=$	24000	psi

Internals
1.3.2 Moment of Inertia

$$
\begin{aligned}
\text { Moment of Inertia } & =\frac{4.391}{} \mathrm{in}^{4} \\
\text { Inertia } & =\left.54^{*} \mathrm{p}^{*} \mathrm{~s}^{*}\right|^{3} / \mathrm{K}_{4} \mathrm{E}
\end{aligned} \mathrm{in}^{4} \mathrm{l}
$$

where,

$$
\begin{array}{rcl}
\mathrm{K}_{4}= & 0.0021 & \text { for shell and deep tank stringers and transverse } \\
\mathrm{E}= & 10000000 & \mathrm{psi}
\end{array}
$$

Enter blue data	Side Shell Transverse		Section used:				
	deck plate mm	web depth mm	web thk mm	flange width mm	flange thk mm	actual SM, in ${ }^{3}$	actual I, in ${ }^{4}$
	6.35	112.5	8	37	8	under	17
		web check 1 okay web check 2 okay					

CALCULATION OF SECTION PROPERTIES Project No.
Type of member
Deck or location

Shell Plate \quad thickness							
Full length: 4							
Longitudinals:							
Kv value	Req. SM	web depth	web thk	flange width\|flange thk	Actual SM	Stiff. Area:	
Full Length 2	0.59	3.5	0.1875	00	0.7		
		88.9	4.7625	$0 \quad 0.00$		$\begin{gathered} 423 \\ \left(m m^{\wedge} 2\right) \end{gathered}$	
Transverses:							
Kv value	Req. SM	web depth	web thk	\|flange width	flange thk	actual	\dagger Stiff. Area:
Full Length 2	3.42	112.5	8	$37 \quad 8$	3.85	1196	
		4.429133858	0.31496063	1.45669290 .314961		(mm^2)	
		$47 / 16$	5/16	$17 / 16$ 5/16			

BOTTOM SHELL PLATE
Part 3 Chapter 2
ABS High Speed Naval Craft, 2003
Section 2 Design Pressure
1.1 Bottom Design Pressure, Shell Greater of the following
1.1.1 Bottom Slamming Pressure

At LCG	Pbcg $=\mathbf{0 . 0 0 2 0} \mathrm{psi}$
	Pbcg $=\mathrm{N}_{1} \Delta / L_{w} N_{\mathrm{h}}{ }^{*} \mathrm{~B}_{\mathrm{w}}{ }^{*}\left(1+\mathrm{n}_{\mathrm{cg}}\right) \mathrm{F}_{\mathrm{D}}$

Bottom Slamming Pressure
$\begin{aligned} & \text { At any section } \\ & \text { (Midship) }\end{aligned} \quad \mathrm{Pbxx}=0.0037 \mathrm{psi}$

$$
\operatorname{Pbxx}=\left[N_{1} \Delta / L_{w}{ }^{*} B_{w}{ }^{*}(1+n x x)((70-\beta b x) /(70-\beta c g)) F_{D}\right.
$$

1.1.2 For Ships less than 61m:

$$
\begin{aligned}
& \text { Pbxx }=\quad 0.007353056 \\
& \text { Pbxx }=\left[\mathrm{N}_{1} \Delta / \mathrm{L}_{\mathrm{w}} \mathrm{~N}_{\mathrm{h}}\right]^{*} \mathrm{~B}_{\mathrm{w}}{ }^{*}(1+\mathrm{ncg}) \mathrm{F}_{\mathrm{D}}{ }^{*} \mathrm{~F}_{\mathrm{v}}
\end{aligned}
$$

1.1.3 Bottom Hydrostatic Pressure

$$
\begin{array}{ll}
\text { (Midship) } & \text { Pd }=4.7300 \mathrm{psi} \\
& \mathbf{P d}=\mathrm{N}_{3}(0.64 \mathrm{H}+\mathrm{d}) \quad \mathrm{psi}
\end{array}
$$

where
$\mathrm{H}=13 \quad \mathrm{ft}$. $H=(0.0172 L+11.9$ ift.(not less than survival wave height, 13 ft .)
$\mathrm{N}_{3}=\quad 0.44$
$\mathrm{n}_{\mathrm{xx}}=\quad 8.61 \quad \mathrm{~g}$'s
$n_{x x}=n_{c g} K_{v}$
$K v=2$ vert. Acc. Dist. Factor at midship (page 72)
(Varies with L)
$\beta b x=20 \quad$ deadrise at any section, min. 10, max. 30
$\beta \mathrm{cg}=\quad 20$ deadrise at any LCG, min. 10, max. 30
$\mathrm{N}_{1}=0.069$
$\Delta=\quad 18.69 \quad \mathrm{~L}$ tons
$\mathrm{Lw}=53.30 \mathrm{ft}$.
$N_{h}=2$ no. of hulls
$B_{w}=26.24 \quad \mathbf{f t}$
$F_{D}=0.83$ design area factor, not less than 0.4 (see page 71)
$\mathrm{h}_{1 / 3}=\quad 8.5 \quad \mathrm{ft} .(3.2 .2$ Table 1)
$\mathrm{n}_{\mathrm{cg}}=4.30$ g's (see definition sheet)
$V_{1}=11.88 \mathrm{ft} / \mathrm{s}$
$A_{D}=360 \quad$ in $^{2} \quad$ area of plate panel (page 59)
$A_{R}=1.61 \Delta / \mathrm{d} \quad \mathrm{in}^{2}$
$A_{R}=12.39 \quad \mathrm{in}^{2}$
$\mathbf{d}=2.430 \quad \mathrm{ft}($ not less than $\mathbf{0 . 0 4 L}) \quad 2.04672$ taken as draft
bottom shell panel, $\mathrm{I}=36.000$ in.
spacing, $s=12.000$ in.
$A_{D} / A_{R}=29.06$
$\mathrm{Fv}=\quad 1 \mathrm{p} 72$
$V_{1}=7.24 \mathrm{~h}_{1 / 3} / \sqrt{ } \mathrm{L}+3.28 \mathrm{ft} / \mathrm{s}$
$=11.88$

$\mathrm{N}_{2}=$	0.0016	
$\mathrm{~h}_{1 / 3}=$	13	ft (Naval craft)
$\mathrm{B}_{\mathrm{w}}=$	26.24	ft
$\tau=$	3	degree, running trim
$\beta \mathrm{cg}=$	20	deadrise at LCG
$\mathrm{V}=$	45	knot craft speed see 3.2.2/ Table 1
$\mathrm{N}_{\mathrm{h}}=$	2	no. of hulls

```
\(\mathrm{n}_{\mathrm{cg}}=\mathrm{N}_{2}\left(\left(12 \mathrm{~h}_{1 / 3} / \mathrm{N}_{\mathrm{h}} \mathrm{B}_{\mathrm{w}}\right)+1\right)^{*} \tau *\left(50-\beta_{\mathrm{cg}}\right)\left(\mathrm{V}^{2}\left(\mathrm{~N}_{\mathrm{h}} \mathrm{B}_{\mathrm{w}}\right)^{2} / \Delta \mathrm{g} \mathrm{g}^{\prime}\right.\)
\(\mathrm{n}_{\mathrm{cg}}=\mathrm{N}_{2}\left(\left(12 \mathrm{~h}_{1 / 3} / \mathrm{N}_{\mathrm{h}} \mathrm{B}_{\mathrm{w}}\right)+1\right)^{*} \tau *\left(50-\beta_{\mathrm{cg}}\right)\left(\mathrm{V}^{2}\left(\mathrm{~N}_{\mathrm{h}} \mathrm{B}_{\mathrm{w}}\right)^{2} / \Delta \mathrm{g} \mathrm{g}^{\prime}\right.\)
    170658.75 g 's
    170658.75 g 's
Maximum and minimum value see 3.2.2/1.1
not greater than, \(\mathrm{n}_{\mathrm{cg}}=1.39+\mathrm{k}_{\mathrm{n}}\left(\mathrm{V} / \mathrm{L}^{\wedge} 0.5\right)\)
\begin{tabular}{clll}
\(=4.30\) & g 's & \(\mathrm{k}_{\mathrm{n}}=\) & 0.463 \\
for speed greater than & \(18 \sqrt{ } \mathrm{~L}(9.94-\sqrt{ } \mathrm{L})\) & 358.823164 knots \\
max. \(\mathrm{n}_{\mathrm{cg}}=\) & 6 & g
\end{tabular}
vert.acc Use \(\mathbf{n}_{\text {cg }}=\) \(\square\)
Part 3 Chapter 2
Section 3 Plating
1.3 Thickness
1.3.1 Lateral loading
plate thickness, \(\mathrm{t}=\) wet deck

where
\(\mathrm{s}=12\) in.
\(\mathrm{p}=\quad 4.73 \quad \mathrm{psi}\) (design pressure)
\(\mathrm{k}=\quad 0.5 \quad\) plate panel ratio factor,3-2-3 Table 1
\(\sigma_{a}=13200 \quad\) psi (design stress)
l/s= \(\quad 3.00\)
I= 36
in.
\begin{tabular}{rll}
\(\mathrm{s}_{\mathrm{a}}=\) & 13200 & \((0.55 \mathrm{sy})\) \\
(alum. \(5083-\mathrm{H} 321 / \mathrm{H} 116) \mathrm{sy}=\) & 24000 & psi
\end{tabular}
not to less than (based on stiffener spacing)
Minimum Thickness
1.3.2 \(\quad \mathrm{tal}_{\mathrm{al}}=\)
0.012 s
in.
in.
3.66 mm
\(s=12\) in
\(\mathrm{t}_{\mathrm{al}}=\quad 0.144\)
qa= 17000/\sigmaya
qa= 17000/\sigmaya
qa= 0.607
qa= 0.607
Sya= 28000 N/mm 2
Sya= 28000 N/mm 2
L= 51.17 ft
L= 51.17 ft

\section*{Part 3 Chapter 2}

\section*{Section 4 Internals}
1.3 Strength and stiffness

\section*{Bottom shell longitudinals}
1.3.1 Section Modulus
\[
\begin{aligned}
& \mathrm{SM}=0.613 \mathrm{in}^{3} \\
& S M=\left.144^{*} p^{*} s^{*}\right|^{2} / \sigma a \quad \mathrm{in}^{3} \\
& \text { where, }
\end{aligned}
\]

Part 3 Chapter 2

\section*{Section 4 Internals}
1.3 Strength and stiffness

Bottom Shell Transv.
1.3.1 Section Modulus
\begin{tabular}{|c|c|c|c|}
\hline & SM \(=\) & 0.859 & \(i^{3}\) \\
\hline \multirow{5}{*}{where,} & SM = & \({ }^{*} \mathrm{p}^{*} \mathrm{~s}^{*}{ }^{2}\) & \(\mathrm{in}^{3}\) \\
\hline & \(\mathrm{p}=\) & 4.73 & psi \\
\hline & \(\mathrm{s}=\) & 3 & ft . \\
\hline & I= & 2.46 & ft . \\
\hline & \(\mathrm{s}_{\mathrm{a}}=\) & 14400 & (0.6sy) \\
\hline
\end{tabular}

Internals
1.3.2 Moment of Inertia
\[
\begin{aligned}
\text { Moment of Inertia } & =0.543 \\
\text { Inertia } & =\left.54^{*} \mathrm{p}^{*} \mathrm{~s}^{*}\right|^{3} / \mathrm{K}_{4} \mathrm{E} \quad \mathrm{in}^{4}
\end{aligned}
\]
where,
\[
\begin{array}{rccc}
\mathrm{K}_{4} & =0.0021 & \text { for shell and deep tank stringers and transverse } \\
\mathrm{E}= & 10000000 & \mathrm{psi} & \text { alum. } \\
\hline
\end{array}
\]


CALCULATION OF SECTION PROPERTIES

web thickness check


\section*{FREEBOARD DECK}

FBD Deck
(Applies along the full length of the vessel)
```

3.2.2 Design Pressures
3.5 Deck Design Pressure
From Table 4, for an exposed Freeboard deck and decks included in the hull girder bending moment,
(does not depend on length along ship)
Pd= 0.0088*L+0.88
3.2.3
Plating
Plate thickness $=\quad 3.50 \mathrm{~mm}$
plate thickness, t=
strength deck
0.112 in.
t= sV pk/\sigmaa
where
p= 1.11 psi (design pressure)
k= 0.5 plate panel ratio factor,3-2-3 Table 1
\sigmaa}=14400 psi (design stress
l/s=
sa}=14400 (0.6sy for strength deck
(alum.5083-H321/H116) sy= 24000 p
1.3.2 Strength deck based on secondary stiffening
tal}=0.072 in
tal = 0.013*sqrt(|*qa)
where
qa= 0.61
qa= 17000/\sigmaya
sya= 28000 psi
Also not to be less than:
1.3.3[c] Strength deck

	$\mathrm{t}=0.013^{*} \mathrm{sqrt}\left(\right.$ L $\left.^{*} \mathrm{qa}\right)+0.04$	
	$=0.11245828$	8 in
where:		$=17000 / \sigma_{\text {ya }}$
	qa=	$=0.607$
	$\mathrm{S}_{\mathrm{ya}}=$	$=28000$

\mathbf{t}	$=0.013^{*} \mathrm{sqrt}\left(\mathrm{L}^{*} \mathrm{qa}\right)+0.0$
	$=0.11245828 \mathrm{in}$

where:	$q \mathrm{a}=17000 / \sigma_{\mathrm{ya}}$	
	qa=	0.607
	$\mathrm{S}_{\text {ya }}=$	28000
to be less than		

```
3.2.4 - Internals:

\section*{Longitudinals:}
1.3.1
\begin{tabular}{rl|}
SM & \(=144^{*} \mathrm{p}^{*} \mathrm{~s}^{*} \mathrm{I}^{2} / \sigma \mathrm{a}\) \\
\hline & \(=0.271 \mathrm{in}^{3}\) \\
\hline
\end{tabular}

Where:
\begin{tabular}{lcl}
s & \(=\) & 1.5 ft \\
l & \(=\) & 3 ft \\
p & \(=\) & 1.11 psi \\
\(\mathrm{s}_{\mathrm{a}}\) & \(=0.33^{*} \sigma \mathrm{y}\) & \\
\(\mathrm{s}_{\mathrm{a}}\) & \(=\) & \\
& \(7920(0.33 \sigma \mathrm{y})\) & \\
\(\sigma y=\) & 24000 psi & Welded yield strength
\end{tabular}
1.3.2 Internals

Moment of Inertia
\[
\begin{aligned}
& \text { Inertia }=0.134 \\
& \mathrm{in}^{3} \\
& \mathrm{I}=54^{*} \mathrm{p}^{*} \mathrm{~s}^{*} \mathrm{l}^{3} / \mathrm{K}_{4} \mathrm{E} \quad \mathrm{in}^{4}
\end{aligned}
\]
where,
\[
\begin{array}{rcrl}
\mathrm{K}_{4} & =0.0018 \\
\mathrm{E} & =10000000 & \mathrm{psi} & \\
& & \text { alum. }
\end{array}
\]

Based on this, select Longitudinals of geometry: \(\rfloor \mathrm{SM}=0.33\)
\begin{tabular}{|c|c|c|c|c|}
\hline web depth & web thk & flange widt & flange thk & Stiff Area:
\end{tabular}\(|\)\begin{tabular}{ccc} 
\\
2 & 0.1875 & 0 \\
0 & 0 & \\
50.8 & 4.7625 & 0
\end{tabular}

Part 3 Chapter 2
Section 4 Internals
1.3 Strength and stiffness

Free Board Deck Transverse To be used in way of side hulls, else use wet deck calculations.
1.3.1 Section Modulus
\begin{tabular}{|c|c|c|c|}
\hline & SM \(=\) & 1.142 & \(\mathrm{in}^{3}\) \\
\hline \multirow{5}{*}{where,} & SM \(=\) & \({ }^{\text {p }} \mathrm{s}^{*}{ }^{2} / \sigma a\) & in \({ }^{3}\) \\
\hline & \(\mathrm{p}=\) & 1.11 & psi \\
\hline & \(\mathrm{s}=\) & 3 & ft . \\
\hline & I= & 6.562 & ft . \\
\hline & \(\mathrm{s}_{\mathrm{a}}=\) & 18000 & (0.75sy) \\
\hline (alum.5083-H321/H11 & 16) \(s y=\) & 24000 & psi \\
\hline
\end{tabular}

Internals
1.3.2 Moment of Inertia
\[
\text { Moment of Inertia }=2.409 \mathrm{in}^{4}
\]
\[
\text { Inertia }=\left.54^{*} p^{*} s^{*}\right|^{3} / K_{4} E \quad i n^{4}
\]
where,
\begin{tabular}{rcl}
\(\mathrm{K}_{4}=\) & 0.0021 & for shell and deep tank stringers and transverse \\
\(\mathrm{E}=\) & 10000000 & \(\mathrm{psi} \quad\) alum.
\end{tabular}


CALCULATION OF SECTION PROPERTIES
Deck or location Project No.

web thickness check


\section*{DEEP TANK}

ABS Guide for Building and Classing High-Speed Naval Craft 2003
Part 3 Chapter 2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Section 2 & \multicolumn{2}{|l|}{Design pressure} & & 3.2.2 9.1 & & \(\mathrm{N}_{3}{ }^{\text {* }}\) & \\
\hline \multirow[t]{10}{*}{9.1} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Tank Boundaries}} & & Design pressure & pt1= & 3.836008 & psi \\
\hline & & & & & \(\mathrm{N}_{3}=\) & 0.44 & 3.2.2/1.1 \\
\hline & \multicolumn{2}{|l|}{Design pressure \(\quad 14.49\)} & psi & & \(\mathrm{h}=\) & 8.7182 & ft (from btm of pl) \\
\hline & \multicolumn{2}{|l|}{Tank bulkheads (full depth of hull)} & & & pt2= & g* \({ }^{*} 1+0.5 \mathrm{n}\) & \(\mathbf{h}_{2} \quad \mathrm{psi}\) \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{6}{*}{overflow at 760 mm above crew deck}} & & & & 14.49 & psi \\
\hline & & & Distance to & top of tank & \(\mathrm{h}_{2}=\) & 6.562 & ft \\
\hline & & & .from side c & center & pg= & 0.44 & \(\mathrm{lbf} / \mathrm{in}^{2} \mathrm{ff}\). \\
\hline & & & & & nxx= & 8.04 & g 's \\
\hline & & & & & \(\mathrm{ncg}=\) & 4.02 & g's \\
\hline & & & & & \(\mathrm{Kv}=\) & 2 & Vary with L along ship \\
\hline \multirow[t]{4}{*}{Part 3 Section 3 1.3} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Chapter 2 Plating}} & & & & & \\
\hline & & & & & & & \\
\hline & \multicolumn{2}{|l|}{Thickness} & & & & & \\
\hline & & & & USE MACHINE & ERY SP & ACE & \\
\hline \multirow[t]{14}{*}{1.3.1} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Lateral loading}} & \multirow[t]{4}{*}{Tank Bhd.} & 3.56 & mm; & & \\
\hline & & & & \multicolumn{4}{|l|}{This applies to the full length of the vessel.} \\
\hline & \multirow[t]{2}{*}{plate thickness, \(\mathrm{t}=\) wet deck} & 0.135 & & \[
3.42
\] & mm & & \\
\hline & & & & & & & \\
\hline & \(t=\) & \(s \checkmark \mathrm{pk} / \sigma_{\mathrm{a}}\) & in. & & & & \\
\hline & where & & & & & & \\
\hline & \(\mathrm{s}=\) & 6 & in. & & & & \\
\hline & \(\mathrm{p}=\) & 14.49 & psi (design & pressure) & & & \\
\hline & \(\mathrm{k}=\) & 0.5 & plate panel & I ratio factor, 3-2-3 & Table 1 & & \\
\hline & \(\sigma_{\text {a }}=\) & 14400 & psi (design & stress) & & & \\
\hline & 1/s= & 11.33 & & & & & \\
\hline & I= & 68 & in. & & & & \\
\hline & \(\mathrm{s}_{\mathrm{a}}=\) & 14400 & (0.6sy) & & & & \\
\hline & (alum. \(5083-\mathrm{H} 321 / \mathrm{H} 116\) ) \(\mathrm{sy}=\) & 24000 & psi & & & & \\
\hline
\end{tabular}
1.3.3 Minimum Thickness
1.3.3(d) Deep tanks
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{taj}_{\mathrm{a}}=\) & 0.011 V Lqa +0.04 in . & & & \multicolumn{2}{|l|}{\(\mathrm{qa}=17000 / \sigma_{\mathrm{ya}}\)} \\
\hline \(\mathrm{tal}_{\text {a }}=\) & 0.101 in. & 2.57 & mm & \(\mathrm{qa}=\) & 0.607 \\
\hline & & & unwelded yield & \(\mathrm{S}_{\mathrm{ya}}=\) & 28000 \\
\hline but not less than, \(\mathrm{t}_{\mathrm{a}}=\) & 0.140 in. & 3.56 & mm & & \\
\hline & & & & L= & 51.168 \\
\hline
\end{tabular}
ABS Guide for Building and Classing High-Speed Naval Craft 2003
\begin{tabular}{cc} 
Part 3 Chapter 2 \\
Section 2 & Design pressure \\
9.1 & Tank Boundaries \\
& \\
& Design pressure \\
Location & \\
\cline { 3 - 3 } & Tank TOP plate \\
& Overflow at 760 mm above officer deck
\end{tabular}

Part 3 Chapter 2

\section*{Section 3 Plating}
1.3 Thickness

\subsection*{1.3.1 Lateral loading}
plate thickness, \(\mathrm{t}=\)\begin{tabular}{|c}
0.086 \\
\(\mathrm{t}=\mathrm{s}\). \\
\(\mathrm{s} V \mathrm{pk} / \sigma_{\mathrm{a}} \quad \mathrm{in}\).
\end{tabular}
\(\begin{array}{rlr}\text { where } \\ s= & 18 & \text { in. }\end{array}\)
\begin{tabular}{|c|c|c|}
\hline plate thickness, \(\mathrm{t}=\) & 0.086 & \begin{tabular}{l}
in. \(\square\) \\
2.19 mm
\end{tabular} \\
\hline \(\mathrm{t}=\) & \(\mathrm{s} \checkmark \mathrm{pk} / \mathrm{\sigma}_{\mathrm{a}}\) & in. \\
\hline \multicolumn{3}{|l|}{where} \\
\hline \(\mathrm{s}=\) & 18 & in. \\
\hline \(\mathrm{p}=\) & 0.66 & psi (design pressure) \\
\hline \(\mathrm{k}=\) & 0.5 & plate panel ratio factor,3-2-3 Table 1 \\
\hline \(\sigma_{\text {a }}=\) & 14400 & psi (design stress) \\
\hline 1/s= & 4.44 & \\
\hline I= & 80 & in. \\
\hline \(\mathrm{s}_{\mathrm{a}}=\) & 14400 & (0.6sy) \\
\hline (alum. \(5083-\mathrm{H} 321 / \mathrm{H} 116\) ) \(\mathrm{sy}=\) & 24000 & psi \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 3.2.2 9.1 & pt1= & \(\mathrm{N}_{3}{ }^{*}\) h & psi \\
\hline \multirow[t]{3}{*}{Design pressure} & pt1= & 0.66 & psi \\
\hline & \(\mathrm{N}_{3}=\) & 0.44 & 3.2.2/1.1 \\
\hline & \(\mathrm{h}=\) & 1.5 & ft (from btm of pl) \\
\hline
\end{tabular}
\(\mathrm{pt} 2=\mathrm{pg}^{*}\left(1+0.5 \mathrm{n}_{\mathrm{xx}}\right) \mathbf{h}_{2} \quad \mathrm{ps}\)

\(\mathbf{p g}=\quad 0.44 \quad \mathrm{lbf} / \mathrm{in}^{2}-\mathrm{ft}\).
nxx= 4.58 g's
ncg= 2.29 g's
1.3.3 Minimum Thickness
1.3.3(d) Deep tanks
\(\mathrm{t}_{\mathrm{al}}=\quad 0.011 \sqrt{ } \mathrm{Lqa}+0.04 \mathrm{in}\).
\(\mathrm{t}_{\mathrm{al}}=\)
0.10
in.
0.140
in.
but not less than, \(\mathrm{t}_{\mathrm{al}}=\)
.


\section*{Part 3 Chapter 2}

Section 2 Design pressure
9.1 Tank Boundaries

Design pressure
\[
14.49 \quad \mathrm{psi}
\]

Tank bhd stiffener
overflow at 760 mm above crew deck
with stringer at mid tank height

Part 3 Chapter 2
Section Internals
1.3 Strength and stiffness

Tank bhd stiffeners
3.2.2 9.1 pt1= \(\quad \mathrm{N}_{3}{ }^{*} \mathrm{~h} \quad \mathrm{psi}\)

Design pressure
\(\begin{array}{ccl}\text { pt1 }= & \mathbf{3 . 8 3 6 0 0 8} & \text { psi } \\ \mathbf{N}_{3}= & 0.44 & 3.2 .2 / 1.1 \\ \mathbf{h}= & 8.7182 & \mathrm{ft}\end{array}\)
\(\mathrm{pt} 2=\mathrm{pg}{ }^{*}\left(1+0.5 \mathrm{n}_{\mathrm{xx}}\right) \mathrm{h}_{2} \quad \mathrm{psi}\)
\begin{tabular}{|c|c|c|}
\hline & 14.49 & psi \\
\hline \(\mathrm{h}_{2}=\) & 6.562 & ft \\
\hline pg= & 0.44 & \(\mathrm{lbf} / \mathrm{in}^{2}-\mathrm{ft}\). \\
\hline nxx= & 8.04 & g 's \\
\hline \(\mathrm{ncg}=\) & 4.02 & g's \\
\hline \(\mathrm{Kv}=\) & 2 & \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline h1 \(=\) & 0 \\
h2 \(=\) & 0 \\
h3 \(=\) & 0 \\
h4 \(=\) & 0 \\
\hline
\end{tabular}
1.3.1 Section Modulus
\(\mathrm{SM}=\square 2.106 \mathrm{in}^{3}\)
\(S M=\left.144^{*} p^{*} s^{*}\right|^{2} / \sigma a \quad \mathrm{in}^{3}\)
where,
\begin{tabular}{rcl}
\(\mathrm{p}=\) & 14.49 & psi \\
\(\mathrm{s}=\) & 0.5 & \(\mathrm{ft}\). \\
\(\mathrm{I}=\) & 4.9215 & \(\mathrm{ft}\). \\
\(\mathrm{~s}_{\mathrm{a}}=\) & \(\mathbf{1 2 0 0 0}\) & \(\mathbf{( 0 . 6 s y})\) \\
\(\mathrm{sy}=\) & 20000 & psi
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{USE} & & \multirow{3}{*}{in \({ }^{3}\)} & web depth & web thk & \multicolumn{2}{|l|}{|flange |flange thk} \\
\hline & 2.55 & & 3.5 & 0.25 & 3 & 0.25 \\
\hline & & & 88.9 & 6.35 & 76.2 & 6.35 \\
\hline
\end{tabular}
d warfp tw tf tp

\section*{Chapter 2}

Section 2 Design pressure
9.3 Water-tight bhd

Design Pressure for water-tight bhd stiffeners
Design Pressure for water-tight bhd stiffeners
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline location & to & \begin{tabular}{c} 
stiffener \\
spacing, in
\end{tabular} & \(\mathbf{h}, \mathrm{ft}\). & \(\mathbf{N}_{3}=\) & \begin{tabular}{c} 
design \\
pressure, \\
Pw,psi
\end{tabular} & \begin{tabular}{c} 
plate \\
thickness, \(t\)
\end{tabular} & \(\mathbf{h}, \mathrm{~m}\) \\
\hline tank bottom & Tank Top & \(\mathbf{1 2 . 0}\) & 6.56 & 0.44 & 2.89 & 3.56 & \\
\hline Along Tank Top & & 18.0 & 1.50 & 0.44 & 0.66 & 3.56 & \\
\hline
\end{tabular}

Design Pressure for water-tight bhd plate and web
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline location & & & h, ft. & \(\mathrm{N}_{3}=\) & design pressure, Pw,psi & & h , m \\
\hline tank bhd & & & 6.56 & 0.44 & 2.89 & 3.56 & \\
\hline Tank Top & & & 1.50 & 0.44 & 0.66 & 3.56 & \\
\hline
\end{tabular}

1.3.3 Minimum Thickness
not to less than (based on stiffener spacing)

\section*{Minimum Thickness}
1.3.2 \(t_{a l}=\quad 0.012 \mathrm{~s} \quad\) in. \(\quad \mathrm{s}=12\) in
1.3.3(d) Water -tight bulkhead and Deep tanks


Part \(3 \quad\) Chapter 2
Section 4 Internals
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{1.3} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Strength and stiffness
Water -tight bhd stiffener in midship}} & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & & & & & & & & \\
\hline & \multicolumn{4}{|l|}{Note that the top of the overflow is assumed to extend 0.75 m above the top of the tank. Section Modulus} & & & & & \\
\hline location & to & I, span, ft. & s in ft. & \[
\begin{array}{|c}
\text { Design } \\
\text { stress, } \mathrm{s}_{\mathrm{a}} \mathrm{psi}
\end{array}
\] & design pressure, Pw,psi & section modulus, in \(^{3}\) & structura I profile & actual SM, in \({ }^{3}\) & \\
\hline tank bottom(outbd) & Tank Top & 6.5620 & 1 & 20400 & 2.89 & 0.88 & \(2 \times 3 / 16\) in & 0.88 & \\
\hline Tank Top & Tank Top & 3.0000 & 1.5 & 20400 & 0.66 & 0.06 & \(2 \times 3 / 16\) in & 0.88 & \\
\hline
\end{tabular}


\section*{Deckhouse aft Stiffeners}
\begin{tabular}{rl} 
SM & \(=0.936 \mathrm{in}^{3}\) \\
SM & \(=144^{*} \mathrm{p}^{*} \mathrm{~s}^{*} \mathrm{I}^{2} / \mathrm{in}^{3}\)
\end{tabular}

\section*{E Weight Estimate}

















Hull Structure Summary:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Frame & Mass & Lcg & vcg & M*LCG & M \({ }^{\text {VCG }}\) \\
\hline Transom & \({ }^{137.25}\) & 0.00 & 0.95 & 0 & \({ }^{130.0213}\) \\
\hline 0.25 & 164.28 & 0.2156 & 1.03 & 35.42303 & 168.8887 \\
\hline 1 & 415.38 & 0.8625 & 1.06 & 358.2684 & 442.3189 \\
\hline 2 & 416.28 & 1.7250 & 1.07 & 718.076 & 445.7859 \\
\hline 3 & 470.25 & 2.5875 & 1.06 & 1216.771 & 499.4783 \\
\hline 4 & 420.40 & 3.4500 & 1.08 & 1450.378 & 455.5465 \\
\hline 5 & 408.45 & 4.3125 & 1.08 & 1761.443 & 440.8759 \\
\hline 6 & 463.86 & 5.1750 & 1.07 & 2400.453 & 497.2795 \\
\hline 7 & 391.26 & 6.0375 & 1.10 & 2362.219 & 429.8015 \\
\hline 8 & 392.40 & 6.9000 & 1.11 & 2707.593 & 433.9486 \\
\hline 9 & 376.55 & 7.7625 & 1.13 & 2922.954 & 425.6945 \\
\hline 10 & 395.07 & 8.6250 & 1.12 & 3407.463 & 441.8943 \\
\hline 11 & 448.95 & 9.4875 & 1.12 & 4259.38 & 501.0534 \\
\hline 12 & 447.78 & 10.3500 & 1.13 & 4634.534 & 504.9824 \\
\hline 13 & 441.91 & 11.2125 & 1.15 & 4954.939 & 507.0842 \\
\hline 14 & 506.71 & 12.0750 & 1.23 & 6118.883 & 623.3212 \\
\hline 15 & 498.85 & 12.9375 & 1.26 & 6453.863 & 627.5943 \\
\hline 16 & 435.79 & 13.8000 & 1.32 & 6013.89 & 574.1867 \\
\hline 17 & 433.77 & 14.6625 & 1.36 & 6360.171 & 587.8551 \\
\hline 18 & 431.83 & 15.5250 & 1.41 & 6704.195 & 608.3237 \\
\hline 19 & 421.73 & 16.3875 & 1.48 & 6911.033 & 624.5281 \\
\hline 19.75 & 198.60 & 17.0344 & 1.52 & 3383.096 & \({ }^{302.3637}\) \\
\hline CL Grdr & 645.47 & 8.5 & 0.37 & 5486.497 & 239.4695 \\
\hline & ass & LcG & vcG & & \\
\hline Totals: & 9362.82 & 8.610776 & 1.12277 & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Weight Estimate:} & \multirow[b]{2}{*}{LCG (m)} & \multirow[b]{2}{*}{M*LCG} & \multirow[b]{2}{*}{VCG (m)} & \multirow[b]{2}{*}{M*VCG} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { starboard side = + } \\
& \text { Port side = - }
\end{aligned}
\]} \\
\hline Structure & Weight (kg) & & & & & TCG (m) & M*TCG \\
\hline Hull Structure: & 9363 & 8.61 & 80621 & 1.12 & 10512.3 & 0 & 0 \\
\hline Superstructure: & 2037 & 7.70 & 15685 & 3.98 & 8096.982 & 0 & 0 \\
\hline Structure subtotal: & 11400 & & & & & & \\
\hline \multicolumn{8}{|l|}{Machinery} \\
\hline Engines: & 3800 & 3.74 & 14212 & 0.895 & 3401 & 0 & 0 \\
\hline Water Jets: & 2110 & 0.35 & 739 & 0.75 & 1582.5 & 0 & 0 \\
\hline Compressor: & 544.3 & 4 & 2177 & 2.14 & 1164.802 & -0.944 & -513.8192 \\
\hline Compressor Tanks: & 544.3 & 5.6 & 3048 & 2.16 & 1175.688 & -1.38 & -751.134 \\
\hline Anchor winch (fwd incl. rode) & 130 & 14 & 1820 & 1.6 & 208 & 0 & 0 \\
\hline Anchor winch (aft incl. rode) & 130 & 1.5 & 195 & 1.6 & 208 & 0 & 0 \\
\hline Lift Winches (x2) & 40 & 0.623 & 25 & 1.8 & 72 & 0 & 0 \\
\hline Fuel Pump (x2) & 20 & 11.14 & 223 & 0.5 & 10 & 0 & 0 \\
\hline Ballast Pump (x2) & 20 & 11.97 & 239 & 0.5 & 10 & 0 & 0 \\
\hline Bilge Pump (x2) & 20 & 3.74 & 75 & 0.5 & 10 & 0 & 0 \\
\hline Machinery subtotal: & 7358.6 & & & & & & \\
\hline \multicolumn{8}{|l|}{Tanks} \\
\hline 4 Fuel Tanks & 2998 & 11.14 & 33398 & 0.817 & 2449.366 & 0 & 0 \\
\hline 2 Ballast Tanks & 0 & 11.97 & 0 & 0.817 & 0 & 0 & 0 \\
\hline Fresh Water & 957 & 9.5 & 9095 & 0.817 & 782.1555 & 2.38 & 2278.494 \\
\hline Gray Water & 287.2 & 9.5 & 2728 & 0.817 & 234.6466 & -2.87 & -824.2789 \\
\hline Black Water & 287.2 & 9.5 & 2728 & 0.817 & 234.6466 & -1.88 & -539.9458 \\
\hline Tank subtotal: & 4530 & & & & & & \\
\hline \multicolumn{8}{|l|}{Electrical and Controls} \\
\hline Alternator (x2) & 60 & 4.72 & 283 & 0.4 & 24 & 0 & 0 \\
\hline Generator & 389 & 6.054 & 2355 & 0.895 & 348.155 & 2.7925 & 1086.283 \\
\hline Batteries & 300 & 5.3 & 1590 & 1.8 & 540 & 1.775 & 532.5 \\
\hline Wires and Controls & 200 & 8.25 & 1650 & 2.25 & 450 & 0 & 0 \\
\hline Electrical subtotal: & 949 & & & & & & \\
\hline \multicolumn{8}{|l|}{Other} \\
\hline Outfit and Furnishings & 3000 & 8.25 & 24750 & 2.75 & 8250 & 0 & 0 \\
\hline Paint & 200 & 8.25 & 1650 & 1.1 & 220 & 0 & 0 \\
\hline Other subtotal: & 3200 & & & & & & \\
\hline \multirow[t]{3}{*}{SubTotal:


5\% Margin
Totals:} & 27437 & \[
\begin{array}{r}
7.26 \\
-0.99
\end{array}
\] & 199286 & 1.46 & 39984.24 & 0.05 & 1268.099 \\
\hline & Weight (kg) & LCG (m) & & VCG (m) & & TCG (m) & \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{F Resistance}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{U} & & Rf & & Rwtrans & Rwdiv & & Rwtinter & Rwdinter & Rwinter & & & \multicolumn{2}{|l|}{Power} \\
\hline & & & & & & & & & & & & & & \\
\hline . 51 & & 0 & 0.0 & 0.03 & 0.0 & 0.0 & 0 & -2 & -6E & - & 7 & 0. & 0.016 & 0.022 \\
\hline 1.076 & 2.0909 & 0.01 & O. & 0.12 & 0.01 & 0.0065 & 0.02 & 0.000 & 0.0000 & 0.0001 & 0.022 & 0.141 & 0.151 & 0.203 \\
\hline 1. & 3.1818 & 0.0 & 0.25 & 0.2 & 0.122 & 0.0421 & 0.1 & 0.001371 & 0.002 & 0.001 & 0. & 0.47 & 0.78 & \\
\hline 2.1 & 4.272 & & 0.4 & 0. & 0.094 & 0.140 & 0.2 & 0.0138 & 0.00 & 0.0113 & 0.5 & 0.96 & 2.12 & 2.846 \\
\hline 2.7 & 5.36 & 0.6 & 0. & 0. & 0.38 & 0. & 0.8 & 0. & -0.01 & -0.01 & 1.5 & 2.2 & 6.13 & 8. \\
\hline 32 & 6.4 & 1.1 & 0. & 0.93 & 0. & . 937 & 1.4 & 0.15038 & 0. & 0.25408 & 2. & 3.494 & 11.6 & 15.55 \\
\hline 3.882 & 7.5456 & 2.3 & & & 0.5524 & 0.62 & & 0.0512 & - & 0.1699 & 3.545 & & 18.5 & \\
\hline 4.443 & 8. & 3.28 & & & & 1.0509 & & 0.00507 & -0.062 & -0.0575 & & & & \\
\hline & & & & & 0.574 & & & & & & & & & \\
\hline & 10 & & & & & & & 0.511 & 0.008 & & & & & \\
\hline & 11.90 & & & & & & & 0. & -0.100 & 0.6 & 9. & & 73.6 & \\
\hline 6.689 & 13 & 6.9 & 3.3 & 3.3 & 1.6 & 1.4 & 3. & 0.7713 & -0.1 & 0.6364 & 10 & 13 & 89.4 & 119.9 \\
\hline 7.25 & 14.091 & 8.0 & 3. & 3. & 1.6 & 1. & 3. & 0. & -0 & 0.6 & 11 & 15 & 111 & 148.8 \\
\hline 7.811 & 15 & & & & 1. & 2.004 & 3.5 & 0.75085 & -0.1016 & 0.6492 & 13.02 & 17.48 & 136.5 & 183 \\
\hline 8.37 & 16.273 & 10.3 & 5. & & 1.4410 & & & 0 & -0.07613 & 0.62661 & 14.02 & 19.0 & 159.6 & 213.9 \\
\hline & 17.36 & 10.9 & & & & & & 0.660 & -0.02568 & 0.63436 & & & & \\
\hline 9.495 & 18.4 & 12 & & & & & & 0.601 & 0.009 & 0. & & & & 284.2 \\
\hline & 19 & & & & & & & & & 0. & & & & \\
\hline & 20. & & & & & & & 0.512 & & & & 23.9 & & \\
\hline & 21 & & & & 0.9 & & & 0.468 & 0. & 0.5 & 16 & & & \\
\hline & 22 & 11. & & 9.2 & & & & & 0. & 0. & & & & \\
\hline & 23.909 & 11 & & 10 & 0. & & & & & 0.54403 & & 25.6 & 315 & 422.2 \\
\hline & 25 & 10.7 & 10.9 & 10.9 & 0. & 3.91 & & 0. & 0.145216 & 0.50107 & 15.31 & 26.21 & & 451.8 \\
\hline & 26.091 & & & & & & & 0.32416 & 0.160961 & 0.48512 & 15.07 & 26.8 & 359.7 & 482 \\
\hline & & 10 & & & & & & 0.2 & 0. & 0.43032 & & 27 & 383.1 & 513.4 \\
\hline & 28 & 9. & & & & & & & & 0. & & & & \\
\hline & 29 & & & & & & & & 0.152 & & & & & \\
\hline & 30 & & & & & & & & & & & & & \\
\hline & 31 & & & & & & & 0. & 0.118 & & & & & \\
\hline & 32. & 8 & & & 0.3 & & & 0.1 & 0. & 0.3 & 13 & 30 & 517 & 693.9 \\
\hline 17 & 33. & 8 & & 18 & 0. & & & 0.17 & 0. & 0. & & 31 & 548.5 & 735.1 \\
\hline 17 & 34.8 & 8 & 19 & 19 & & & & 0.1 & 0. & 0. & 13 & 32 & 583.5 & 781.8 \\
\hline 18 & 35.9 & 8.0 & 20.5 & 20 & & & & 0.1 & & & 12. & 33. & 616.2 & 27 \\
\hline 19. & 37. & 7.8 & 21 & & & & & & & & 12 & 34 & & \\
\hline 19 & 38. & & & & & & & 0.124616 & & & & 35 & & \\
\hline 20.1 & 39 & & 23. & & & & & 0.115 & 0.1942 & 0 & 12.27 & 36.16 & & 976.9 \\
\hline 20.7 & 40 & & & & 0. & & & 0.106 & 0.1360 & & 12.01 & 37.1 & 769.2 & 1031 \\
\hline 21 & 41.3 & & 26 & 26 & 0.1 & 4 & & 0.098 & 0. & 0.2 & 11 & 38 & 80 & 促 \\
\hline 21.8 & 42.4 & 6.8 & & 27 & 0.1 & 4.6 & 4.8 & 0. & 0. & 0.3396 & 11 & 39. & 86 & 155 \\
\hline 22 & 43. & 6 & 28 & 28 & 0.1 & 4.4 & & 0. & 0. & 0.11 & 11.3 & 40.2 & 900 & 1207 \\
\hline 22.9 & 44. & 6. & 30 & 30 & 0.1 & 4.5 & 4. & 0.0 & 0.136 & 0.21 & 11.2 & 41. & 949 & 1272 \\
\hline 23 & 45.7 & 6 & 31 & 31. & 0.1 & 4.5 & & 0.074231 & 0.067 & 0.1419 & 11.0 & 42.3 & 995 & 1334 \\
\hline 24.0 & 46.81 & 6. & 32 & 32.6 & 0.1386 & 4.537 & 4. & 0.069 & 0.1100 & 0.17936 & 10.9 & 43.52 & & \\
\hline 24.6 & 47.91 & 6.0 & 33.9 & 34 & 0.12943 & 4.438 & 4.5 & 0.06469 & 0.02231 & 0.087 & 10.6 & 44.5 & 10 & 1473 \\
\hline 25.21 & 49.0 & 5.9 & 35.2 & 35.2 & 0.12 & 4.6 & 4.7 & 0.0 & 0.251 & 0.3124 & 10. & 45.91 & 11 & 15 \\
\hline
\end{tabular}

Frictional and Wave Resistance


Resistance and Power



Drag Coefficient from http://www.engineeringtoolbox.com/

\section*{G Stability Calculations}

\section*{Cross Curves of Stability}

\begin{tabular}{lcl} 
Gravity & \(9.81 \mathrm{~m} / \mathrm{s}^{2}\) \\
Actual Displacement & 25.3 MT & \\
& \\
& \\
Real VCG & 1.54 m & \\
Wind Velocity & 95 knots & \\
Projected Area & \(24 \mathrm{~m}^{2}\) & (area on which the wind acts) \\
Lever arm of Area & 2.75 m & (distance between half draft and projected area centroid) \\
Ship Speed & \(22.5 \mathrm{~m} / \mathrm{s}\) & \\
CG to .5T & 1.04 m & \\
Turning Radius & 141 m &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 0 & Angle & 25.5 & 25 & \multicolumn{2}{|c|}{25.3} & \multirow[t]{2}{*}{Area under GZ curve
\[
0
\]} \\
\hline & 0 & 0 & 0 & 0 & 0 & \\
\hline 1 & 10 & 1.862 & 1.888 & 1.8724 & 1.8724 & 0.163398 \\
\hline 2 & 20 & 2.036 & 2.034 & 2.0352 & 2.021519 & 0.843015 \\
\hline 3 & 30 & 1.782 & 1.78 & 1.7812 & 1.7612 & 1.833328 \\
\hline 4 & 40 & 1.48 & 1.48 & 1.48 & 1.454288 & 2.955746 \\
\hline 5 & 50 & 1.128 & 1.13 & 1.1288 & 1.098158 & 4.069461 \\
\hline 6 & 60 & 0.731 & 0.733 & 0.7318 & 0.697159 & 5.009486 \\
\hline 7 & 70 & 0.301 & 0.303 & 0.3018 & 0.264212 & 5.596755 \\
\hline 8 & 80 & -0.144 & -0.142 & -0.1432 & -0.182592 & 5.653736 \\
\hline
\end{tabular}

Interpolation Value
0.6
\(0 \quad 0\)
GM
\(10.72806 \quad 10.72806\)

\section*{Wind Forces}
\begin{tabular}{|r|r|r|r|}
\hline \begin{tabular}{c} 
Angle of \\
Heel \\
(degrees)
\end{tabular} & GZ (m) & \begin{tabular}{c} 
Wind \\
Heeling \\
Arm (m)
\end{tabular} & \\
\hline \hline 0 & 0 & 0.459098 & -0.459098 \\
\hline 10 & 1.8724 & 0.445254 & 1.427146 \\
\hline 20 & 2.021519 & 0.405394 & 1.616126 \\
\hline 30 & 1.7612 & 0.344323 & 1.416877 \\
\hline 40 & 1.454288 & 0.26941 & 1.184879 \\
\hline 50 & 1.098158 & 0.189688 & 0.90847 \\
\hline 60 & 0.697159 & 0.114774 & 0.582385 \\
\hline 70 & 0.264212 & 0.053704 & 0.210508 \\
\hline 80 & -0.18259 & 0.013843 & -0.196436 \\
\hline
\end{tabular}

\section*{Criteria 1}
angle of steady heel does not exceed 10 degrees
Criteria Passed

\section*{Criteria 2}

Heeling arm at intersection is no more then 60 percent of maximum Righting arm
\begin{tabular}{ll} 
C & 2.447451 \\
GZ @ c & 0.458261 \\
H.A. @c & 0.458261 \\
MAX GZ & 2.021519
\end{tabular}

Criteria Passed

\section*{Criteria 3}

Residual righting energy is not less than 40 percent of the total area
\begin{tabular}{|r|r|r|r|}
\hline \begin{tabular}{c} 
Angle \\
(degrees)
\end{tabular} & \begin{tabular}{c} 
GZ-H.A \\
\((\mathrm{m})\)
\end{tabular} & S.M & \\
\hline \hline 2.447451 & 0 & & \\
\hline 20 & 1.616126 & 1 & 1.616126 \\
\hline 30 & 1.416877 & 4 & 5.667507 \\
\hline 40 & 1.184879 & 2 & 2.369758 \\
\hline 50 & 0.90847 & 4 & 3.63388 \\
\hline 60 & 0.582385 & 2 & 1.164769 \\
\hline 70 & 0.210508 & 4 & 0.842032 \\
\hline 80 & 0 & 1 & 0 \\
\hline
\end{tabular}

A1
65.1638
\begin{tabular}{|r|r|r|r|}
\hline \begin{tabular}{c} 
Angle \\
(degrees)
\end{tabular} & \begin{tabular}{c} 
GZ-H.A \\
\((\mathrm{m})\)
\end{tabular} & S.M & \\
\hline \hline 2.447451 & 0 & 0 & 0 \\
\hline 0 & -0.4591 & 1 & -0.459098 \\
\hline-10 & -2.31765 & 4 & -9.270617 \\
\hline-20 & -2.42691 & 2 & -4.853826 \\
\hline-30 & -2.10552 & 4 & -8.422093 \\
\hline-40 & -1.7237 & 1 & -1.723698 \\
\hline-22.55255 & -2.46721 & 0 & 0 \\
\hline
\end{tabular}

A2
46.43257

\section*{Criteria Passed}

\section*{High Speed Turns}
\begin{tabular}{|r|r|r|r|}
\hline \begin{tabular}{c} 
Angle of \\
Heel \\
(degrees)
\end{tabular} & GZ (m) & \begin{tabular}{c} 
Turn \\
Heeling \\
Arm (m)
\end{tabular} & \\
\hline \hline 0 & 0 & 0.380636 & -0.380636 \\
\hline 10 & 1.8724 & 0.374854 & 1.497546 \\
\hline 20 & 2.021519 & 0.357681 & 1.663838 \\
\hline 30 & 1.7612 & 0.329641 & 1.431559 \\
\hline 40 & 1.454288 & 0.291584 & 1.162704 \\
\hline 50 & 1.098158 & 0.244668 & 0.85349 \\
\hline 60 & 0.697159 & 0.190318 & 0.506841 \\
\hline 70 & 0.264212 & 0.130185 & 0.134027 \\
\hline 80 & -0.182592 & 0.066097 & -0.248689 \\
\hline
\end{tabular}

\section*{Criteria 1}
angle of steady heel does not exceed 10 degrees
Criteria Passed

\section*{Criteria 2}

Heeling arm at intersection is no more then 60 percent of maximum Righting arm
\begin{tabular}{ll} 
C & 2.031602 \\
GZ @c & 0.380397 \\
H.A. @c & 0.380397 \\
MAX GZ & 2.021519 \\
& Criteria Passed
\end{tabular}

\section*{Criteria 3}

Residual righting energy is not less than 40 percent of the total area
\begin{tabular}{|r|r|r|r|}
\hline \begin{tabular}{c} 
Angle \\
(degrees)
\end{tabular} & \begin{tabular}{c} 
GZ-H.A \\
\((\mathrm{m})\)
\end{tabular} & S.M & \\
\hline \hline 2.031602 & 0 & & \\
\hline 20 & 1.663838 & 1 & 1.663838 \\
\hline 30 & 1.431559 & 4 & 5.726237 \\
\hline 40 & 1.162704 & 2 & 2.325408 \\
\hline 50 & 0.85349 & 4 & 3.41396 \\
\hline 60 & 0.506841 & 2 & 1.013682 \\
\hline 70 & 0.134027 & 4 & 0.536108 \\
\hline 80 & 0 & 1 & 0 \\
\hline \multicolumn{4}{|r|}{14.67923} \\
\hline
\end{tabular}

A1
63.87903
\begin{tabular}{|c|c|c|c|}
\hline Angle (degrees) & \[
\begin{gathered}
\hline \text { GZ-H.A } \\
(\mathrm{m}) \\
\hline
\end{gathered}
\] & S.M & \\
\hline 2.031602 & 0 & 0 & 0 \\
\hline 0 & -0.380636 & 1 & -0.380636 \\
\hline -10 & -2.247254 & 4 & -8.989014 \\
\hline -20 & -2.3792 & 2 & -4.758401 \\
\hline -30 & -2.090841 & 4 & -8.363363 \\
\hline -40 & -1.745873 & 1 & -1.745873 \\
\hline -22.9684 & -2.450024 & 0 & 0 \\
\hline
\end{tabular}

A2
45.44618

\section*{Criteria Passed}

Righting Arm


\section*{Cross Curves of Stability}


Gravity
\(9.81 \mathrm{~m} / \mathrm{s}^{2}\)

Actual Displacement
28.5 MT

Real VCG
Wind Velocity
Projected Area
Lever arm of Area
Ship Speed
CG to .5T
Turning Radius
1.46 m 80 knots
\(24 \mathrm{~m}^{2}\)
2.75 m \(22.5 \mathrm{~m} / \mathrm{s}\) 1.04 m 141 m
(area on which the wind acts)
(distance between half draft and projected area centroid)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 0 & Angle & 28.5 & 28 & \multicolumn{2}{|l|}{28.5} & Area under GZ curve \\
\hline & 0 & 0 & 0 & 0 & 0 & 이 \\
\hline 1 & 10 & 1.754 & 1.754 & 1.754 & 1.754 & 0.153065 \\
\hline 2 & 20 & 2.073 & 2.073 & 2.073 & 2.073 & 0.821003 \\
\hline 3 & 30 & 1.837 & 1.837 & 1.837 & 1.837 & 1.844638 \\
\hline 4 & 40 & 1.543 & 1.543 & 1.543 & 1.543 & 3.024481 \\
\hline 5 & 50 & 1.192 & 1.192 & 1.192 & 1.192 & 4.21785 \\
\hline 6 & 60 & 0.8 & 0.8 & 0.8 & 0.8 & 5.260859 \\
\hline 7 & 70 & 0.377 & 0.377 & 0.377 & 0.377 & 5.979847 \\
\hline 8 & 80 & -0.063 & -0.063 & -0.063 & -0.063 & 6.19906 \\
\hline
\end{tabular}
\begin{tabular}{lrr} 
Interpolation Value & 1 & \\
& 0 & 0 \\
GM & 10.04968 & 10.04968
\end{tabular}

\section*{Wind Forces}
\begin{tabular}{|r|r|r|r|}
\hline \begin{tabular}{c} 
Angle of \\
Heel \\
(degrees)
\end{tabular} & GZ (m) & \begin{tabular}{c} 
Wind \\
Heeling \\
Arm (m)
\end{tabular} & \\
\hline \hline 0 & 0 & 0.289011 & -0.289011 \\
\hline 10 & 1.754 & 0.280296 & 1.473704 \\
\hline 20 & 2.073 & 0.255203 & 1.817797 \\
\hline 30 & 1.837 & 0.216758 & 1.620242 \\
\hline 40 & 1.543 & 0.169598 & 1.373402 \\
\hline 50 & 1.192 & 0.119412 & 1.072588 \\
\hline 60 & 0.8 & 0.072253 & 0.727747 \\
\hline 70 & 0.377 & 0.033808 & 0.343192 \\
\hline 80 & -0.063 & 0.008715 & -0.071715 \\
\hline
\end{tabular}

\section*{Criteria 1}
angle of steady heel does not exceed 10 degrees
Criteria Passed

\section*{Criteria 2}

Heeling arm at intersection is no more then 60 percent of maximum Righting arm
\begin{tabular}{lr} 
C & 1.646362 \\
GZ @ c & 0.288772 \\
H.A. @c & 0.288772 \\
MAX GZ & 2.073
\end{tabular}

Criteria Passed

\section*{Criteria 3}

Residual righting energy is not less than 40 percent of the total area
\begin{tabular}{|r|r|r|r|}
\hline \begin{tabular}{c} 
Angle \\
(degrees)
\end{tabular} & \begin{tabular}{c} 
GZ-H.A \\
\((\mathrm{m})\)
\end{tabular} & S.M & \\
\hline \hline 1.646362 & 0 & & \\
\hline 20 & 1.817797 & 1 & 1.817797 \\
\hline 30 & 1.620242 & 4 & 6.480968 \\
\hline 40 & 1.373402 & 2 & 2.746803 \\
\hline 50 & 1.072588 & 4 & 4.290351 \\
\hline 60 & 0.727747 & 2 & 1.455495 \\
\hline 70 & 0.343192 & 4 & 1.372769 \\
\hline 80 & 0 & 1 & 0 \\
\hline
\end{tabular}
18.16418

A1
77.22888
\begin{tabular}{|c|c|c|c|}
\hline Angle (degrees) & \[
\begin{gathered}
\text { GZ-H.A } \\
(\mathrm{m}) \\
\hline \hline
\end{gathered}
\] & S.M & \\
\hline 1.646362 & 0 & 0 & 0 \\
\hline 0 & -0.28901 & 1 & -0.289011 \\
\hline -10 & -2.0343 & 4 & -8.137183 \\
\hline -20 & -2.3282 & 2 & -4.656405 \\
\hline -30 & -2.05376 & 4 & -8.215032 \\
\hline -40 & -1.7126 & 1 & -1.712598 \\
\hline -23.35364 & -2.37088 & 0 & 0 \\
\hline \multicolumn{4}{|l|}{-23.01023} \\
\hline
\end{tabular}

A2
42.95111

\section*{Criteria Passed}

High Speed Turns
\begin{tabular}{|r|r|r|r|}
\hline \begin{tabular}{c} 
Angle of \\
Heel \\
(degrees)
\end{tabular} & GZ (m) & \begin{tabular}{c} 
Turn \\
Heeling \\
Arm (m)
\end{tabular} & \\
\hline \hline 0 & 0 & 0.380636 & -0.380636 \\
\hline 10 & 1.754 & 0.374854 & 1.379146 \\
\hline 20 & 2.073 & 0.357681 & 1.715319 \\
\hline 30 & 1.837 & 0.329641 & 1.507359 \\
\hline 40 & 1.543 & 0.291584 & 1.251416 \\
\hline 50 & 1.192 & 0.244668 & 0.947332 \\
\hline 60 & 0.8 & 0.190318 & 0.609682 \\
\hline 70 & 0.377 & 0.130185 & 0.246815 \\
\hline 80 & -0.063 & 0.066097 & -0.129097 \\
\hline
\end{tabular}

\section*{Criteria 1}
angle of steady heel does not exceed 10 degrees
Criteria Passed

\section*{Criteria 2}

Heeling arm at intersection is no more then 60 percent of maximum Righting arm
\begin{tabular}{lc} 
C & 2.16855 \\
GZ @c & 0.380364 \\
H.A. @c & 0.380364 \\
MAX GZ & 2.073 \\
& \\
& Criteria Passed
\end{tabular}

\section*{Criteria 3}

Residual righting energy is not less than 40 percent of the total area
\begin{tabular}{|r|r|r|r|}
\hline \begin{tabular}{c} 
Angle \\
(degrees)
\end{tabular} & \begin{tabular}{c} 
GZ-H.A \\
\((\mathrm{m})\)
\end{tabular} & S.M & \\
\hline \hline 2.16855 & 0 & & \\
\hline 20 & 1.715319 & 1 & 1.715319 \\
\hline 30 & 1.507359 & 4 & 6.029437 \\
\hline 40 & 1.251416 & 2 & 2.502831 \\
\hline 50 & 0.947332 & 4 & 3.789327 \\
\hline 60 & 0.609682 & 2 & 1.219364 \\
\hline 70 & 0.246815 & 4 & 0.987259 \\
\hline 80 & 0 & 1 & 0 \\
\hline
\end{tabular}

A1
69.43843
\begin{tabular}{|r|c|r|r|}
\hline \begin{tabular}{c} 
Angle \\
(degrees)
\end{tabular} & \begin{tabular}{c} 
GZ-H.A \\
\((\mathrm{m})\)
\end{tabular} & S.M & \\
\hline \hline & & & \\
2.16855 & 0 & 0 & 0 \\
\hline 0 & -0.380636 & 1 & -0.380636 \\
\hline-10 & -2.128854 & 4 & -8.515414 \\
\hline-20 & -2.430681 & 2 & -4.861362 \\
\hline-30 & -2.166641 & 4 & -8.666563 \\
\hline-40 & -1.834584 & 1 & -1.834584 \\
\hline-22.83145 & -2.391113 & 0 & 0 \\
\hline
\end{tabular}

A2
45.00003

Criteria Passed

Righting Arm


Assume flooded compartment is at extreme end of vessel
\begin{tabular}{lc} 
density & \(1.025 \mathrm{~kg} / \mathrm{m}^{3}\) \\
Area of Midship & \(1.056 \mathrm{~m}^{2}\) \\
Floodable length & 15.9912112 m \\
& \\
TPI & 0.0532467 \\
MCT \((\mathrm{m})\) & 0.619 \\
MCH & 0.16826 \\
Trim & 0.122879081 m \\
Squat & 0.325069666 \\
Heel & 0.452051295 \\
Aft end sinkage & 0.900000042
\end{tabular}

\section*{H Seakeeping Calculations}

Please note that measured wave spectrum data was obtained from Department of Fisheries and Oceans.
http://www.meds-sdmm.dfo-mpo.gc.ca/alphapro/wave/TDCAtlas/TDCProducts.htm


\section*{MOST PROBABLE SPECTRA}

WEST COAST AREA 1 - WEST VANCOUVER ISLAND Buor


\title{
A Time-Domain Seakeeping Simulation for Fast Ships
}

\author{
D.C. Kring, D.A. Mantzaris, G.B. Tcheou, and P.D. Sclavounos \\ Massachusetts Institute of Technology \\ Cambridge, MA, USA
}

To appear at the FAST97 conference, Sydney, Australia

\section*{1 Introduction}

Advanced marine vehicles such as semi-displacement ships, catamarans, SWATH, and SES pose many new technical challenges that are beyond the realn of conventional displacement ship design. These advanced vessels are characterized by more complex geometric configurations and operation at higher speeds. The geometric complications include transom sterns, multiple hulls, and appendages. They operate throughout the range from zero to high speeds ( \(F_{\mathrm{n}}=V / \sqrt{g L}=0.8\) and higher).
Since a more limited base of experience exists for advanced marine vehicles than for conventional displacement ships, experimental or numerical modeling techniques are of increased value to a designer. Experimentation, while useful to evaluate concepts and provide ultimate validation, may be too expensive to apply at the conceptual or preliminary stages of design. So, a flexible, robust, and accurate numerical simulation of ship hydrodynamics is necessary for the practical analysis of advanced marine vehicle performance and safety.
Some of the performance issues that a numerical method must address include residuary resistance, wave added resistance, and seakeeping. Seakeeping is also the primary consideration for the issue of safety. The simulation of ship motion in waves allows the prediction of accelerations and structural loads and also provides a description of the wave patterns necessary for determining relative motions and slamming.
In the simulation of seakeeping for high speed vessels, while the linear interaction of waves with the ship dominates this problem, the effect of lift, viscosity, and nonlinearity must be considered. These extensions to a seakeeping model also enable a simulation of active and passive ride control systems. Active control systems, such as movable control fins and trim tabs, and passive control systems, such as skegs or struts, are very important for high speed, advanced vehicles. Structural loads and motion in extreme seas will also depend strongly on nonlinearity in the wave-body interaction.
In order to address these issues this paper presents a sample of calm water and seakeeping


Figure 7: Wave resistance cocfficient as function of speed for a catamaran with various demi-hull separation ratios.



Figure 9: Heave and pitch RAO sor a catamaran at various separation ratios and speeds.

\section*{I.T.T.C. Spectrum}
\begin{tabular}{|l|c|l|}
\hline Significant Wave Height (Hs): & 2.5 & m \\
\hline Vessel Waterline Length (LWL): & 16.4 & m \\
\hline Froude Number (Fn): & 0.6 & \\
\hline Vessel Speed (Vel): & 7.61 & \(\mathrm{~m} / \mathrm{s}\) \\
\hline Vessel Speed: & 14.79 & kn \\
\hline Vessel Heading: & 180 & deg \\
\hline Vessel Heading (Head): & 3.14 & rad \\
\hline
\end{tabular}

Wave spectrum as recommended by I.T.T.C.: \(\quad S\left(\omega_{w}\right)=\quad A / \omega^{5 *} \exp \left(-B / \omega^{4}\right)\)
\[
\begin{array}{lcc}
\text { where: } & \mathrm{A}= & 8.1 \mathrm{E}-03^{*} \mathrm{~g}^{2} \\
& \mathrm{~A}= & 0.7795124 \\
\mathrm{~g} & = & 9.81 \mathrm{~m} / \mathrm{s}^{2} \\
& & \\
& \mathrm{~B}= & 3.11 / \mathrm{Hs}^{2} \\
& \mathrm{~B}= & 0.4976 \\
\omega_{\mathrm{e}}= & \omega_{\mathrm{w}}\left(1-\omega_{\mathrm{w}}{ }^{*} \mathrm{~V}^{*} \cos (\mathrm{Head}) / \mathrm{g}\right) \\
\mathrm{S}\left(\omega_{\mathrm{e}}\right)= & \mathrm{S}\left(\omega_{\mathrm{w}}\right) / \operatorname{sqrt}\left(1-4^{*} \omega_{\mathrm{e}}{ }^{*} \mathrm{~V} / \mathrm{g}^{*} \cos (\mathrm{Head})\right)
\end{array}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline\(\omega_{\mathrm{w}}(\mathrm{rad} / \mathrm{s})\) & \(\mathrm{Freq}_{\mathrm{w}}(\mathrm{Hz})\) & \(\mathrm{S}(\omega)\) & \(\omega_{\mathrm{e}}(\mathrm{rad} / \mathrm{s})\) & \(\mathrm{S}\left(\omega_{\mathrm{e}}\right)\) \\
\hline 0 & 0.000 & 0 & 0.000 & 0 \\
\hline 0.1 & 0.016 & 0 & 0.108 & 0 \\
\hline 0.2 & 0.032 & 0 & 0.231 & 0 \\
\hline 0.3 & 0.048 & \(6.708 \mathrm{E}-25\) & 0.370 & \(4.5774 \mathrm{E}-25\) \\
\hline 0.4 & 0.064 & \(2.7537 \mathrm{E}-07\) & 0.524 & \(1.69919 \mathrm{E}-07\) \\
\hline 0.5 & 0.080 & 0.00869549 & 0.694 & 0.004896715 \\
\hline 0.6 & 0.095 & 0.21557105 & 0.879 & 0.11164069 \\
\hline 0.7 & 0.111 & 0.5838088 & 1.080 & 0.279857615 \\
\hline 0.8 & 0.127 & 0.70594873 & 1.296 & 0.314980158 \\
\hline 0.9 & 0.143 & 0.61834726 & 1.528 & 0.258031278 \\
\hline 1 & 0.159 & 0.47393425 & 1.776 & 0.185742916 \\
\hline 1.1 & 0.175 & 0.34455379 & 2.039 & 0.127295861 \\
\hline 1.2 & 0.191 & 0.24643338 & 2.317 & 0.086109143 \\
\hline 1.3 & 0.207 & 0.17637699 & 2.611 & 0.0584605 \\
\hline 1.4 & 0.223 & 0.12732948 & 2.921 & 0.040139368 \\
\hline 1.5 & 0.239 & 0.09304207 & 3.246 & 0.027962893 \\
\hline 1.6 & 0.255 & 0.06890459 & 3.586 & 0.019785974 \\
\hline 1.7 & 0.271 & 0.05172543 & 3.942 & 0.014219453 \\
\hline 1.8 & 0.286 & 0.03934363 & 4.314 & 0.010373217 \\
\hline 1.9 & 0.302 & 0.03030209 & 4.701 & 0.007675369 \\
\hline 2 & 0.318 & 0.02361383 & 5.103 & 0.005755091 \\
\hline 2.1 & 0.334 & 0.01860436 & 5.521 & 0.004368988 \\
\hline 2.2 & 0.350 & 0.01480759 & 5.955 & 0.003355119 \\
\hline 2.3 & 0.366 & 0.01189766 & 6.404 & 0.00260423 \\
\hline 2.4 & 0.382 & 0.00964391 & 6.868 & 0.002041582 \\
\hline 2.5 & 0.398 & 0.00788117 & 7.349 & 0.001615358 \\
\hline 2.6 & 0.414 & 0.00648974 & 7.844 & 0.001289167 \\
\hline 2.7 & 0.430 & 0.00538193 & 8.355 & 0.001037137 \\
\hline 2.8 & 0.446 & 0.0044928 & 8.882 & 0.00084066 \\
\hline 2.9 & 0.462 & 0.00377379 & 9.424 & 0.000686203 \\
\hline 3 & 0.477 & 0.00318822 & 9.982 & 0.00056382 \\
\hline 3.1 & 0.493 & 0.00270816 & 10.555 & 0.000466134 \\
\hline 3.2 & 0.509 & 0.00231213 & 11.144 & 0.000387617 \\
\hline 3.3 & 0.525 & 0.00198349 & 11.748 & 0.000324093 \\
\hline 3.4 & 0.541 & 0.00170927 & 12.368 & 0.000272381 \\
\hline 3.5 & 0.557 & 0.00147925 & 13.003 & 0.000230039 \\
\hline 3.6 & 0.573 & 0.00128536 & 13.654 & 0.000195176 \\
\hline 3.7 & 0.589 & 0.00112114 & 14.320 & 0.000166323 \\
\hline 3.8 & 0.605 & 0.00098145 & 15.002 & 0.000142323 \\
\hline 3.9 & 0.621 & 0.00086212 & 15.700 & 0.000122267 \\
\hline 4 & 0.637 & 0.00075976 & 16.412 & 0.000105431 \\
\hline 4.1 & 0.653 & 0.00067164 & 17.141 & \(9.12386 \mathrm{E}-05\) \\
\hline 4.2 & 0.668 & 0.0005955 & 17.885 & \(7.92252 \mathrm{E}-05\) \\
\hline & & & & \\
\hline 0 & 0 & & 0
\end{tabular}


\section*{ITTC RAO's}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{3}{|c|}{RRW's at S/B = 2} & \multicolumn{3}{|c|}{RAO's at S/B = 2} \\
\hline \(\lambda_{\mathrm{e}} / \mathrm{L}\) & \(\omega_{\mathrm{e}}\) & Roll (E*L/A) (rad) & \begin{tabular}{l}
Heave (E/A) \\
(-)
\end{tabular} & Pitch ( \(\mathrm{E} \star \mathrm{L} / \mathrm{A}\) ) (rad) & \[
\begin{gathered}
\hline \text { Roll } \\
(\mathrm{E} / \mathrm{A})^{2} \\
(\mathrm{rad} / \mathrm{m})^{2} \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Heave \\
\((E / A)^{2}\) \\
\((-)^{2}\)
\end{tabular} & \[
\begin{gathered}
\hline \text { Pitch } \\
(\mathrm{E} / \mathrm{A})^{2} \\
(\mathrm{rad} / \mathrm{m})^{2} \\
\hline
\end{gathered}
\] \\
\hline & 0.00 & & & & 0 & 1 & 0.00365 \\
\hline & 0.05 & & & & 0 & 1 & 0.00366 \\
\hline & 0.10 & & & & 0 & 1 & 0.00367 \\
\hline & 0.15 & & & & 0 & 1 & 0.00368 \\
\hline & 0.20 & & & & 0.00009 & 1 & 0.00369 \\
\hline & 0.25 & & & & 0.0001 & 1.002 & 0.0037 \\
\hline & 0.30 & & & & 0.0003 & 1.003 & 0.00371 \\
\hline & 0.35 & & & & 0.0005 & 1.004 & 0.00372 \\
\hline & 0.40 & & & & 0.0007 & 1.005 & 0.00373 \\
\hline & 0.45 & & & & 0.0009 & 1.006 & 0.00374 \\
\hline & 0.50 & & & & 0.001 & 1.0065 & 0.00375 \\
\hline & 0.55 & & & & 0.0015 & 1.0068 & 0.00376 \\
\hline & 0.60 & & & & 0.002 & 1.0072 & 0.00377 \\
\hline & 0.65 & & & & 0.003 & 1.0075 & 0.00378 \\
\hline & 0.70 & & & & 0.004 & 1.0078 & 0.00379 \\
\hline & 0.75 & & & & 0.0045 & 1.0079 & 0.0038 \\
\hline & 0.80 & & & & 0.005 & 1.008 & 0.00381 \\
\hline & 0.85 & & & & 0.0055 & 1.0081 & 0.00382 \\
\hline & 0.90 & & & & 0.006 & 1.0082 & 0.00383 \\
\hline & 0.95 & & & & 0.0065 & 1.0085 & 0.00384 \\
\hline & 1.00 & & & & 0.007 & 1.009 & 0.00385 \\
\hline & 1.05 & & & & 0.0075 & 1.01 & 0.00386 \\
\hline & 1.10 & & & & 0.0085 & 1.02 & 0.00387 \\
\hline & 1.15 & & & & 0.0092 & 1.03 & 0.00388 \\
\hline 3.2 & 0.91 & & 1.025 & 2.4 & 0.01 & 1.050625 & 0.003906 \\
\hline 3.1 & 0.94 & & 1.03 & 2.4 & 0.011 & 1.0609 & 0.003944 \\
\hline 3 & 0.97 & & 1.04 & 2.5 & 0.012 & 1.0816 & 0.004021 \\
\hline 2.9 & 1.01 & & 1.06 & 2.55 & 0.013 & 1.1236 & 0.004178 \\
\hline 2.8 & 1.04 & & 1.08 & 2.7 & 0.016 & 1.1664 & 0.004337 \\
\hline 2.7 & 1.08 & & 1.1 & 2.85 & 0.017 & 1.21 & 0.004499 \\
\hline 2.6 & 1.12 & & 1.12 & 3 & 0.018 & 1.2544 & 0.004664 \\
\hline 2.5 & 1.17 & & 1.16 & 3.2 & 0.0195 & 1.3456 & 0.005003 \\
\hline 2.4 & 1.21 & & 1.22 & 3.45 & 0.022 & 1.4884 & 0.005534 \\
\hline 2.3 & 1.27 & & 1.28 & 3.75 & 0.024 & 1.6384 & 0.006092 \\
\hline 2.2 & 1.33 & & 1.4 & 4.2 & 0.026 & 1.96 & 0.007287 \\
\hline 2.1 & 1.39 & & 1.55 & 4.55 & 0.03 & 2.4025 & 0.008933 \\
\hline 2 & 1.46 & & 1.7 & 4.95 & 0.032 & 2.89 & 0.010745 \\
\hline 1.9 & 1.53 & 3.05 & 1.9 & 5.15 & 0.034587 & 3.61 & 0.013422 \\
\hline 1.8 & 1.62 & 3.25 & 2.03 & 4.95 & 0.039272 & 4.1209 & 0.015322 \\
\hline 1.7 & 1.72 & 3.45 & 2 & 4.45 & 0.044254 & 4 & 0.014872 \\
\hline 1.6 & 1.82 & 3.55 & 1.8 & 3.55 & 0.046856 & 3.24 & 0.012046 \\
\hline 1.5 & 1.94 & 3.85 & 1.675 & 3.1 & 0.05511 & 2.805625 & 0.010431 \\
\hline 1.4 & 2.08 & 4.1 & 1.5 & 2.85 & 0.0625 & 2.25 & 0.008366 \\
\hline 1.3 & 2.24 & 4.35 & 1.35 & 2.85 & 0.070354 & 1.8225 & 0.006776 \\
\hline 1.2 & 2.43 & 4.65 & 1.15 & 3 & 0.080393 & 1.3225 & 0.004917 \\
\hline 1.1 & 2.65 & 5.05 & 0.95 & 2.8 & 0.094819 & 0.9025 & 0.003356 \\
\hline 1 & 2.92 & 5.35 & 0.65 & 2.4 & 0.106419 & 0.4225 & 0.001571 \\
\hline 0.9 & 3.24 & 5.9 & & & 0.129424 & & \\
\hline 0.8 & 3.64 & 6.3 & & & 0.147568 & & \\
\hline 0.7 & 4.17 & 6.85 & & & 0.174459 & & \\
\hline 0.6 & 4.86 & 7.35 & & & 0.200857 & & \\
\hline 0.5 & 5.83 & 7.75 & & & 0.223314 & & \\
\hline 0.4 & 7.29 & 7.5 & & & 0.209139 & & \\
\hline 0.3 & 9.72 & 5.7 & & & 0.120799 & & \\
\hline 0.2 & 14.58 & 1 & & & 0.003718 & & \\
\hline 0.1 & 29.16 & & & & & & \\
\hline 0 & & & & & & & \\
\hline
\end{tabular}



ITTC Responses
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(\omega_{\mathrm{e}}(\mathrm{rad} / \mathrm{s})\)} & \multirow[b]{2}{*}{\(\mathrm{S}\left(\omega_{\mathrm{e}}\right)\)} & \multicolumn{3}{|c|}{RAO's} & \multicolumn{3}{|c|}{Responses} & \multicolumn{3}{|c|}{Areas Under Response} \\
\hline & & \[
\begin{aligned}
& \text { Roll } \\
& (\mathrm{E} / \mathrm{A})^{2} \\
& (\mathrm{rad} / \mathrm{m})^{2}
\end{aligned}
\] & \begin{tabular}{l}
Heave \((E / A)^{2}\) \\
\((-)^{2}\)
\end{tabular} & \[
\begin{gathered}
\text { Pitch } \\
(\mathrm{E} / \mathrm{A})^{2} \\
(\mathrm{rad} / \mathrm{m})^{2}
\end{gathered}
\] & Roll RAO*S \(\omega_{\mathrm{e}}\) ) & Heave RAO*S \(\omega_{\mathrm{e}}\) ) & Pitch RAO*S \(\left(\omega_{\mathrm{e}}\right)\) & Roll & Heave & Pitch \\
\hline 0.000 & 0 & 0 & 1 & 0.00365 & 0.00000 & 0 & 0 & & & \\
\hline 0.108 & 0 & 0 & 1 & 0.00367 & 0.00000 & 0 & 0 & 0 & 0 & 0 \\
\hline 0.231 & 0 & 0.0001 & 1.002 & 0.0037 & 0.00000 & 0 & 0 & 0 & 0 & 0 \\
\hline 0.370 & \(4.5774 \mathrm{E}-25\) & 0.0007 & 1.005 & 0.00373 & 0.00000 & \(4.60029 \mathrm{E}-25\) & 1.70737E-27 & \(2.22352 \mathrm{E}-29\) & 3.19235E-26 & 1.18482E-28 \\
\hline 0.524 & \(1.69919 \mathrm{E}-07\) & 0.00155 & 1.00685 & 0.00376 & 0.00000 & \(1.71083 \mathrm{E}-07\) & \(6.38895 \mathrm{E}-10\) & \(2.03199 \mathrm{E}-11\) & \(1.31994 \mathrm{E}-08\) & \(4.92922 \mathrm{E}-11\) \\
\hline 0.694 & 0.004896715 & 0.0045 & 1.0079 & 0.0038 & 0.00002 & 0.004935399 & 1.86075E-05 & \(1.87104 \mathrm{E}-06\) & 0.00041908 & 1.58002E-06 \\
\hline 0.879 & 0.11164069 & 0.00675 & 1.0087 & 0.003845 & 0.00075 & 0.112611965 & 0.000429258 & \(7.18741 \mathrm{E}-05\) & 0.010892868 & \(4.15028 \mathrm{E}-05\) \\
\hline 1.080 & 0.279857615 & 0.01 & 1.05 & 0.003906 & 0.00280 & 0.293850496 & 0.001093124 & 0.000356727 & 0.040819281 & 0.000152886 \\
\hline 1.296 & 0.314980158 & 0.017 & 1.215 & 0.0045 & 0.00535 & 0.382700891 & 0.001417411 & 0.000882046 & 0.073191705 & 0.000271598 \\
\hline 1.528 & 0.258031278 & 0.025 & 1.79 & 0.0066 & 0.00645 & 0.461875988 & 0.001703006 & 0.001368739 & 0.097921353 & 0.000361785 \\
\hline 1.776 & 0.185742916 & 0.028198 & 3.6 & 0.013 & 0.00524 & 0.668674496 & 0.002414658 & 0.001445846 & 0.139848095 & 0.000509351 \\
\hline 2.039 & 0.127295861 & 0.035693 & 4 & 0.0134 & 0.00454 & 0.509183443 & 0.001705765 & 0.001285805 & 0.154837574 & 0.000541658 \\
\hline 2.317 & 0.086109143 & 0.045037 & 2.54 & 0.009 & 0.00388 & 0.218717223 & 0.000774982 & 0.001172419 & 0.101334487 & 0.000345356 \\
\hline 2.611 & 0.0584605 & 0.056234 & 1.83 & 0.011629 & 0.00329 & 0.106982715 & 0.000679865 & 0.00105314 & 0.047868941 & 0.000213823 \\
\hline 2.921 & 0.040139368 & 0.069253 & 1.1 & 0.00425 & 0.00278 & 0.044153305 & 0.000170592 & 0.000938783 & 0.023385325 & 0.000131592 \\
\hline 3.246 & 0.027962893 & 0.084031 & 0.4 & 0.002 & 0.00235 & 0.011185157 & \(5.59258 \mathrm{E}-05\) & 0.000833486 & 0.008991843 & \(3.68065 \mathrm{E}-05\) \\
\hline 3.586 & 0.019785974 & 0.100487 & & & 0.00199 & & & 0.000738525 & 0.001904227 & \(9.52114 \mathrm{E}-06\) \\
\hline 3.942 & 0.014219453 & 0.118523 & & & 0.00169 & & & 0.000653908 & & \\
\hline 4.314 & 0.010373217 & 0.138046 & & & 0.00143 & & & 0.000579077 & & \\
\hline 4.701 & 0.007675369 & 0.15898 & & & 0.00122 & & & 0.000513255 & & \\
\hline 5.103 & 0.005755091 & 0.181288 & & & 0.00104 & & & 0.000455603 & & \\
\hline 5.521 & 0.004368988 & 0.204991 & & & 0.00090 & & & 0.000405305 & & \\
\hline 5.955 & 0.003355119 & 0.230201 & & & 0.00077 & & & 0.000361601 & & \\
\hline 6.404 & 0.00260423 & 0.257142 & & & 0.00067 & & & 0.000323804 & & \\
\hline 6.868 & 0.002041582 & 0.286187 & & & 0.00058 & & & 0.000291299 & & \\
\hline 7.349 & 0.001615358 & 0.317893 & & & 0.00051 & & & 0.000263541 & & \\
\hline 7.844 & 0.001289167 & 0.353033 & & & 0.00046 & & & 0.00024005 & & \\
\hline 8.355 & 0.001037137 & 0.392639 & & & 0.00041 & & & 0.000220398 & & \\
\hline 8.882 & 0.00084066 & 0.438036 & & & 0.00037 & & & 0.000204209 & & \\
\hline 9.424 & 0.000686203 & 0.49089 & & & 0.00034 & & & 0.000191148 & & \\
\hline 9.982 & 0.00056382 & 0.553237 & & & 0.00031 & & & 0.000180915 & & \\
\hline 10.555 & 0.000466134 & 0.62753 & & & 0.00029 & & & 0.00017324 & & \\
\hline 11.144 & 0.000387617 & 0.716668 & & & 0.00028 & & & 0.000167881 & & \\
\hline 11.748 & 0.000324093 & 0.824031 & & & 0.00027 & & & 0.000164616 & & \\
\hline 12.368 & 0.000272381 & 0.953504 & & & 0.00026 & & & 0.000163241 & & \\
\hline 13.003 & 0.000230039 & 1.109499 & & & 0.00026 & & & 0.000163569 & & \\
\hline 13.654 & 0.000195176 & 1.296961 & & & 0.00025 & & & 0.000165423 & & \\
\hline 14.320 & 0.000166323 & 1.521371 & & & 0.00025 & & & 0.000168637 & & \\
\hline 15.002 & 0.000142323 & 1.788731 & & & 0.00025 & & & 0.000173055 & & \\
\hline 15.700 & 0.000122267 & 2.105532 & & & 0.00026 & & & 0.000178527 & & \\
\hline 16.412 & 0.000105431 & & & & 0.00000 & & & \(9.17593 \mathrm{E}-05\) & & \\
\hline 17.141 & \(9.12386 \mathrm{E}-05\) & & & & 0.00000 & & & 0 & & \\
\hline 17.885 & 7.92252E-05 & & & & 0.00000 & & & 0 & & \\
\hline
\end{tabular}


Heave Response vs. Encounter Frequency


Significant Response:
\begin{tabular}{|c|c|c|}
\hline Roll (deg) & Heave \((\mathrm{m})\) & Pitch (deg) \\
\hline 14.8 & 1.675 & 5.9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Heading (deg) & Roll (deg) & Heave \((\mathrm{m})\) & Pitch (deg) \\
\hline 0 & 19.3 & 1.677 & 17.5 \\
\hline 45 & 13.4 & 1.819 & 11.5 \\
\hline 90 & 9.7 & 1.675 & 5.7 \\
\hline 135 & 14.4 & 1.675 & 5.9 \\
\hline 180 & 17.1 & 1.675 & 5.8 \\
\hline
\end{tabular}


\section*{West Coast Spectrum ( \(2<\mathrm{Hs}<3\) )}
\begin{tabular}{lcl} 
Vessel Waterline Length (LWL): & 16.4 & m \\
Froude Number (Fn): & 0.6 & \\
Vessel Speed (Vel): & 7.61 & \(\mathrm{~m} / \mathrm{s}\) \\
Vessel Speed: & 14.79 & kn \\
Vessel Heading: & 180 & deg \\
Vessel Heading (Head): & 3.14 & rad
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \(\omega_{\mathrm{w}}(\mathrm{rad} / \mathrm{s})\) & \(\mathrm{Freq}_{\text {w }}(\mathrm{Hz})\) & \(\mathrm{S}\left(\omega_{\mathrm{w}}\right)\) & \(\omega_{\mathrm{e}}(\mathrm{rad} / \mathrm{s})\) & \(\mathrm{S}\left(\omega_{\mathrm{e}}\right)\) \\
\hline 0 & 0.000 & 0 & 0.000 & 0 \\
\hline 0.1 & 0.016 & 0 & 0.108 & 0 \\
\hline 0.2 & 0.032 & 0 & 0.231 & 0 \\
\hline 0.3 & 0.048 & 0 & 0.370 & 0 \\
\hline 0.4 & 0.064 & 0.25 & 0.524 & 0.15426156 \\
\hline 0.5 & 0.080 & 6.875 & 0.694 & 3.87153778 \\
\hline 0.6 & 0.095 & 4.75 & 0.879 & 2.45994664 \\
\hline 0.7 & 0.111 & 2.625 & 1.080 & 1.25833363 \\
\hline 0.8 & 0.127 & 2.125 & 1.296 & 0.94813236 \\
\hline 0.9 & 0.143 & 1.75 & 1.528 & 0.73026075 \\
\hline 1 & 0.159 & 1.2 & 1.776 & 0.47030046 \\
\hline 1.1 & 0.175 & 0.8 & 2.039 & 0.29556108 \\
\hline 1.2 & 0.191 & 0.5 & 2.317 & 0.17471079 \\
\hline 1.3 & 0.207 & 0.3 & 2.611 & 0.09943559 \\
\hline 1.4 & 0.223 & 0.18 & 2.921 & 0.05674323 \\
\hline 1.5 & 0.239 & 0.125 & 3.246 & 0.03756754 \\
\hline 1.6 & 0.255 & 0.08 & 3.586 & 0.02297203 \\
\hline 1.7 & 0.271 & 0.05 & 3.942 & 0.01374513 \\
\hline 1.8 & 0.286 & 0.02 & 4.314 & 0.00527314 \\
\hline 1.9 & 0.302 & 0.01 & 4.701 & 0.00253295 \\
\hline 2 & 0.318 & 0 & 5.103 & 0 \\
\hline 2.1 & 0.334 & 0 & 5.521 & 0 \\
\hline 2.2 & 0.350 & 0 & 5.955 & 0 \\
\hline 2.3 & 0.366 & 0 & 6.404 & 0 \\
\hline 2.4 & 0.382 & 0 & 6.868 & 0 \\
\hline 2.5 & 0.398 & 0 & 7.349 & 0 \\
\hline 2.6 & 0.414 & 0 & 7.844 & 0 \\
\hline 2.7 & 0.430 & 0 & 8.355 & 0 \\
\hline 2.8 & 0.446 & 0 & 8.882 & 0 \\
\hline 2.9 & 0.462 & 0 & 9.424 & 0 \\
\hline 3 & 0.477 & 0 & 9.982 & 0 \\
\hline 3.1 & 0.493 & 0 & 10.555 & 0 \\
\hline 3.2 & 0.509 & 0 & 11.144 & 0 \\
\hline 3.3 & 0.525 & 0 & 11.748 & 0 \\
\hline 3.4 & 0.541 & 0 & 12.368 & 0 \\
\hline 3.5 & 0.557 & 0 & 13.003 & 0 \\
\hline 3.6 & 0.573 & 0 & 13.654 & 0 \\
\hline 3.7 & 0.589 & 0 & 14.320 & 0 \\
\hline 3.8 & 0.605 & 0 & 15.002 & 0 \\
\hline 3.9 & 0.621 & 0 & 15.700 & 0 \\
\hline 4 & 0.637 & 0 & 16.412 & 0 \\
\hline 4.1 & 0.653 & 0 & 17.141 & 0 \\
\hline 4.2 & 0.668 & 0 & 17.885 & 0 \\
\hline
\end{tabular}


\section*{West Coast RAOs}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(\lambda_{\mathrm{e}} / \mathrm{L}\)} & \multirow[b]{2}{*}{\(\omega_{\mathrm{e}}\)} & \multicolumn{3}{|c|}{RRW's at S/B = 2} & \multicolumn{3}{|c|}{RAO's at S/B = 2} \\
\hline & & Roll (E*L/A) (rad) & \begin{tabular}{l}
Heave \\
(E/A) \\
(-)
\end{tabular} & Pitch (E*L/A) (rad) & \[
\begin{gathered}
\text { Roll } \\
(\mathrm{E} / \mathrm{A})^{2} \\
(\mathrm{rad} / \mathrm{m})^{2} \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Heave \\
(E/A) \({ }^{2}\) \\
\((-)^{2}\)
\end{tabular} & \[
\begin{gathered}
\hline \text { Pitch } \\
(\mathrm{E} / \mathrm{A})^{2} \\
(\mathrm{rad} / \mathrm{m})^{2} \\
\hline
\end{gathered}
\] \\
\hline & 0.00 & & & & 0 & 1 & 0.00365 \\
\hline & 0.05 & & & & 0 & 1 & 0.00366 \\
\hline & 0.10 & & & & 0 & 1 & 0.00367 \\
\hline & 0.15 & & & & 0 & 1 & 0.00368 \\
\hline & 0.20 & & & & 0.00009 & 1 & 0.00369 \\
\hline & 0.25 & & & & 0.0001 & 1.002 & 0.0037 \\
\hline & 0.30 & & & & 0.0003 & 1.003 & 0.00371 \\
\hline & 0.35 & & & & 0.0005 & 1.004 & 0.00372 \\
\hline & 0.40 & & & & 0.0007 & 1.005 & 0.00373 \\
\hline & 0.45 & & & & 0.0009 & 1.006 & 0.00374 \\
\hline & 0.50 & & & & 0.001 & 1.0065 & 0.00375 \\
\hline & 0.55 & & & & 0.0015 & 1.0068 & 0.00376 \\
\hline & 0.60 & & & & 0.002 & 1.0072 & 0.00377 \\
\hline & 0.65 & & & & 0.003 & 1.0075 & 0.00378 \\
\hline & 0.70 & & & & 0.004 & 1.0078 & 0.00379 \\
\hline & 0.75 & & & & 0.0045 & 1.0079 & 0.0038 \\
\hline & 0.80 & & & & 0.005 & 1.008 & 0.00381 \\
\hline & 0.85 & & & & 0.0055 & 1.0081 & 0.00382 \\
\hline & 0.90 & & & & 0.006 & 1.0082 & 0.00383 \\
\hline & 0.95 & & & & 0.0065 & 1.0085 & 0.00384 \\
\hline & 1.00 & & & & 0.007 & 1.009 & 0.00385 \\
\hline & 1.05 & & & & 0.0075 & 1.01 & 0.00386 \\
\hline & 1.10 & & & & 0.0085 & 1.02 & 0.00387 \\
\hline & 1.15 & & & & 0.0092 & 1.03 & 0.00388 \\
\hline 3.2 & 0.91 & & 1.025 & 2.4 & 0.01 & 1.050625 & 0.003906 \\
\hline 3.1 & 0.94 & & 1.03 & 2.4 & 0.011 & 1.0609 & 0.003944 \\
\hline 3 & 0.97 & & 1.04 & 2.5 & 0.012 & 1.0816 & 0.004021 \\
\hline 2.9 & 1.01 & & 1.06 & 2.55 & 0.013 & 1.1236 & 0.004178 \\
\hline 2.8 & 1.04 & & 1.08 & 2.7 & 0.016 & 1.1664 & 0.004337 \\
\hline 2.7 & 1.08 & & 1.1 & 2.85 & 0.017 & 1.21 & 0.004499 \\
\hline 2.6 & 1.12 & & 1.12 & 3 & 0.018 & 1.2544 & 0.004664 \\
\hline 2.5 & 1.17 & & 1.16 & 3.2 & 0.0195 & 1.3456 & 0.005003 \\
\hline 2.4 & 1.21 & & 1.22 & 3.45 & 0.022 & 1.4884 & 0.005534 \\
\hline 2.3 & 1.27 & & 1.28 & 3.75 & 0.024 & 1.6384 & 0.006092 \\
\hline 2.2 & 1.33 & & 1.4 & 4.2 & 0.026 & 1.96 & 0.007287 \\
\hline 2.1 & 1.39 & & 1.55 & 4.55 & 0.03 & 2.4025 & 0.008933 \\
\hline 2 & 1.46 & & 1.7 & 4.95 & 0.032 & 2.89 & 0.010745 \\
\hline 1.9 & 1.53 & 3.05 & 1.9 & 5.15 & 0.0345869 & 3.61 & 0.013422 \\
\hline 1.8 & 1.62 & 3.25 & 2.03 & 4.95 & 0.0392716 & 4.1209 & 0.015322 \\
\hline 1.7 & 1.72 & 3.45 & 2 & 4.45 & 0.0442538 & 4 & 0.014872 \\
\hline 1.6 & 1.82 & 3.55 & 1.8 & 3.55 & 0.0468564 & 3.24 & 0.012046 \\
\hline 1.5 & 1.94 & 3.85 & 1.675 & 3.1 & 0.0551104 & 2.805625 & 0.010431 \\
\hline 1.4 & 2.08 & 4.1 & 1.5 & 2.85 & 0.0625 & 2.25 & 0.008366 \\
\hline 1.3 & 2.24 & 4.35 & 1.35 & 2.85 & 0.0703543 & 1.8225 & 0.006776 \\
\hline 1.2 & 2.43 & 4.65 & 1.15 & 3 & 0.080393 & 1.3225 & 0.004917 \\
\hline 1.1 & 2.65 & 5.05 & 0.95 & 2.8 & 0.0948189 & 0.9025 & 0.003356 \\
\hline 1 & 2.92 & 5.35 & 0.65 & 2.4 & 0.1064192 & 0.4225 & 0.001571 \\
\hline 0.9 & 3.24 & 5.9 & & & 0.1294244 & & \\
\hline 0.8 & 3.64 & 6.3 & & & 0.1475684 & & \\
\hline 0.7 & 4.17 & 6.85 & & & 0.174459 & & \\
\hline 0.6 & 4.86 & 7.35 & & & 0.200857 & & \\
\hline 0.5 & 5.83 & 7.75 & & & 0.2233139 & & \\
\hline 0.4 & 7.29 & 7.5 & & & 0.2091389 & & \\
\hline 0.3 & 9.72 & 5.7 & & & 0.1207986 & & \\
\hline 0.2 & 14.58 & 1 & & & 0.003718 & & \\
\hline 0.1 & 29.16 & & & & & & \\
\hline 0 & & & & & & & \\
\hline
\end{tabular}




\section*{I Electrical Load}

\section*{120/240V AC Systems}

\section*{Domestic Systems}
\begin{tabular}{ll} 
Wheelhouse Heaters & 1500 W \\
Deckhouse Heaters & 2500 W \\
Kitchen Appliances & 3000 W \\
Lighting & 1500 W \\
Water Heater & 2000 W
\end{tabular}

Operation Systems
\begin{tabular}{lr} 
Computer & 500 W \\
Search Light & 2500 W \\
Floodlights & 4000 W \\
Block Heaters & 2400 W \\
Battery Chargers & 1200 W \\
Total Power & \(\mathbf{2 1 1 0 0} \mathbf{~ W}\) \\
Total Current & \(\mathbf{8 8} \mathbf{A}\)
\end{tabular}

12V Systems
\begin{tabular}{lr} 
Loudhailer & 90 W \\
Autopilot & 120 W \\
GPS & 90 W \\
Radios & 360 W \\
Map Table Lighting & 100 W \\
Total Power & \(\mathbf{7 6 0} \mathbf{~ W}\) \\
Total Current & 63 A
\end{tabular}

24V Systems
\begin{tabular}{lr} 
Bilge Pump & 1400 W \\
Anchor Windlas & 1200 W \\
Wipers & 140 W \\
Horn & 250 W \\
Radar & 120 W \\
Navigation Lights & 200 W \\
Engine Controls & 550 W \\
Alarms & 550 W \\
& \\
Total Power & \(\mathbf{4 4 1 0} \mathbf{~ W}\) \\
Total Current & \(\mathbf{1 8 4} \mathbf{~ A}\)
\end{tabular}
Total DC Current @ 24V ..... 215

J Cost Estimate
\begin{tabular}{lrlrr}
\multicolumn{1}{c}{ Item } & Unit Cost & Units & Quantity & \multicolumn{1}{c}{ Cost } \\
& & & & \\
& Structure & & & \\
Aluminium & \(\$ 5,500\) & \(\$ / \mathrm{MT}\) & 11.4 & \(\$ 62,700\) \\
\(+25 \%\) Scrap & \(\$ 5,500\) & \(\$ / \mathrm{MT}\) & 2.85 & \(\$ 15,675\) \\
\(+18 \%\) Consumables & \(\$ 5,500\) & \(\$ / \mathrm{MT}\) & 2.052 & \(\$ 11,286\) \\
Labour & \(\$ 65\) & \(\$ /\) hour & 3135 & \(\$ 203,775\) \\
NC work & \(\$ 25,000\) & Fixed & 1 & \(\$ 25,000\) \\
Paint & \(\$ 650\) & \(\$ / \mathrm{MT}\) & 1 & \(\$ 650\) \\
Outfitting & \(\$ 10,000\) & Fixed & 1 & \(\$ 10,000\) \\
Subtotal & & & & \(\$ 329,086\)
\end{tabular}
\begin{tabular}{lrcrr} 
& \multicolumn{4}{c}{ Deck Equipment } \\
Compressor & \(\$ 15,527\) & Each & 1 & \(\$ 15,527\) \\
Cascade Air System & \(\$ 8,225\) & Each & 1 & \(\$ 8,225\) \\
Specialized Medical Equipment & \(\$ 50,000\) & Fixed & 1 & \(\$ 50,000\) \\
Winch & \(\$ 700\) & Each & 4 & \(\$ 2,800\) \\
Anchor & \(\$ 100\) & Each & 2 & \(\$ 200\) \\
Chain & \(\$ 20\) & \(m\) & 20 & \(\$ 400\) \\
Subtotal & & & & \(\$ 77,152\)
\end{tabular}
\begin{tabular}{lccrr} 
& \begin{tabular}{c} 
Machinery \\
\\
Main engines
\end{tabular} & & & \\
Waterjets & \(\$ 235,600\) & Each & 2 & \(\$ 211,200\) \\
Fuel System & \(\$ 12,000\) & Each & 2 & \(\$ 460,000\) \\
Machinery Cooling and Exhaust & \(\$ 35,000\) & Fixed & 1 & \(\$ 12,000\) \\
Misc & \(\$ 20,000\) & Fixed & 1 & \(\$ 35,000\) \\
Subtotal & & & 1 & \(\$ 20,000\) \\
& & & \(\$ 738,200\)
\end{tabular}
\begin{tabular}{lrlrr} 
& Electrical & & & \\
Alternator & \(\$ 300\) & Each & 2 & \(\$ 600\) \\
Generator & \(\$ 10,000\) & Each & 1 & \(\$ 10,000\) \\
Wiring & \(\$ 5,000\) & Fixed & 1 & \(\$ 5,000\) \\
Subtotal & & & & \(\$ 15,600\)
\end{tabular}
\begin{tabular}{lrlrr} 
& \multicolumn{2}{c}{ Miscellaneous } & & \\
Navigation Equipment & \(\$ 200,000\) & Fixed & 1 & \(\$ 200,000\) \\
Communication Equipment & \(\$ 320,000\) & Fixed & 1 & \(\$ 320,000\) \\
Plumbing & \(\$ 5,000\) & Fixed & 1 & \(\$ 5,000\) \\
During Construction Insurance & \(\$ 33,600\) & Fixed & 1 & \(\$ 33,600\) \\
Classification Survey \& Approval & \(\$ 25,000\) & Fixed & 1 & \(\$ 25,000\) \\
Subtotal & & & & \(\$ 583,600\)
\end{tabular}

\section*{Summary}
\begin{tabular}{lr} 
Structural & \(\$ 329,086\) \\
Deck Equipment & \(\$ 77,152\) \\
Machinery & \(\$ 738,200\) \\
Electrical & \(\$ 15,600\) \\
& \\
Miscellaneous & \(\$ 583,600\) \\
Engineering & 10\% of of Structural, \\
10\% Contingency & \\
Total & \(\mathbf{C A D}\) \\
\hline
\end{tabular}```


[^0]:    ${ }^{1}$ Allan, R.G. "Application and Advantages of Catamarans for Coastal Patrol Vessels". Marine Technology, April 1996

[^1]:    ${ }^{2}$ http://www.wartsila.com/wartsila/docs/en/ship_power/media_publications/brochures/product/propulsor/lips_jets.pdf

[^2]:    ${ }^{3}$ http://www.tc.gc.ca/MarineSafety/TP/Tp $7301 /$ menu.htm

[^3]:    ${ }^{4}$ Kring, et al. "A Time-Domain Seakeeping Simulation for Fast Ships." FAST97 Conference, Sydney, Australia.
    ${ }^{5}$ http://www.incatdesigns.com.au/publications/The_BC_Ferrie_Catamarans.pdf
    ${ }^{6}$ Department of Fisheries and Oceans, http://www.meds-sdmm.dfo-mpo.gc.ca/alphapro/wave/TDCAtlas/TDCProducts.htm

[^4]:    Therefore, web must be at least $2.5 x$ the depth of the stiffener,
    127 mm

